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In this study, a nonlinear model of the 
longitudinal missile motion is considered as 
shown in Fig. 1. 

 
Fig. 1 The missile geometry 

Under the assumptions that the missile 
body is rigid and the gravity force is 
compensated, the equations of motion are 
determined as follows: 

( ) ( )( )0
, ,N N

QS C M C M q
mV δ

α α α δ+ += −  (1) 

( ) ( ) ( )
0

, ,
2qm m m

yy

QSl lqq C M C M C M
I V δ

α α δ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (2) 

where α , q , and δ  denote the angle-of-attack, 
the pitch rate, and the fin deflection angle, 
respectively. The notations of m , yyI , S , and l  
indicate the mass, the pitching moment of 
inertia, the reference area, and the reference 
length, respectively. The velocity, the dynamic 
pressure, and Mach number are denoted by V , 
Q , and M , respectively. The aerodynamic 
coefficients in Eqs. (1) and (2) are given by the 
function of the angle-of-attack and Mach 
number. There coefficients are computed form 
the predetermined data tables, which are 
obtained by the wind tunnel test. 

In the high angle-of-attack regime, the 
missile undergoes the aerodynamic uncertainties. 
From Eq. (1), we have the following equations 
under the presence of the aerodynamic 
uncertainties. 
 ( )1 1 1 2 1 1x f f x g g u= + Δ + + + Δ  (3) 
 ( )2 2 2 2 2x f f g g u= + Δ + + Δ  (4) 
where, 
 1x α= ,       2x q= ,        u δ=   (5) 

 
01 Nf K Cα= ,  ( )( )02 / 2

qq m mf K C C ql V= +  (6) 

 1 Ng K C
δα= ,       2 q mg K C

δ
=  (7) 

 ( )/K QS mVα = − ,      ( )/q yyK QSl I=  (8) 

and the notations of Δ  represents the model 
error caused by the aerodynamic uncertainties in 
the high angle-of-attack regime. 

3   L1 Adaptive Backstepping Controller 

3.1   Model Derivation 

In order to apply the backstepping control 
methodology, a strict feedback form of system 
equation is required. In the missile systems, the 
magnitude of control force ( )1 1g g u+ Δ  in the 
right hand side of Eq. (3) can be generally 
negligible due to ( ) ( )2 2 1 1g g u g g u+Δ +Δ . 
Therefore, Eqs. (3) and (4) can be rewritten in a 
strict feedback form as follows: 
 1 1 2 1x f x= + + Δ  (9) 
 2 2 2 2x f g uω= + + Δ  (10) 
where 
 ( )1 1 1 1f g g uΔ = Δ + + Δ ,   2 2fΔ = Δ  (11) 
 2 21 /g gω = + Δ  (12) 
In Eqs. (9) and (10), 1Δ  and 2Δ  can be regarded 
as the total model errors due to the aerodynamic 
uncertainties and the neglecting term of 
( )1 1g g u+ Δ . By introducing the linear 
parameterization [9], the model uncertainties 
can be parameterized as follows: 
 1 1 1 1xθ σΔ = +  (13) 
 2 2 2xθ σ

∞
Δ = +  (14) 

Substituting Eqs. (13) and (14) into Eqs. (9) and 
(10) yields the following equation. 
 1 1 2 1 1 1x f x xθ σ= + + +  (15) 
 2 2 2 2 2x f g u xω θ σ

∞
= + + +  (16) 

where 1θ , 2θ , 1σ , 2σ , and ω  are unknown 
parameters. The adaptation schemes of these 
variables will be discussed in section 3.3. 

3.2   State Predictor Design 

In this section, we discuss the state predictor 
design. First, let us define the desired error 
dynamics of state predictor as follows: 
 1 1 1x K x= − ,           2 2 2x K x= −  (17) 
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where ˆx x x−  represents the prediction error. 
x̂  and x  are the predicted state and the true 
state, respectively. The gains of 1K  and 2K  
decide the convergence speed of the prediction 
error. Substituting Eqs. (15) and (16) into Eq. 
(17) provides the following state predictor. 
 1 1 1 1 2 1 1 1x̂ K x f x xθ σ= − + + + +  (18) 

 2 2 2 2 2 2 2x̂ K x f g u xω θ σ
∞

= − + + + +  (19) 
Since 1θ , 2θ , 1σ , 2σ , and ω  are unknown 
parameters in Eqs. (18) and (19), they should be 
estimated as follows: 
 1 1 1 1 2 1 1 1

ˆˆ ˆx K x f x xθ σ= − + + + +  (20) 

 2 2 2 2 2 2 2
ˆˆ ˆx K x f g u xω θ σ

∞
= − + + + +  (21) 

3.3   Adaptive Law Design 

This section derives the adaptive law based on 
Lyapunov function. By using Eqs. (15), (16), 
(20), and (21), the prediction error dynamics in 
Eq. (17) can be rewritten as follows: 
 1 1 1 1 1 1 1ˆx x x K x xθ σ= − = − + +  (22) 

2 2 2 2 2 2 2 2ˆx x x K x g u xω θ σ
∞

= − = − + + +  (23) 

where 1 1 1
ˆθ θ θ= − , 2 2 2

ˆθ θ θ= − , 1 1 1ˆσ σ σ= −

2 2 2ˆσ σ σ= − , and ˆω ω ω= − . 
Let us consider the following Lyapunov 

function. 

( )2 2 2 2 2 2 2
1 1 2 1 2 1 2

1 1 1
2 2 2

V x x ω θ θ σ σ= + + + + + +
Γ

(24) 

Taking the time-derivative of 1V  yields: 
 2 2

1 1 1 2 2 1 2 3 4 5V K x K x C C C C C= − − + + + + + (25) 
where  
 ( )1 1 1 1 1 11/C x xθ θ θ= + Γ  (26) 

 ( )2 2 2 2 2 21/C x xθ θ θ
∞

= + Γ  (27) 
 ( )3 1 1 1 11 /C xσ σ σ= + Γ  (28) 
 ( )4 2 2 2 21 /C xσ σ σ= + Γ  (29) 

 ( )5 2 2 1/C x g uω ωω= + Γ  (30) 
In order to guarantee the asymptotic stability of 
the prediction error, we enforce 1C  through 5C  
to be zero. Then, the time-derivative of 1V  is 
always negative definite as follows: 

 2 2
1 1 1 2 2 0V K x K x= − − <  (31) 

From the condition of nullifying 1C  to 5C , the 
following adaptive law can be obtained. 

 1 1 1 1
ˆ x xθ θ= = −Γ , 2 2 2 2

ˆ x xθ θ
∞

= = −Γ  (32) 

 1 1 1ˆ xσ σ= = −Γ ,   2 2 2ˆ xσ σ= = −Γ  (33) 
 2 2ˆ x g uω ω= = −Γ  (34) 
where Γ  represents the adaptation gain. In the 
conventional adaptive control, the increase of 
the adaptation gain introduces the chattering 
effect. However, L1 adaptive control relieves 
this limitation by introducing a low pass filter 
rejecting the high frequency signal induced by 
high adaptation gain. 

3.4   Control Law Design 

For convenience, let new residuals be defined as 
follows: 
 1 1 1dz x x= − ,       2 2 2dz x x= −  (35) 
Then, the residual dynamics can be expressed as: 
 1 1 2 1 1 1 1

ˆ ˆ dz f x x xθ σ= + + + −  (36) 

 2 2 2 2 2 2
ˆˆ ˆ dz f g u x xω θ σ

∞
= + + + −  (37) 

where 1dx  and  2dx  are the desired state values. 
We consider the following Lyapunov function 
to derive the outer loop control law in the 
backstepping methodology. 

 2
2 1

1
2

V z=  (38) 

The time-derivative of 2V  can be determined by 
using Eq. (36) as follows: 
 ( )2 1 1 2 1 1 1 1

ˆ ˆ dV z f x x xθ σ= + + + −  (39) 

In order to enforce 2 0V < , the desired value of 

2x  is chosen as: 

 ( )2 1 1 1 1 1 1 1
ˆ ˆd dx K z f x xθ σ= − − + + +  (40) 

In order to design the inner loop control law, the 
following Lyapunov function is introduced. 

 2 2
3 1 2

1 1
2 2

V z z= +  (41) 

After taking time-derivative of 3V  and 
substituting Eqs. (36) and (37) into 3V  gives the 
following result. 
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( )

( )
3 1 1 1 2

2 2 2 2 2 2 2
ˆˆ ˆ d

V z K z z

z f g u x xω θ σ
∞

= − +

+ + + + −
 (42) 

From Eq. (42), we can obtain the inner loop 
control law that satisfies 3 0V <  as follows: 

( )2 2 1 2 2 2 2 2
2

1 ˆ ˆ
ˆ du K z z f x x

g
θ σ

ω ∞
= − − − − − + (43) 

In Eqs. (40) and (43), 1K  and 2K  represents the 
control gain, which are identical values of the 
state predictor. 

If the adaptation gains increase, the 
adaptation parameters of 1̂θ , 2̂θ , 1σ̂ , 2σ̂ , and ω̂  
contain the high frequency signals which cause 
the chattering effect during the transient phase. 
In L1 adaptive control methodology, low pass 
filters are introduced in the inner loop and the 
outer loop control law in order to cutoff the high 
frequency signal. Therefore, the uses of the high 
adaptation gains are possible in this method. 

By introducing a low pass filter, the outer 
loop control law can be obtained as follows: 
 2 1 1 1 1ˆd C dx K z xη= − − +  (44) 
where ( )1 1 1ˆ ˆC C sη η  in the frequency domain. 
A second-order low pass filter ( )1C s  and the 
variable 1̂η  are defined as follows: 

 ( )
2

1 2 22
LF

LF LF LF

C s
s s

ω
ζ ω ω

=
+ +

 (45) 

 1 1 1 1 1
ˆˆ ˆf xη θ σ= + +  (46) 

where LFω  and LFζ  represent the design 
parameters of low pass filter. 

In a similar way, the inner loop control law 
is modified by using a first-order low pass filter. 
 ( ) ( )2cu s C s u=  (47) 
where 

 ( ) 2
2

2

ˆ
ˆ

g kC s
s g k

ω
ω

=
+

 (48) 

( )2 2 1 2 2 2 2 2
2

1 ˆ ˆ
ˆ du K z z f x x

g
θ σ

ω ∞
= − − − − − +  (49) 

where k  represents the design parameter of a 
first-order low pass filter. 
    Fig. 2 shows the overall configuration of the 
proposed controller. 

 
Fig. 2 The configuration of controller 

4   Simulation Results 

In order to demonstrate the performance of the 
proposed controller, numbers of simulations are 
carried out. In these simulations, a second-order 
actuator model with 200 rad/ sactω = , 0.7actζ = , 
and 450 deg/ sδ =  is considered. The controller 
parameters are chosen as 1 2 15K K= =  and 

100000Γ = . The low pass filter parameters are 
defined as 200 rad/ sLFω = , 0.7LFζ = , and 

5k = . 

4.1   Case 1: Step Input Command 

In this simulation, the proposed controller is 
tested with a step input command. Figs. 3 and 4 
show the step input response of angle-of-attack 
and the fin deflection angle in the nominal case. 
Figs. 5 and 6 provide the simulation results 
under the presence of 30% model uncertainties 
during the flight. The results indicate that the 
proposed controller can provide a good tracking 
performance even in the presence of the model 
uncertainties. 

4.2   Case 2: Agile Turn Scenario 

In this simulation, the applicability of the 
proposed method is determined under an agile 
turn scenario (i.e., 180 degree heading reversal 
turn). The angle-of-attack command [10] which 
is obtained from the trajectory optimization to 
achieve the terminal velocity after agile turn is 
used. Figs. 7 and 8 give the angle-of-attack 
response and the fin deflection angle during the 
agile turn. The results show that the proposed 
controller can maintain a sound tracking 
performance. Therefore, the proposed method 
can be applied to the challenging issues of the 
agile missile systems. 
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Fig. 3 Angle-of-attack (nominal) 

 
Fig. 4 Fin deflection angle (nominal) 

 
Fig. 5 Angle-of-attack (30% uncertainty) 

 
Fig. 6 Fin deflection angle(30% uncertainty) 

 
Fig. 7 Angle-of-attack (agile turn) 

 
Fig. 8 Fin deflection angle (agile turn) 

5   Conclusion 

In this paper, we propose the agile missile 
autopilot based on backstepping control in 
conjunction with L1 adaptive scheme. In the 
proposed method, the commanding of angle-of-
attack was considered for accomplishing a fast 
turn of the missile’s heading angle. The 
simulation results indicated that the proposed 
controller can provide the sound performance 
under the presence of the model uncertainties in 
high angle-of-attack regime. It can also be 
applicable to the agile turn maneuver. 
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