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Abstract

In aerospace systems design, conflicting dis-
ciplines and technologies are always involved
in the design process. Multi-Criteria Decision
Analysis (MCDA) techniques can be helpful to
effectively deal with such situations and make
wise design decisions. In this paper, the feasibil-
ity and added values of applying the MCDA tech-
niques in aircraft design are explored. A new op-
timization framework incorporating MCDA tech-
niques in aircraft conceptual design process is es-
tablished. An improved MCDA method is uti-
lized to aggregate the multiple design criteria
into one composite figure of merit, which serves
as an objective function in the optimization pro-
cess. It is demonstrated that the suitable MCDA
method with improvement provides a better ob-
jective function for the optimization than the tra-
ditional weighted sum method.

Considering that the inherent uncertainties
and subjectivities of the weighting factors have
crucial impacts on the design solution, surrogate
models for the multiple design criteria in terms
of the weighting factors are constructed. The
constructed surrogate model can provide efficient
analysis tools for uncertainty assessment.

1 Introduction

Multi-Criteria Decision Analysis (MCDA) is a
process that allows one to make decisions in the
presence of multiple, potentially conflicting cri-
teria [15], [7]. Although MCDA as a discipline
has a relatively short history of about 40 years,
over 70 MCDA techniques have been developed
for facilitating the decision making process.

There are typically two strategies when im-
plementing MCDA techniques in the engineering
design process: a posteriori approach and a priori
approach [15]. In the a posteriori approach, opti-
mization techniques are applied firstly to search
for a set of best trade-off solutions, usually in
terms of a Pareto front. Then, MCDA techniques
are used to select the most preferred design solu-
tion among several design alternatives from the
Pareto front, taking multiple evaluation criteria
into consideration simultaneously. In the a pri-
ori approach, MCDA techniques are utilized to
aggregate the multiple design criteria into one
figure of merit. Then, optimization techniques
are applied to search for the best design solution,
with the composite figure of merit as a single ob-
jective function.

Multi-objective optimization techniques play
an important role in the a posteriori approach.
For example, a three-objectives Genetic Algo-
rithms (GA) were used to identify the trade-offs
between environmental performances (noise and
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emission) and operating cost quantitatively [1].
A two-objectives GA were applied to the de-
sign of an aircraft that uses greener technologies
[10]. However, multi-objective GA suffer from
expensive computation. Furthermore, evolution-
ary optimization techniques are often not easily
applicable for handling a large number of objec-
tives [6].

The a priori approach can support designers
to quickly assess the compromised design alter-
natives and be capable of dealing with large num-
ber of objectives. One of the classical a priori
approaches, the weighted-sum approach (SAW),
however, was criticized for over-simplified ag-
gregation of the multiple design objectives [8].

In the a priori approach, the weighting fac-
tors create a compound figure of merit. The
compound figure of merit serves as the objec-
tive function for optimization. Different weight-
ing schemes result in different compound figure
of merits. The selection of the figure of merit is
critical to the determination of an optimal design,
since if a design is optimized to the wrong figure
of merit, it will not be the best design in terms of
the real important measure. Especially, the inher-
ent uncertainties and subjectivities of the weight-
ing factors have significant impacts on the design
solution.

In this paper, the a priori approach of im-
plementing MCDA techniques in the design pro-
cess is followed. A new multi-criteria optimiza-
tion framework incorporating MCDA techniques
in the aircraft conceptual design process is es-
tablished, as illustrated in Fig.1. An improved
MCDA method is utilized to aggregate the mul-
tiple design criteria into one composite figure of
merit, which serves as an objective function in
the optimization process. Furthermore, consider-
ing the crucial impacts of the weighting factors
on the optimized design solution, surrogate mod-
els for the multiple design criteria in terms of the
weighting factors are constructed.

The paper is organized as follows. Section 2
defines the aircraft design decision making prob-
lem. Section 3 presents the selection of the most
appropriate MCDA method, through an devel-
oped intelligent multi-criteria decision support

system. Section 4 presents the results of apply-
ing an improved MCDA method in the proposed
multi-criteria optimization framework. In Sec-
tion 5, surrogate model development for design
criteria in terms of weighting factors is discussed.
Finally, conclusions are drawn and presented in
Section 6.

2 Definition of the Decision Making Problem

The focus of the proposed optimization frame-
work is the assessment of the added values of
incorporating MCDA techniques in the aircraft
conceptual design process. Thus, in order to keep
the design process transparent, the complexity of
the design problem is limited. Five design vari-
ables for a conceptual aircraft design model are
considered in this study: wing thickness-to-chord
ratio, aspect ratio, reference area, cruise Mach
number, and fuselage diameter.

The proposed optimization framework
is applied to the design of a conventional
150-passenger, twin engine airliner with a
design range 3200 km using the concep-
tual aircraft design tool VAMPzero(Virtual
Aircraft Multidisciplinary Analysis and Design
Processes). VAMPzero is developed at the Ger-
man Aerospace Center (DLR e.V.) and licensed
under the Apache 2.0 license [3].

2.1 Identification of Design Criteria

Selection of appropriate design criteria is critical
to the determination of an optimal design. Some
recommendations were provided in [14], which
stated that the design criterion should represent a
non-trivial and calculable indication of the worth
of the concept, it should be significantly affected
by the design variables and constraints, it should
have clear meaning to designers and customers,
and it needs clear rationale for methods and fac-
tors used for blending if it is blended.

In this study, in order to explore the inter-
relationships among the interest of manufactur-
ers, the concern of fuel-based emissions, the con-
cerns of airliners, and the consideration of pas-
senger comfort explicitly, four design criteria are
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Fig. 1 The Framework of Incorporating MCDA Techniques in Aircraft Design

selected to feed into the MCDA method: Op-
erating Empty Mass (OEM), fuel mass, utiliza-
tion/(block time), and passenger density. The
common practice of using Direct Operating Cost
(DOC) as an objective function in the optimiza-
tion appeared to be not appropriate in this study,
considering that DOC has high correlation with
all other design criteria. Nevertheless, DOC was
traced as an aircraft performance measure, as
well as aircraft price, fuel cost, and Take-off
Mass (TOM).

The constraints imposed in the aircraft design
process are wing span, fuel tank volume, take-off
field length, landing field length, take-off wing
loading, and cruise thrust. The design variables,
constraints, and design criteria for this simplistic
aircraft design model are summarized in Table 1.

3 Selection of an Appropriate MCDA
Method

There are essentially two approaches to solve the
decision making problems: non-compensatory
and compensatory methods [9]. The non-
compensatory methods do not permit trade-offs
among criteria, that is to say, a disadvantage
in one criterion cannot be offset by an advan-
tage in other criterion. Compensatory meth-
ods permit trade-offs among criteria, in other
words, small changes in one criterion can be
offset by opposing changes in any other crite-
rion. According to this classification, several

Table 1 The Summary of Design Variables, Con-
straints, and Design Criteria in Aircraft Opti-
mization Process

Units Values
Design Variables
Thickness-to-chord ratio − [0.1,0.2]
Aspect ratio − [8,12]
Reference area m2 [80,140]
Cruise Mach number − [0.70,0.84]
Fuselage diameter m [3.8,4.2]
Constraints
Wing span m ≤ 36
Fuel mass kg ≤ Fuel tank volume
Take-off field length m ≤ 3000
Landing field length m ≤ 2000
Take-off wing loading kg/m2 ≤ 600
Cruise thrust N ≤ 0.9 Take-off thrust
Design Criteria
OEM kg −
Fuel mass kg −
Utilization/(block time) − −
Passenger density Pax/m2 −

widely used decision making methods are sum-
marized in Table 2, where ELECTRE repre-
sents for Elimination and Choice Translation Re-
ality [2], PROMETHEE stands for Preference
Ranking Organization METHod for Enrichment
Evaluations) method [4], and TOPSIS represents
Technique for Order Preference by Similarity to
Ideal Solution [9].
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Table 2 Typical Non-compensatory and Compen-
satory Decision Making Methods [9]

Non-compensatory Compensatory
Conjunctive method Analytic hierarchy process
Disjunctive method Expected utility theory
Dominance method Multi-attribute utility theory
ELECTRE Multiplicative weighting
Elimination by aspects PROMETHEE
Lexicographic method Simple additive weighting
Maximin method TOPSIS
Maximax method

3.1 Development of an Intelligent Multi-
Criteria Decision Support System

Among various developed MCDA techniques,
the selection of the most appropriate method to
solve the aircraft design problem is important
since the use of inappropriate method often leads
to misleading results. In this study, an intelli-
gent knowledge-based decision support system
is developed in MATLAB, which consists of a
MCDA library storing the widely used MCDA
methods and a knowledge base providing the in-
formation required for the method selection pro-
cess. The selection of the most suitable MCDA
method depends on how the characteristics of the
method match the characteristics of the control
problem, which is measured by Appropriateness
Index (AI) [11],[16], as shown in Equation 1.

AI j =
n
∑

i=1
wib ji

b ji =

{
1 ifc ji = ai
0 ifc ji 6= ai

i = 1,2, ...,n; j = 1,2, ...,m

(1)
where n is the number of evaluation criteria used
to examine the decision making methods with re-
spect to the given problem, and m is the number
of decision making methods stored in the method
library, {w1,w2, ...,wn} are the weighting factors
for the evaluation criteria, ai is the value of the
i-th characteristic of the decision problem, and
c ji is the value of i-th characteristic of the j-th
method, b ji is a Boolean number depending on
the match of the i-th characteristic of the deci-
sion problem and the i-th characteristic of the j-th

method. If the i-th characteristic of the decision
problem matches the i-th characteristic of the j-th
method, then b ji = 1; otherwise, b ji = 0.

3.2 Selection of the Most Appropriate
Method using the Intelligent Multi-
Criteria Decision Support System

In this example, the selection of the most ap-
propriate MCDA method for the aircraft design
problem is presented, through the developed in-
telligent multi-criteria decision support system.
In order to identify the most appropriate method,
16 widely used MCDA methods are studied
and their characteristics are stored in a method
database. To compare the appropriateness of the
methods with respect to the given problem, each
method is evaluated based on the proposed 12
evaluation criteria. The 12 evaluation criteria can
be captured by answering 12 questions relevant to
the characteristics of the methods, as presented in
Fig.2.

As shown in Fig.2, the infeasible MCDA
methods are eliminated first by the three filter
questions. Considering that in this aircraft de-
sign problem, the compound figure of merit for
the four design criteria aggregated by MCDA
method serves as objective function in the opti-
mization, the scoring methods are more appro-
priate than the classification methods. Mean-
while, all non-compensatory methods are ex-
cluded since compensation is allowed in the air-
craft optimization process. Moreover, the deci-
sion maker’s preference information on the eval-
uation criteria can be defined using slide bars in
the integrated user interface, with a subjective
scale of 0 to 10, where 0 stands for extremely
unimportant while 10 represents extremely im-
portant.

The AI of the MCDA methods are calcu-
lated and presented in Fig.3, where higher score
represents more appropriateness of the method
when solving the given problem. As indicated in
Fig.3, TOPSIS gets the highest score among the
MCDA methods for the problem under consider-
ation, therefore, it is selected as the most appro-
priate method in this research.
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Fig. 2 Questions Related to Evaluation Criteria for Method Selection in Aircraft Design Process

Fig. 3 MCDA Methods Ranking List with Scores
in Aircraft Design Process

3.3 An Improved TOPSIS (ITOPSIS)

TOPSIS is one of the most widely used MCDA
methods [9]. TOPSIS is based on the concept that
the most preferred alternative should have the
shortest Euclidean distance to the positive ideal
solution and the furthest Euclidean distance from
the negative ideal solution.

In the original TOPSIS method, when an al-
ternative is removed from or added to the candi-
date alternatives, the two hypothetical solutions
will probably change and the Euclidean distances
to the two hypothetical ideal solutions will also
change. Thus, the top-ranked alternative would
probably be inconsistent when the candidate al-

ternatives are changed. It has been pointed out
that the cause of rank inconsistency with TOP-
SIS lies in the determination of the positive ideal
solution and negative ideal solution, and a pair
of absolute ideal solutions instead of the relative
ideal solutions was introduced to eliminate the
rank inconsistency of TOPSIS method [5].

In this research, an Improved TOPSIS (ITOP-
SIS) will be utilized to aggregate the four design
criteria into one compound figure of merit for op-
timization. The positive ideal solution and nega-
tive ideal solution are set beforehand in order to
avoid the ranking inconsistency. In our case, two
kinds of optimizations are conducted for each of
the four design criteria: minimization and maxi-
mization. The positive ideal solutions and nega-
tive ideal solutions for the four design criteria are
searched within the results of eight optimizations,
as summarized in Table 3. It should be noted that
the utilization/(block time) ratio is a benefit crite-
rion, and the other three are cost criteria.

4 Optimization with Equal Weighting Fac-
tors

In this example, based on parametric studies, all
design variables under investigation are continu-
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Table 3 The Positive Ideal Solution and Negative
Ideal Solution in ITOPSIS

Ideal Fuel Utilization/ Pax
solutions OEM mass (block time) density
Positive 36943 11767 796.86 1.2875
Negative 50521 20864 715.08 1.4063

ous, and the objective functions with respect to
the design variables in the conceptual aircraft de-
sign tool (VAMPzero) are rather smooth. There-
fore, gradient-based methods are used in the op-
timization framework.

4.1 Comparison Using Different MCDA In-
dices as Objective Functions

The optimization results with equal weighting
factors among the four design criteria when using
ITOPSIS index as an objective function are sum-
marized in the second column in Table 4. For
the purpose of comparison, the proposed opti-
mization framework is also performed when us-
ing weighted sum (SAW) index as an objective
function, the optimization results are summarized
in the third column in Table 4.

It is observed from Table 4 that with equally
assigned weighting factors, the optimized design
using ITOPSIS index as an objective function is
heavier but more fuel efficient than the design
which was optimized using SAW index as an ob-
jective function.

Furthermore, in the same running environ-
ment (Windows 7, 2.66 GHz Intel Core 2 Quad
CPU, 4 GB RAM, and Matlab 2010a version),
the convergence rates when using ITOPSIS in-
dex and using SAW index as objective functions
are summarized in Table 5. It is seen that the op-
timization using ITOPSIS index as an objective
function need less iterations and less computa-
tion time (in seconds) than using SAW index as
an objective function.

However, only with the conduction of one
set of weighting factors, it cannot be concluded
which MCDA method is more appropriate for the
optimization, considering the crucial impact of
the weighting factors on the optimized design.
The roles of the weighting factors in the frame-

Table 5 Comparison of Convergence Rates, Us-
ing ITOPSIS Index and SAW Index as Objective
Functions

Objective function Iterations Optimization time
ITOPSIS index 5 304
SAW index 39 3005

work of incorporating MCDA techniques in air-
craft design will be further investigated in the fol-
lowing section.

5 Surrogate Model Construction for Design
Criteria in terms of Weighting Factors

The weighting factors have crucial impacts on
the design solution, since the objective function
in the optimization process is aggregated through
the weighting factors. An uncertainty assess-
ment that demonstrates this impact must con-
sider different combinations of the weighting fac-
tors. However, in the proposed multi-criteria op-
timization framework, the computation time for
one set of weighting factors is at least 5 minutes.
A Monte Carlo based uncertainty analysis with
10,000 samples would take at least 35 days. The
long computation time makes the uncertainty as-
sessment an intractable computational task.

In this study, in order to facilitate the uncer-
tainty assessment of the weighting factors, surro-
gate models for the four design criteria in terms
of the weighting factors are constructed. Each
point of this surrogate model represents an op-
timized aircraft design for a given set of the
weighting factors. The whole framework of in-
corporating MCDA techniques in aircraft design
process is treated as a black box. An overview of
surrogate modeling process for design criteria in
terms of weighting factors is shown in Fig.4.

There are typically four steps in surrogate
model building process: sample the design space
using experimental design, choose a model to
represent the input and output data, select a
method to fit the model, and validate the con-
structed model [8]. The construction of surrogate
models for design criteria in terms of weighting
factors will follow this process.
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Table 4 Optimization Results Using ITOPSIS Index and SAW Index as Objective Functions, When
Weighting Factors are Evenly Distributed

Optimized Optimized
Baseline Design Design
Design (ITOPSIS) (SAW)

Design Variables
Thickness-to-chord ratio 0.13 0.135 0.1304
Aspect ratio 9.396 9.414 9.118
Reference area (m2) 122.4 117.01 116.9
Cruise Mach number 0.78 0.76 0.77
Fuselage diameter (m) 4 3.8 3.8
Design Criteria
OEM (kg) 40980 38705 38552
Fuel mass (kg) 12903 12242 12344
Utilization/(block time) 763 752 756.5
Passenger density (pax/m2) 1.35 1.4211 1.4211
Traced Performance Measures
DOC (Euro/h) 4818 4588 4612
Aircraft price (Euro) 36077718 34397326 34284714
Fuel cost (Euro/h) 1686 1571 1596
TOM (kg) 73133 70197 70147

5.1 Experimental Design

In order to explore the design space thoroughly,
experimental design with spatially uniform dis-
tribution is one effective approach. There are
several space filling strategies [12], among which
Latin Hypercube Sampling (LHS) is one reliable
method to generate random candidate samples,
with guarantee that these samples are relatively
uniformly distributed in the design space [13].

In this study, the weighting factors
{w1,w2, ...,wn} generated by experimental
design have to satisfy two conditions:

1. 0≤ wi ≤ 1

2. ∑
n
i=1 wi = 1

The standard LHS meets the condition 1 that
all the factor settings range from 0 to 1. However,
for each experimental run, the sum of the factor
settings in each run do not equal to 1. In this
case, in order to generate experimental designs
fulfilling the conditions 1 and 2, standard LHS
is conducted first, then the samples generated by
LHS are rectified by Dirichlet distribution.

One Modified LHS with Dirichlet Distribution

Dirichlet distribution is a family of continuous
multivariate probability distributions parameter-
ized by a vector α = (α1,α2, ...,αk,) of positive
reals. Dirichlet distribution is one multivariate
generalization of the beta distribution and is de-
fined as Equation 2

Dir(X ,α) =
Γ(α1 +α2 + ...+αk)

Γ(α1)Γ(α2)...Γ(αk)

∏(x1
α1−1x2

α2−1...xk
αk−1)(2)

where X = (x1,x2, ...,xk−1), satisfying xi > 0 and
∑

k−1
i=1 xi < 1. Besides, xk = 1−x1−x2− ...−xk−1.

In a symmetric Dirichlet distribution, the compo-
nents of vector α are equal. If each component
of α is 1, the symmetric Dirichlet distribution is
equivalent to a uniform distribution; if each com-
ponent of α is bigger than 1, it prefers dense,
evenly distributed distribution, and if each com-
ponent of α is smaller than 1, it prefers sparse
distribution.

When using the modified LHS with Dirichlet
distribution, although the modified sample values
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Fig. 4 The Overview of Surrogate Modeling Process for Design Criteria in Terms of Weighting Factors

are not strictly uniform any more, Dirichlet dis-
tribution can keep the ranges of the sample val-
ues larger once they are normalized, while main-
taining the appealing Latin properties. In this ex-
ample, one hundred sets of weighting factors are
generated by the LHS with Dirichlet distribution.

5.2 Model Choice and Model Fitting

Response surface models have been widely used
in the surrogate model construction in engineer-
ing design [8]. There are several advantages us-
ing response surface models, such as ease of im-
plementation, minimal efforts required to train
models, and ideality for uncertainty analysis. In
this research, response surface is utilized to con-
struct the surrogate models. A widely used statis-
tics software package JMP@ is employed to fit
response surface models.

5.3 Model Validation

The actual values versus the predicted values for
the four design criteria when using ITOPSIS in-
dex as an objective function are shown in Fig. 5.
For the purpose of comparison, the actual values
versus the predicted values for the four design
criteria using SAW index as an objective func-
tion are also conducted and are shown in Figure
6. In the actual by predicted plot, the horizontal
dotted blue line represents the mean of the actual
values, the red line shows the 45 degree diagonal
line, and the two red dotted lines show the 95%
confidence intervals.

Fig. 5 The Actual by Predicted Plots of OEM,
Fuel Mass, Utilization/(Block time), and Passen-
ger Density, when using ITOPSIS Index as an
Objective Function

The actual by predicted plots illustrate how
well the predicted responses match the actual
data. A quick assessment of the model is to eye-
ball a 45 degree pattern in these plots. In our
case, the scatter plots when using ITOPSIS index
as an objective function and using SAW index as
an objective function all follow a 45 degree pat-
tern. Specifically, the scatter plots when using
ITOPSIS index as an objective function are less
divergent along the diagonal line than the scat-
ter plots when using SAW index as an objective
function. This is one indicator of better goodness
of fit when ITOPSIS is used for the multiple cri-
teria aggregation than SAW.
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Fig. 6 The Actual by Predicted Plots of OEM,
Fuel Mass, Utilization/(Block time), and Passen-
ger Density, when using SAW Index as an Objec-
tive Function

The diagnostics of each response surface
model, including R2, R2

Ad j, and Root Mean
Square Error (RMSE) in percentage, are listed
in Table 6. R2 measures the proportion of the
variation explained by the regressed polynomial
model, R2

Ad j adjusts the R2 value to make it more
comparable over models with different numbers
of parameters, and RSME estimates the stan-
dard deviation of the random error. The per-
cent RMSE shown in Table 6 is normalized by
its mean of response.

Table 6 The Diagnostics of Response Surface
Models for Design Criteria, Using ITOPSIS In-
dex and SAW Index as Objective Functions

Fuel Utilization/ Pax
Diagnostics OEM mass (block time) density
ITOPSIS
R2 0.975 0.964 0.983 0.957
R2

Ad j 0.963 0.951 0.976 0.945
RMSE 1.56% 1.57% 0.54% 0.74%
SAW
R2 0.916 0.934 0.973 0.774
R2

Ad j 0.9 0.92 0.965 0.743
RMSE 2.58% 2.22% 0.66% 1.84%

It is observed from Table 6 that the values of
R2 and R2

Ad j, when ITOPSIS is used for the ag-

gregation of the four design criteria, are all higher
than when SAW is used. The percent RSME,
when ITOPSIS is used for the aggregation of the
four design criteria, are all lower than when SAW
is used. Especially, R2 of passenger density when
ITOPSIS is used is 0.957, while it is only 0.774
when SAW is used. The higher values of R2

and R2
Ad j and lower values of percent RSME are

strong evidences of goodness of fit. Therefore,
it is obtained that the constructed response sur-
face models using ITOPSIS for multiple criteria
aggregation are better fitted than using SAW for
multiple criteria aggregation.

In conclusion, ITOPSIS index is a better ob-
jective function for the optimization framework
of incorporating MCDA techniques in aircraft de-
sign process than the traditional SAW index.

6 Conclusions

In this paper, the feasibility and the added val-
ues of applying MCDA techniques in aircraft de-
sign problems are explored. A new optimization
framework incorporating MCDA techniques for
aircraft conceptual design process is established.
An intelligent multi-criteria decision support sys-
tem is developed to select the most appropriate
MCDA method. It is demonstrated that the cho-
sen MCDA method with improvement provides a
better objective function for the optimization than
the traditional weighted sum method.

Furthermore, the weighting factors of the de-
sign criteria have significant impacts on the de-
sign solution. Surrogate models for the multiple
design criteria in terms of the weighting factors
are constructed. The constructed surrogate mod-
els can enable efficient uncertainty assessment
for the weighting factors.

In future work, hybrid optimizers combining
genetic algorithms and gradient-based methods
could be investigated for aircraft design problems
to provide a more global optimization and in-
clude discrete design variables. The application
of the MCDA techniques could be extended to
assess air transportation systems, for balancing
social, economic, ecological, and technical etc.
constraints.
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