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Abstract

This paper deals with an agile missile pitch
autopilot design using L1 adaptive backstepping
control methodology. The flight phases of the
agile missile systems can be classified into three
phases; launch, agile turn, and end-game. This
paper is focused on the agile turn phase, which
is a fast 180 degree turn to engage a rear-
hemisphere located target after launch phase,
under the presence of the aerodynamic
uncertainties. To attain a fast response, the
angle-of-attack is chosen to be the control
variable. Since L1 adaptive control can
guarantee robustness against uncertainty and a
fast response during the transient phase, it is
suitable for a control methodology of the agile
turn. The performances of the proposed
controller are investigated and demonstrated
through numerical simulations.

1 Introduction

During the course of years, the control systems
of the agile missiles have been extensively
studied by many researchers [1-6]. In general,
the flight phases of the agile missile systems
consist of three different phases; launch, agile
turn, and end-game [2]. Among three different
phases, the controller design of the agile turn
phase introduces many challenging problems.
The agile turn is defined to be a fast 180 degree
turn maneuver to engage a rear-hemisphere
located target after launch phase. The reason,
why handling of the agile turn is difficult, is the
presence of a large variation of the aerodynamic
uncertainties induced by a high angle-of-attack
maneuver. Therefore, a robust control approach

is needed in order to compensate such the
aerodynamic uncertainties.

One of solution is that the controller
predicts the model uncertainties and adapts the
model parameters, which is called the adaptive
control methodology [5-6]. Although this
approach can have robustness under the
presences of the model uncertainties, the
transient performance is poor due to the
adaptation time nullifying the model error.
Hence, the conventional adaptive control
methodology may not be suitable for a control
method of the agile missile systems that require
a fast transient performance.

As a remedy, in this paper, we propose an
agile missile controller based on backstepping
control methodology with L1 adaptive scheme.
From previous works [8-9], it has been shown
that L1 adaptive scheme can provide the
robustness and a fast response during the
transient phase. In addition, since the normal
acceleration control of the missile systems faces
with the nonminimum phase phenomena, we
choose the angle-of-attack for the control
variable. Additionally, according to references
[8-9], the commanding of angle-of-attack is
more desirable than that of normal acceleration
for achieving a fast response. Finally, the
performance of the proposed controller is
demonstrated by numerical simulations.

This paper consists of five sections. In
section 2, a nonlinear missile model is explained.
The proposed controller is provided in section 3.
The simulation results are shown in section 4. In
section 5, we conclude this study.

2 Nonlinear Missile Model
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In this study, a nonlinear model of the
longitudinal missile motion is considered as
shown in Fig. 1.

Fig. 1 The missile geometry

Under the assumptions that the missile
body is rigid and the gravity force is
compensated, the equations of motion are
determined as follows:

. S
a= —r?]—V(CN0 (e,M)+Cy (a,M )5)+q (1)
Q=?—YSYI(C%(0¢,M)+C%(M)IEquCmﬁ(a,M)&j @

where «, q, and § denote the angle-of-attack,
the pitch rate, and the fin deflection angle,
respectively. The notationsof m, 1, S, and |

indicate the mass, the pitching moment of
inertia, the reference area, and the reference
length, respectively. The velocity, the dynamic
pressure, and Mach number are denoted by V ,
Q, and M , respectively. The aerodynamic
coefficients in Egs. (1) and (2) are given by the
function of the angle-of-attack and Mach
number. There coefficients are computed form
the predetermined data tables, which are
obtained by the wind tunnel test.

In the high angle-of-attack regime, the

missile undergoes the aerodynamic uncertainties.

From Eq. (1), we have the following equations
under the presence of the aerodynamic
uncertainties.

>‘<1:f1+Af1+x2+(gl+Ag1)u (3)
X2=f2+Af2+(g2+Ag2)u 4)

where,
=a, X; =4, u=4 )
f=K,Cy, f,=K,(Cp +Cp (al/2V)) ()
0,=K,C. 9,=KC, )

K,=—-(QS/mV), K, =(Qsl/l,) (8)

and the notations of A represents the model
error caused by the aerodynamic uncertainties in
the high angle-of-attack regime.

3 L1 Adaptive Backstepping Controller

3.1 Model Derivation

In order to apply the backstepping control
methodology, a strict feedback form of system
equation is required. In the missile systems, the

magnitude of control force (g, +Ag,)u in the
right hand side of Eqg. (3) can be generally
negligible due to |(g, +Ag, )u|>|(g, +Ag, )u|.
Therefore, Egs. (3) and (4) can be rewritten in a
strict feedback form as follows:
X1:f1+X2+A1 )
X, =f,+0,0u+A, (10)
where
A =Af,+(9,+Ag,)u, A, =Af, (11)
w=1+Ag,/9, (12)
In Egs. (9) and (10), A, and A, can be regarded
as the total model errors due to the aerodynamic
uncertainties and the neglecting term of
(9,+Ag,)u . By introducing the linear
parameterization [9], the model uncertainties
can be parameterized as follows:
A1:‘91|X1|+(71 (13)
A, =6,|X|, +o, (14)
Substituting Eqgs. (13) and (14) into Egs. (9) and
(10) yields the following equation.
% = f 4% +6|x|+0, (15)
X, = f,+0,0u+6,|X| +o, (16)
where 6, 6,, o,, o,, and @ are unknown

parameters. The adaptation schemes of these
variables will be discussed in section 3.3.

3.2 State Predictor Design

In this section, we discuss the state predictor
design. First, let us define the desired error
dynamics of state predictor as follows:

% =-KX, X, =—Ky%, (17)
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where X = X—x represents the prediction error.
X and x are the predicted state and the true
state, respectively. The gains of K, and K,

decide the convergence speed of the prediction
error. Substituting Eqgs. (15) and (16) into Eq.
(17) provides the following state predictor.

X =KX+ f,+%+6|x|+0,  (18)
X, = —K,%, + f, + g,0u+6, x| +o, (19)
Since 6, , 6,, o,, o,, and @ are unknown

parameters in Eqgs. (18) and (19), they should be
estimated as follows:

A

X =—K& + f1+x2+¢§l|x1|+61 (20)

%, =K, % + f, + g,ou+6,|x|. +, (21)

3.3 Adaptive Law Design

This section derives the adaptive law based on
Lyapunov function. By using Egs. (15), (16),
(20), and (21), the prediction error dynamics in
Eq. (17) can be rewritten as follows:

K, =X xl_—K1x1+49|x1|+a1 (22)
— %, ==K, %, + g,au+6, x|, +&, (23)
:91_91 ! 92=92_92 , 6,=0,-0,
6,=06,—0,,and d=0-w.
Let us consider the following Lyapunov
function.

K, =X, —

where 6,

1., Yo, 1/, s 0 .o .
V, :Exf +EX22 +E(a)2 +607+ 6 +67 +0'22) (24)
Taking the time-derivative of V, yields:

V, =-K & -K,% +C,+C, +C, +C, +C, (25)
where

C,=0%|x|+(1/T)8 (26)
C,=0,%, x|, +(1/F)52§2 (27)
C,=6.%+(1/T)é6,6, (28)
C,=06,%, +(1/1“)o‘20'2 (29)
Cs = @%,0,u+(1/T) @@ (30)

In order to guarantee the asymptotic stability of
the prediction error, we enforce C, through C;

to be zero. Then, the time-derivative of V, is
always negative definite as follows:

BACKSTEPPING CONTROL

V,=-K % -K,% <0 (31)

From the condition of nullifying C, to C;, the
following adaptive law can be obtained.

6, =6, ——Fx1|x1| 0, =0, =-T%, ||, (32)

6,=6,=-TX, -, (33)

& =d=-T%Q,u (34)

where T" represents the adaptation gain. In the

conventional adaptive control, the increase of

the adaptation gain introduces the chattering

effect. However, L1 adaptive control relieves

this limitation by introducing a low pass filter

rejecting the high frequency signal induced by
high adaptation gain.

0-2_02

3.4 Control Law Design

For convenience, let new residuals be defined as
follows:

2y =X = X4 Zy =Xy = Xyq (35)

Then, the residual dynamics can be expressed as:
2 ="f,+%+6,|x|+6 %4 (36)

2, =f,+0,0u+6,|X|, +6,-%y (37)

where x,, and x,, are the desired state values.

We consider the following Lyapunov function
to derive the outer loop control law in the
backstepping methodology.

1
V :—Z2 38
2 2 ( )

The time-derivative of V, can be determined by
using Eq. (36) as follows:

v2:Z1(f1+X2+é)1|X1|+O:1_X1d) (39)
In order to enforce V, <0, the desired value of
X, is chosen as:

X4 = _Klzl _( f1 + 91|X1|+ 6'1)"' Xw (40)
In order to design the inner loop control law, the

following Lyapunov function is introduced.

1 1
3=§ﬁ+§ﬁ (41)

After taking time-derivative of V, and
substituting Eqs. (36) and (37) into V, gives the

following result.
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V, =27,(-Kz,+2,)

L RN G
+12, ( f, + 0,0U+6, X, |, + 6, —Xpq )

From Eq. (42), we can obtain the inner loop

control law that satisfies V, <0 as follows:

! o
0= oKt el 6k )3

In Egs. (40) and (43), K, and K, represents the

control gain, which are identical values of the
state predictor.

If the adaptation gains increase, the
adaptation parameters of 6., 6,, 6,, 6,, and &
contain the high frequency signals which cause
the chattering effect during the transient phase.
In L1 adaptive control methodology, low pass
filters are introduced in the inner loop and the
outer loop control law in order to cutoff the high
frequency signal. Therefore, the uses of the high
adaptation gains are possible in this method.

By introducing a low pass filter, the outer
loop control law can be obtained as follows:

Xoq = —KZ =1 + Ry (44)
where 77,. £C,(s)7, in the frequency domain.
A second-order low pass filter C,(s) and the
variable 7, are defined as follows:

2
a
C,(s)= L 45
1 (¢) S +24 oS+ 0k )
ﬁl = f1""91|X1|"'6-1 (46)
where @, and ¢ represent the design

parameters of low pass filter.
In a similar way, the inner loop control law
is modified by using a first-order low pass filter.

0,(5)=C, (50 @)
where
g, 0K
C =— 48
+(5) S+ g,0k (48)
1 A A

= -K,z,-z, - f,-6. - X 49
u gzc?)( 2L, =4~ 1 2”)(2”0O 02+X2d)( )

where k represents the design parameter of a
first-order low pass filter.

Fig. 2 shows the overall configuration of the
proposed controller.

, State Predictor —%
o, | u . x ~t
H Control Law —» [PF M—‘—+ Missile Dynamics —() _

T 9‘ Adaptive Law <X

Fig. 2 The configuration of controller

4 Simulation Results

In order to demonstrate the performance of the
proposed controller, numbers of simulations are
carried out. In these simulations, a second-order
actuator model with w,, =200rad/s, ¢,, =0.7,

and & =450deg/ s is considered. The controller
parameters are chosen as K, =K, =15 and

I' =100000. The low pass filter parameters are
defined as @, =200rad/s , {,=0.7, and

k=5.

4.1 Case 1: Step Input Command

In this simulation, the proposed controller is
tested with a step input command. Figs. 3 and 4
show the step input response of angle-of-attack
and the fin deflection angle in the nominal case.
Figs. 5 and 6 provide the simulation results
under the presence of 30% model uncertainties
during the flight. The results indicate that the
proposed controller can provide a good tracking
performance even in the presence of the model
uncertainties.

4.2 Case 2: Agile Turn Scenario

In this simulation, the applicability of the
proposed method is determined under an agile
turn scenario (i.e., 180 degree heading reversal
turn). The angle-of-attack command [10] which
is obtained from the trajectory optimization to
achieve the terminal velocity after agile turn is
used. Figs. 7 and 8 give the angle-of-attack
response and the fin deflection angle during the
agile turn. The results show that the proposed
controller can maintain a sound tracking
performance. Therefore, the proposed method
can be applied to the challenging issues of the
agile missile systems.
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Fig. 3 Angle-of-attack (nominal)
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Fig. 4 Fin deflection angle (nominal)
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Fig. 5 Angle-of-attack (30% uncertainty)
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Fig. 6 Fin deflection angle(30% uncertainty)

BACKSTEPPING CONTROL
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Fig. 7 Angle-of-attack (agile turn)
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Fig. 8 Fin deflection angle (agile turn)

5 Conclusion

In this paper, we propose the agile missile
autopilot based on backstepping control in
conjunction with L1 adaptive scheme. In the
proposed method, the commanding of angle-of-
attack was considered for accomplishing a fast
turn of the missile’s heading angle. The
simulation results indicated that the proposed
controller can provide the sound performance
under the presence of the model uncertainties in
high angle-of-attack regime. It can also be
applicable to the agile turn maneuver.
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