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Abstract  

The paper presents recent developments in 
exact strip postbuckling analysis for anisotropic 
plates with combined in-plane loading and 
various in-plane edge conditions. The analysis 
improves the accuracy of the postbuckling mode 
and the consequent prediction of stresses and 
strains in the postbuckling range. Plates are 
divided into longitudinal strips, for which the 
governing equilibrium equations are derived 
and solved analytically. Implementation of the 
improved analysis into the exact strip software 
VICONOPT enables accurate stress 
distributions to be found for each stage of the 
postbuckling analysis. Numerical results are 
presented and compared with previous results 
from VICONOPT and finite element analysis for 
validation. 
 
Principal Nomenclature 
 
 ௜,۰௜,۲௜ membrane, bending-membraneۯ
 and flexural stiffness matrices 
 for node ݅ 
ܽ length of plate 
ܾ௜, width of strip ݅  
۲ displacement vector 
݂ eigenparameter, i.e. load factor 
 ݂ trial value of כ݂
۷ହ unit matrix of order 5 
 כ݂ number of eigenvalues below ܬ
 ଴ number of fixed endܬ
 eigenvalues below ݂כ 
 ௠  number of fixed endܬ
  eigenvalues of member ݉                           
 below ݂כ  

 ௠ member stiffness matrixܓ
۹ሺ݂ሻ global stiffness matrix 
݊ number of strips 

௫ܰ௜௝, ௬ܰ௜௝, ௫ܰ௬௜௝ stress resultants at node ݅ 
 ହ   null matrix of order 5۽
 perturbation force vector ۾
 ሼ۹ሺ݂ሻሽ sign count of ۹ሺ݂ሻݏ
  ݅ ௜௝ in-plane displacements at nodeݒ,௜௝ݑ

௫ܸ௜, ௬ܸ௜, ௫ܸ௬௜ work done by applied loads 
 ௜௝,߰௜௝ out-of-plane displacements andݓ
 rotations at node ݅  
  longitudinal, transverse and ݖ ,ݕ ,ݔ
 lateral directions 
  ݅ ௫௬௜௝  membrane strains at nodeߛ,௬௜௝ߝ,௫௜௝ߝ
 ௫௬௜௝ parameters used in effectiveߟ ,௬௜௝ߟ ,௫௜௝ߟ
 stress resultant calculations 
  ݅ ௫௬௜௝  curvatures at nodeߢ,௬௜௝ߢ,௫௜௝ߢ
 longitudinal half-wavelength ߣ
߱௜ coefficient,  ൌ ௜ܾߨ ⁄ߣ  
 
Subscripts 
 
݅  node reference number 
݆  solution case: ݆ ൌ 0, ܿ, ,ݏ ,ܥ ܵ  
 give terms to be multiplied by 
 factors 1, cos ݔߨ ⁄ߣ ,sin ݔߨ ⁄ߣ , 
 cos ݔߨ2 ⁄ߣ ,sin ݔߨ2 ⁄ߣ  
݉ member 
  longitudinal, transverse, shear ݕݔ ,ݕ ,ݔ

1   Introduction 

Minimising the weight of aircraft structures is a 
major objective in reducing the manufacturing 
cost, fuel consumption and environmental 
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impact. To achieve this objective, composite 
materials are commonly used to replace 
traditional metals, to ensure low mass and high 
performance. Additionally, the postbuckling 
reserve of strength is often considered in 
modern aircraft design, e.g. to reduce the weight 
of stiffened wing and fuselage panels. 

Exact strip analysis provides a reliable 
efficient approach to aircraft design, which 
reduces the computation and modelling time 
when compared with finite element (FE) 
analysis by avoiding discretisation. This 
approach gives rapid solutions with satisfactory 
accuracy, and is therefore of particular benefit in 
the preliminary design stage. For buckling and 
vibration problems, the exact strip method leads 
to a transcendental eigenproblem rather than the 
linear eigenproblem encountered in FE analysis. 
Using the Wittrick-Williams algorithm [1], the 
eigenvalues (i.e. critical buckling load factors or 
natural frequencies of free vibration) and the 
corresponding mode shapes of rectangular 
plates and prismatic stiffened panels can be 
found efficiently and reliably for any 
longitudinally invariant loading combination. 

The paper outlines recent developments in 
exact strip postbuckling analysis. The governing 
in-plane equilibrium equations are derived and 
solved analytically, using a formulation which 
extends that of Stein [2] to include fully 
anisotropic laminates, including the effects of 
bending-membrane coupling.  The accuracy of 
the postbuckling mode shape and the 
consequent prediction of stress and strain are 
thus enhanced in the postbuckling range. 
Implementation in the exact strip analysis and 
optimum design software VICONOPT [3] 
allows the improved mode shapes and stress and 
strain distributions to be found at each stage of 
the postbuckling analysis. Numerical results are 
given and compared with previous VICONOPT 
results, and also with FE results to validate the 
proposed analysis. 

 
2   Exact Strip Analysis and Wittrick-
Williams Algorithm 
 
The exact strip method provides a reliable 
alternative approach to FE for accurate solutions 
and fast analysis of rectangular plates and 

prismatic plate assemblies. It assumes a 
continuous distribution of stiffness and mass 
over the entire structure, so avoiding the 
discretisation of stiffness and mass to nodal 
points used in FE analysis. The analysis is based 
on analytical [4] or numerical [5] solutions to 
determine the in-plane and out-of-plane 
deformations of the component plates. The 
component member stiffness matrices ܓ௠ , 
which include transcendental terms, are 
assembled into the global stiffness matrix ۹ for 
the overall structure. ۹  relates a finite set of 
displacements ۲  and the corresponding 
perturbation forces ۾  at the nodes of the 
structure by 

۹۲ ൌ (1) ۾

The critical buckling loads or natural 
frequencies of the structure are obtained by 
finding the eigenvalues from the solution of 

۹ሺ݂ሻ۲ ൌ ૙ (2)

where the eigenparameter ݂ is the load factor or 
frequency. Since ۹ሺ݂ሻ  is a transcendental 
function of ݂ , Eq. (2) represents a highly 
nonlinear transcendental eigenproblem which 
cannot be solved by the standard methods for 
linear eigenproblems. 

The Wittrick-Williams algorithm [1] is a 
reliable numerical technique for finding the 
eigenvalues for such a transcendental 
eigenproblem. Instead of finding the 
eigenvalues directly, the algorithm counts the 
number of eigenvalues which lie below any trial 
value ݂כ  of ݂ , and then converges on them to 
the required accuracy by bisection or 
interpolation on the determinant of ۹ሺ݂ሻ [6]. In 
its general form, the Wittrick-Williams 
algorithm can be written as 

ܬ ൌ ଴ܬ ൅ ሻሽ (3)כሼ۹ሺ݂ݏ

where ܬ   is the number of eigenvalues lying 
between zero and the trial value ݂כ ଴ܬ ;  is the 
number of eigenvalues which would still be 
exceeded by ݂כ if constraints were imposed so 
as to make all the displacements ۲  zero; 
ሻሽכሼ۹ሺ݂ݏ  is known as the sign count, i.e. the 
number of negative diagonal elements of the 
upper triangular matrix ۹୼ሺ݂כሻ  obtained from 
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۹ሺ݂כሻ  by Gauss elimination [1]. ܬ଴  can be 
calculated from 

଴ܬ ൌ ෍ ௠ܬ
௠

 (4)

where ܬ௠  is the number of eigenvalues of 
member ݉ exceeded at the trial value ݂כ when 
its ends are fully restrained. 

 
3   Exact Strip Software VICONOPT 
 
The exact strip software VICONOPT [3] was 
developed at Cardiff University and has been 
utilized in research and industry for many years. 
It covers both isotropic and fully anisotropic 
prismatic plate assemblies and includes analysis 
for elastic buckling, local postbuckling and free 
vibration, as well as an optimum design 
capability. Typical panel sections that can be 
analysed by VICONOPT and a typical plate 
component with in-plate loading are shown in 
Fig. 1. VICONOPT is coded in Fortran 77 and 
incorporates the earlier programs VIPASA 
(Vibration and Instability of Plate Assemblies 
including Shear and Anisotropy) [4] and 
VICON (VIPASA with CONstraints) [7]. 

In the VIPASA analysis, the mode shape of 
buckling or vibration is assumed to vary 
sinusoidally in the longitudinal ሺݔሻ  direction. 
The computation is repeated for a set of user 
specified half-wavelengths ߣ  and converges to 
the required eigenvalues for each ߣ  to any 
required accuracy. Exact solutions are obtained 
for isotropic and orthotropic panels with simply 
supported ends and which carry no shear load. 
In the VICON analysis, Lagrangian multipliers 
are introduced to couple the responses of 
different half-wavelengths ߣ in order to analyse 

panels which are anisotropic or carry shear load.  
The VIPASA analysis of VICONOPT was 

first extended to include local postbuckling 
analysis by Powell et al. [8]. Further 
developments, described fully in [9], have been 
applied to the multi-level optimisation of an 
aircraft wing, allowing for postbuckling effects 
[10]. The postbuckling analysis comprises a 
number of cycles, each defined by an increment 
of the longitudinal strain. At each cycle, 
iterations are performed to converge on 
consistent values of the postbuckling mode and 
its amplitude, the total applied load and the 
distribution of stress across the structure. 
Instead of using the Wittrick-Williams 
algorithm for eigenanalysis, Newton iterations 
are performed to obtain accurate convergence 
on the postbuckling mode shape, from which 
the stress distributions are calculated. At each 
iteration it is necessary to calculate ۹  and its 
derivatives with respect to the components of ۲ 
[9]. 

VICONOPT gives a good initial evaluation of 
load versus end shortening when compared with 
experimental and FE results. However the 
predicted postbuckling stress and strain 
distributions show poor agreement. This is due 
to the assumptions made in VICONOPT 
concerning the longitudinal invariance of stress 
and the sinusoidal longitudinal variation of both 
the out-of-plane and the in-plane deflections. 
These assumptions are appropriate for initial 
buckling analysis, but reduce the accuracy of 
subsequent postbuckling analysis. The 
procedure described in Section 4 identifies the 
true distributions of the in-plane displacements, 
strains and stresses, and so enhances the 
accuracy of each iteration in the VICONOPT 
postbuckling analysis. 

(a) (b) 
Fig. 1. (a) Prismatic plate assemblies. (b) Component plate, showing in-plane loading. 



B. Che, D. Kennedy, C. Featherston 

4 

4   Improved Exact Strip Postbuckling 
Analysis 
 
Slender aircraft structures such as stiffened 
panels are often able to carry loads far in excess 
of their critical buckling loads on account of 
stress re-distributions across the structure. To 
minimise the weight of such structures, the 
postbuckling reserve of strength must therefore 
be considered. However, due to the assumptions 
of longitudinal invariance of stress and 
sinusoidal buckling modes, previous 
postbuckling analysis with VICONOPT gave 
good agreement for load and end shortening in 
initial postbuckling but poor predictions of the 
associated stress and strain distributions. 

In the improvements described here, the 
governing equilibrium equations are derived and 
solved analytically for general anisotropic 
plates, allowing for the effects of bending-
membrane coupling. The VIPASA analysis is 
used, so that the out-of-plane displacements are 
assumed to vary sinusoidally with a half-
wavelength ߣ , which divides exactly into the 
plate length ܽ. But, in an extension to Stein’s 
method [2], the in-plane displacements, strains 
and stress resultants are now assumed to vary as 
the sums of sinusoidally varying responses with 
two half-wavelengths ߣ and ߣ 2⁄ . By assuming 
the sinusoidal out-of-plane displacements 
obtained from the VICONOPT analysis, the in-
plane displacements are obtained by solving the 
in-plane equilibrium equations. Then accurate 
distributions of the longitudinal, transverse and 
shear strains and stress resultants are obtained. 
Finally, energy considerations are used to give 
equivalent longitudinally invariant stress 
resultants which will be used in the next 
iteration of the VICONOPT analysis.  

 
4.1   Description and assumptions of the 
analysis 
 
At present the postbuckling analysis is restricted 
to classical plate theory, i.e. no allowance is 
made for transverse shear deformation. Plates 
are assumed to have no initial imperfection, but 
in-plane and out-of-plane anisotropy and 
curvature effects (i.e. general ۯ , ۰  and ۲ 
matrices) are permitted. The analysis calculates 

the variations of the in-plane displacements 
within the plates; these no longer have the same 
sinusoidal variation as the out-of-plane 
displacements, but include contributions with 
two half-wavelengths and allow for curvature 
effects in coupled problems. The analysis finds 
the longitudinal, transverse and shear stress 
resultants at the longitudinal edges of each strip, 
i.e. at node level; the strip level values required 
by VICONOPT are obtained by averaging the 
values on the two edges of each strip. 
 
4.2   Displacements 
 
Each plate is divided into ݊ െ 1  strips with 
equal width, and is identified by the ݊ nodes at 
the strip edges. At each node ݅, the out-of-plane 
deflections ݓ௜  and rotations ߰௜ about the ݔ axis 
are assumed to vary sinusoidally in the 
longitudinal direction with half-wavelength ߣ , 
and are written in the form 

ቂ
௜ݓ
߰௜

ቃ ൌ ቂ
௜௖ݓ ௜௦ݓ
߰௜௖ ߰௜௦

ቃ ൦
cos

ݔߨ
ߣ

sin
ݔߨ
ߣ

൪ (5)

It is assumed that ߰௜௝ ൌ ௜௝ݓ
ᇱ . The subscript ݆ 

indicates terms which are to be multiplied by 
different sinusoidal factors, and prime denotes 
the derivative with respect to the transverse 
direction ݕ . The presence of both sine and 
cosine terms in Eq. (5) allows for the skewing 
of the nodal lines which occurs for shear-loaded 
and anisotropic plates. In the absence of shear 
and anisotropy, ݓ௜௖ and ߰௜௖ are zero.  

The in-plane longitudinal ሺݑ௜ሻ and transverse 
ሺݒ௜ሻ deflections are assumed to take the form 

ቂ
௜ݑ
௜ݒ

ቃ ൌ ቈെߝҧ௫ ቀݔ െ
ܽ
2ቁ

0
቉ ൅

ቂ
௜଴ݑ ௜௖ݑ ௜௦ݑ ௜஼ݑ ௜ௌݑ
௜଴ݒ ௜௖ݒ ௜௦ݒ ௜஼ݒ ௜ௌݒ

ቃ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1
cos

ݔߨ
ߣ

sin
ݔߨ
ߣ

cos
ݔߨ2

ߣ

sin
ݔߨ2

ߣ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (6)
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In Eq. (6), the sine and cosine terms with half-
wavelength ߣ occur for coupled laminates with 
۰௜ ് 0 , and otherwise can be ignored. The 
linear term allows for the application of a 
uniform longitudinal strain ߝҧ௫. 
 
4.3   Calculation of Strains and Curvatures 
 
The neutral surface strains and curvatures given 
by von Karman’s large deflection theory are 

ۏ
ێ
ێ
ێ
ێ
ۍ

௫௜ߝ
௬௜ߝ

௫௬௜ߛ
௫௜ߢ
௬௜ߢ
ے௫௬௜ߢ

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ௜ݑ߲

ݔ߲ ൅
1
2 ൬

௜ݓ߲

ݔ߲ ൰
ଶ

௜ݒ߲

ݕ߲ ൅
1
2 ൬

௜ݓ߲

ݕ߲ ൰
ଶ

௜ݑ߲

ݕ߲ ൅
௜ݒ߲

ݔ߲ ൅
௜ݓ߲

ݔ߲
௜ݓ߲

ݕ߲

െ
߲ଶݓ௜

ଶݔ߲

െ
߲ଶݓ௜

ଶݕ߲

െ2
߲ଶݓ௜

ݕ߲ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

௫௜଴ߝ ௫௜௖ߝ ௫௜௦ߝ ௫௜஼ߝ ௫௜ௌߝ
௬௜଴ߝ ௬௜௖ߝ ௬௜௦ߝ ௬௜஼ߝ ௬௜ௌߝ

௫௬௜଴ߛ ௫௬௜௖ߛ ௫௬௜௦ߛ ௫௬௜஼ߛ ௫௬௜ௌߛ
௫௜଴ߢ ௫௜௖ߢ ௫௜௦ߢ ௫௜஼ߢ ௫௜ௌߢ
௬௜଴ߢ ௬௜௖ߢ ௬௜௦ߢ ௬௜஼ߢ ௬௜ௌߢ
௫௬௜଴ߢ ௫௬௜௖ߢ ௫௬௜௦ߢ ௫௬௜஼ߢ ے௫௬௜ௌߢ

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1
cos

ݔߨ
ߣ

sin
ݔߨ
ߣ

cos
ݔߨ2

ߣ

sin
ݔߨ2

ߣ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (7)

Substituting from Eq. (6) into Eq. (7) gives  

ቂ
ઽ௜
ૂ௜

ቃ ൌ ൤ઽ଴ሺܟ௜ሻ
ૂ଴ሺܟ௜ሻ൨ ൅

1
ܾ ቂઽଵ

૙ ቃ ௜ܝ ൅ ቂઽଶ
૙ ቃ ௜ܝ

ᇱ (8)

୧ܟ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
௜଴ݓ
௜௖ݓ
௜௦ݓ
߰௜଴
߰௜௖
߰௜௦ے

ۑ
ۑ
ۑ
ۑ
ې

, ୧ܝ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
௜଴ݒ
௜௖ݒ
௜௦ݒ
௜஼ݒ
௜ௌݒ
௜଴ݑ
௜௖ݑ
௜௦ݑ
௜஼ݑ
ے௜ௌݑ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (9,10)

ઽ௜ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

௫௜଴ߝ
௫௜௖ߝ
௫௜௦ߝ
௫௜஼ߝ
௫௜ௌߝ
௬௜଴ߝ
௬௜௖ߝ
௬௜௦ߝ
௬௜஼ߝ
௬௜ௌߝ

௫௬௜଴ߛ
௫௬௜௖ߛ
௫௬௜௦ߛ
௫௬௜஼ߛ
ے௫௬௜ௌߛ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

, ૂ௜ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

௫௜଴ߢ
௫௜௖ߢ
௫௜௦ߢ
௫௜஼ߢ
௫௜ௌߢ
௬௜଴ߢ
௬௜௖ߢ
௬௜௦ߢ
௬௜஼ߢ
௬௜ௌߢ
௫௬௜଴ߢ
௫௬௜௖ߢ
௫௬௜௦ߢ
௫௬௜஼ߢ
ے௫௬௜ௌߢ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (11,12)

ઽ଴ሺܟ୧ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ҧ௫ߝെۍ ൅

ଶߨ

ଶߣ4 ሺݓ௜௖
ଶ ൅ ௜௦ݓ

ଶ ሻ

0
0

ଶߨ

ଶߣ4 ሺݓ௜௦
ଶ െ ௜௖ݓ

ଶ ሻ

െ
ଶߨ

ଶߣ2 ௜௦ݓ௜௖ݓ

1
4

ሺ߰௜௖
ଶ ൅ ߰௜௦

ଶ ሻ

0
0

1
4

ሺ߰௜௖
ଶ െ ߰௜௦

ଶ ሻ

1
2 ߰௜௖߰௜௦

ߨ
ߣ2

ሺݓ௜௦߰௜௖ െ ௜௖߰௜௦ሻݓ

0
0

ߨ
ߣ2

ሺݓ௜௦߰௜௖ ൅ ௜௖߰௜௦ሻݓ
ߨ

ߣ2
ሺݓ௜௦߰௜௦ െ ௜௖߰௜௖ሻݓ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (13)
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ૂ଴ሺܟ௜ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0
ଶߨ

ଶߣ ௜௖ݓ

ଶߨ

ଶߣ ௜௦ݓ

0
0
0

െ߰௜௖
ᇱ

െ߰௜௦
ᇱ

0
0
0

െ
ߨ2
ߣ ߰௜௦

ߨ2
ߣ ߰௜௖

0
0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (14)

ઽଵ ൌ ൥
۸ ହ۽

ହ۽ ହ۽
ହ۽ ۸

൩ , ઽଶ ൌ ൥
ହ۽ ହ۽
ହ۽ ۷ହ
۷ହ ହ۽

൩ (15,16)

۸ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 0 0 0 0
0 0 ߱௜ 0 0
0 െ߱௜ 0 0 0
0 0 0 0 2߱௜
0 0 0 െ2߱௜ 0 ے

ۑ
ۑ
ۑ
ې

  (17)

߱௜ ൌ
௜ܾߨ

ߣ   
(18)

where ۽ହ  and ۷ହ  are null and unit matrices of 
order 5, respectively. 
 
4.4   Stress-Strain Relationships 
 
After obtaining the above expressions for strain 
and curvature, the stress resultants ௫ܰ௜, ௬ܰ௜ and 

௫ܰ௬௜ are needed for the equilibrium equations. 
For a general anisotropic plate, the in-plane 
stress-strain relationships at node ݅ take the form 

቎
௫ܰ௜

௬ܰ௜

௫ܰ௬௜

቏ ൌ ቎
௜ଵଵܣ ௜ଵଶܣ ௜ଵ଺ܣ
௜ଵଶܣ ௜ଶଶܣ ௜ଶ଺ܣ
௜ଵ଺ܣ ௜ଶ଺ܣ ௜଺଺ܣ

቏ ൥
௫௜ߝ
௬௜ߝ

௫௬௜ߛ
൩ ൅

቎
௜ଵଵܤ ௜ଵଶܤ ௜ଵ଺ܤ
௜ଵଶܤ ௜ଶଶܤ ௜ଶ଺ܤ
௜ଵ଺ܤ ௜ଶ଺ܤ ௜଺଺ܤ

቏ ൥
௫௜ߢ
௬௜ߢ
௫௬௜ߢ

൩

 (19)

Substitution from Eq. (8) into Eq. (19) gives 

൤
௜ۼ
௜ۼ

ᇱ൨ ൌ ഥ௜ۯ ൤ઽ଴ሺܟ௜ሻ
ઽ଴

ᇱ ሺܟ௜ሻ൨ ൅ ۰ഥ௜ ൤ૂ଴ሺܟ௜ሻ
ૂ଴

ᇱ ሺܟ௜ሻ൨

൅
1
ܾ ഥ௜ઽଵۯ ൤

௜ܝ
௜ܝ

ᇱ൨ ൅ ഥ௜ઽଶۯ ൤
௜ܝ

ᇱ

௜ܝ
ᇱᇱ൨

 (20)

where 

௜ۼ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ௫ܰ௜଴

௫ܰ௜௖

௫ܰ௜௦

௫ܰ௜஼

௫ܰ௜ௌ

௬ܰ௜଴

௬ܰ௜௖

௬ܰ௜௦

௬ܰ௜஼

௬ܰ௜ௌ

௫ܰ௬௜଴

௫ܰ௬௜௖

௫ܰ௬௜௦

௫ܰ௬௜஼

௫ܰ௬௜ௌے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (21)

ഥ௜ۯ ൌ ቎
௜ଵଵ۷ହܣ ௜ଵଶ۷ହܣ ௜ଵ଺۷ହܣ
௜ଵଶ۷ହܣ ௜ଶଶ۷ହܣ ௜ଶ଺۷ହܣ
௜ଵ଺۷ହܣ ௜ଶ଺۷ହܣ ௜଺଺۷ହܣ

቏ (22)

۰ഥ௜ ൌ ቎
௜ଵଵ۷ହܤ ௜ଵଶ۷ହܤ ௜ଵ଺۷ହܤ
௜ଵଶ۷ହܤ ଶଶ۷ହܤ ௜ଶ଺۷ହܤ
௜ଵ଺۷ହܤ ௜ଶ଺۷ହܤ ௜଺଺۷ହܤ

቏ (23)
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ઽ଴
ᇱ ሺܟ௜ሻ

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ଶߨ

ଶߣ2 ሺݓ௜௖߰௜௖ ൅ ௜௦߰௜௦ሻݓ

0
0

ଶߨ

ଶߣ2 ሺݓ௜௦߰௜௦ െ ௜௖߰௜௖ሻݓ

െ
ଶߨ

ଶߣ2 ሺݓ௜௦߰௜௖ ൅ ௜௖߰௜௦ሻݓ

1
2

ሺ߰௜௖߰௜௖
ᇱ ൅ ߰௜௦߰௜௦

ᇱ ሻ

0
0

1
2

ሺ߰௜௖߰௜௖
ᇱ െ ߰௜௦߰௜௦

ᇱ ሻ

1
2

ሺ߰௜௦߰௜௖
ᇱ ൅ ߰௜௖߰௜௦

ᇱ ሻ
ߨ

ߣ2
ሺݓ௜௦߰௜௖

ᇱ െ ௜௖߰௜௦ݓ
ᇱ ሻ

0
0

ߨ
ߣ2

ሺݓ௜௦߰௜௖
ᇱ ൅ 2߰௜௦߰௜௖ ൅ ௜௖߰௜௦ݓ

ᇱ ሻ
ߨ

ߣ2
ሺݓ௜௦߰௜௦

ᇱ ൅ ߰௜௦
ଶ െ ௜௖߰௜௖ݓ

ᇱ െ ߰௜௖
ଶ ሻے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (24)

ૂ଴
ᇱ ሺܟ௜ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0
ଶߨ

ଶߣ ߰௜௖

ଶߨ

ଶߣ ߰௜௦

0
0
0

െ߰௜௖
ᇱᇱ

െ߰௜௦
ᇱᇱ

0
0
0

െ
ߨ2
ߣ ߰௜௦

ᇱ

ߨ2
ߣ ߰௜௖

ᇱ

0
0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (25)

The derivatives ܝ௜
ᇱ  and ܝ௜

ᇱᇱ  are obtained by the 
following finite difference approximations, with 

adjustments by parabolic interpolation at the 
plate edges. 

2ܾ௜ܝ௜
ᇱ

ൌ ቐ
െ3ܝ௜ ൅ ௜ାଵܝ4 െ ௜ାଶ              ሺ݅ܝ ൌ 1ሻ
െܝ௜ିଵ ൅ ௜ାଵ                    ሺ1ܝ ൏ ݅ ൏ ݊ሻ
௜ିଶܝ െ ௜ିଵܝ4 ൅ ௜                 ሺ݅ܝ3 ൌ ݊ሻ

(26)

ܾ௜
ଶܝ௜

ᇱᇱ

ൌ ቐ
௜ܝ2 െ ௜ାଵܝ5 ൅ ௜ାଶܝ4 െ ௜ାଷ ሺ݅ܝ ൌ 1ሻ
௜ିଵܝ െ ௜ܝ2 ൅ ௜ାଵ           ሺ1ܝ ൏ ݅ ൏ ݊ሻ
௜ିଷܝ െ ௜ିଶܝ4 ൅ ௜ିଵܝ5 െ ௜ ሺ݅ܝ2 ൌ ݊ሻ

(27)

Explicit expressions for ۼ௜  and ۼ௜
ᇱ  in terms of 

-୧ are obtained by substituting Eqs. (9)ܟ ୧ andܝ
(16), (22)-(23) and (26)-(27) into Eq. (20). 
 
4.5   Equilibrium Equations 
 
To solve for the in-plane displacements ܝ௜, the 
in-plane equilibrium conditions for node ݅  are 
given by 

߲ ௬ܰ௜

ݕ߲ ൅
߲ ௫ܰ௬௜

ݔ߲ ൌ 0 (28)

߲ ௫ܰ௬௜

ݕ߲ ൅
߲ ௫ܰ௜

ݔ߲ ൌ 0 (29)

and are expressed in component form by 

௬ܰ௜଴
ᇱ ൌ 0 (30)

௬ܰ௜௖
ᇱ ൅

ߨ
ߣ ௫ܰ௬௜௦ ൌ 0 (31)

௬ܰ௜௦
ᇱ െ

ߨ
ߣ ௫ܰ௬௜௖ ൌ 0 (32)

௬ܰ௜஼
ᇱ ൅

ߨ2
ߣ ௫ܰ௬௜ௌ ൌ 0 

(33)

௬ܰ௜ௌ
ᇱ െ

ߨ2
ߣ ௫ܰ௬௜஼ ൌ 0 (34)

௫ܰ௬௜଴
ᇱ ൌ 0 (35)

௫ܰ௬௜௖
ᇱ ൅

ߨ
ߣ ௫ܰ௜௦ ൌ 0 (36)
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௫ܰ௬௜௦
ᇱ െ

ߨ
ߣ ௫ܰ௜௖ ൌ 0 (37)

௫ܰ௬௜஼
ᇱ ൅

ߨ2
ߣ ௫ܰ௜ௌ ൌ 0 (38)

௫ܰ௬௜ௌ
ᇱ െ

ߨ2
ߣ ௫ܰ௜஼ ൌ 0 (39)

Substituting the explicit expressions 
previously obtained for ۼ௜  and ۼ௜

ᇱ  gives ten 
equilibrium equations for each node in terms of 
the in-plane and out-of-plane displacements ܝ௜ 
and ܟ௜ . The equations for each node are 
assembled into the global equilibrium equations 
which can be written in matrix form as  

ܝ۶ ൌ ۵ሺܟሻ (40)

where ܝ  includes the unknown in-plane 
displacements ܝ௜ for all the nodes of the 
structure, ۶  is a square matrix with constant 
coefficients and ۵ሺܟሻ is a non-linear function 
of the out-of-plane displacements ܟ which are 
known from the VICONOPT analysis. Equation 
(40) is solved to give the in-plane displacements 
as 

ܝ  ൌ ۶ିଵ۵ሺܟሻ (41)

from which distributions of the in-plane stress 
resultants ۼ௜ are calculated using Eq. (20). 
 
4.6   Calculation of Equivalent Uniform 
Stress Resultants 
 
The stress resultants calculated in Section 4.5 
cannot be used directly in the next iteration of 
VICONOPT, because they include sinusoidal 
terms and so vary in the longitudinal direction. 
So equivalent longitudinally invariant stress 
resultants are calculated as follows, based on 
energy considerations. 

The work done by the applied loading at node 
݅ is given by  

ܸ ൌ ௫ܸ௜ ൅ ௬ܸ௜ ൅ ௫ܸ௬௜ (42)

where 

௫ܸ௜ ൌ ܾ௜ න ௫ܰ௜ߝ௫௜݀ݔ
ఒ

଴
 (43)

௬ܸ௜ ൌ ܾ௜ න ௬ܰ௜ߝ௬௜݀ݔ
ఒ

଴
 (44)

௫ܸ௬௜ ൌ ܾ௜ න ௫ܰ௬௜ߛ௫௬௜݀ݔ
ఒ

଴
 (45)

Writing the stress resultants as 

቎
௫ܰ௜

௬ܰ௜

௫ܰ௬௜

቏ ൌ

቎
௫ܰ௜଴ ௫ܰ௜௖ ௫ܰ௜௦ ௫ܰ௜஼ ௫ܰ௜ௌ

௬ܰ௜଴ ௬ܰ௜௖ ௬ܰ௜௦ ௬ܰ௜஼ ௬ܰ௜ௌ

௫ܰ௬௜଴ ௫ܰ௬௜௖ ௫ܰ௬௜௦ ௫ܰ௬௜஼ ௫ܰ௬௜ௌ

቏

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1
cos

ݔߨ
ߣ

sin
ݔߨ
ߣ

cos
ݔߨ2

ߣ

sin
ݔߨ2

ߣ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(46)

and substituting Eqs. (8)-(16) and (46) into Eqs. 
(43)-(45), the components of ܸ are written as 

௫ܸ௜ ൌ ௫ܰ௜଴ߟ௫௜଴ ൅ ௫ܰ௜௖ߟ௫௜௖ ൅ ௫ܰ௜௦ߟ௫௜௦
൅ ௫ܰ௜஼ߟ௫௜஼ ൅ ௫ܰ௜ௌߟ௫௜ௌ

 (47)

௬ܸ௜ ൌ ௬ܰ௜଴ߟ௬௜଴ ൅ ௬ܰ௜௖ߟ௬௜௖ ൅ ௬ܰ௜௦ߟ௬௜௦
൅ ௬ܰ௜஼ߟ௬௜஼ ൅ ௬ܰ௜ௌߟ௬௜ௌ

 (48)

௫ܸ௜ ൌ ௫ܰ௬௜଴ߟ௫௬௜଴ ൅ ௫ܰ௬௜௖ߟ௫௬௜௖
൅ ௫ܰ௬௜௦ߟ௫௬௜௦ ൅ ௫ܰ௬௜஼ߟ௫௬௜஼ ൅ ௫ܰ௬௜ௌߟ௫௬௜ௌ

 (49)

where the parameters ߟ௫௜௝,  ߟ௬௜௝ and ߟ௫௬௜௝, listed 
in Appendix A, are expressed in terms of the 
known quantities ߝҧ௫, ܝ௜ and ܟ௜. 

 Comparing with the corresponding 
expressions for uniform loading yields the 
following expressions for equivalent 
longitudinally invariant stress resultants, which 
are used by VICONOPT to calculate the strip 
stiffness matrices. 
ഥܰ௫௜ ൌ ௫ܰ௜଴ ൅

1
௫௜଴ߟ

൬ ௫ܰ௜௖ߟ௫௜௖ ൅ ௫ܰ௜௦ߟ௫௜௦
൅ ௫ܰ௜஼ߟ௫௜஼ ൅ ௫ܰ௜ௌߟ௫௜ௌ

൰
 (50)
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௫ܰ : present analysis 

 

 
௫ܰ : previous VICONOPT analysis [9] 

 
 

 
 

௫ܰ : finite element analysis [11] 
 
 

 
௬ܰ : present analysis 

 

 
௬ܰ : previous VICONOPT analysis [9] 

 
 

 
 

௬ܰ : finite element analysis [11] 
 
 

Fig. 3. Variation of stress resultants across the top surface of a square isotropic plate 
postbuckling in longitudinal compression, with all edges simply supported against out-

of-plane deflection and the longitudinal edges fixed in-plane. 

x 
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௫ܰ : present analysis 

 

 
௫ܰ : previous VICONOPT analysis [9] 

 
 

 
 

௫ܰ : finite element analysis [11] 
 
 

 
௬ܰ : present analysis 

 

 
௬ܰ : previous VICONOPT analysis [9] 

 
 

 
 

௬ܰ : finite element analysis [11] 
 
 
 Fig. 4. Variation of stress resultants across the bottom surface of a square isotropic plate 

postbuckling in longitudinal compression, with all edges simply supported against out-
of-plane deflection and the longitudinal edges fixed in-plane. 

x 

y 
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In order to simulate the intended use of the 
improved analysis, a postbuckling analysis was 
carried out using the previous version of 
VICONOPT [9]. At cycle 10, when the 
longitudinal strain exceeded the initial buckling 
strain by 45.1%, the out-of-plane displacements 
 were saved and used as input to the procedure ܟ
described in Section 4. The distributions of the 

௫ܰ and ௬ܰ stress resultants were found, together 
with the effective longitudinally invariant 
distributions to be used in the next iteration of 
the VICONOPT postbuckling analysis. In the 
figures below these distributions are shown 
graphically to give a qualitative indication of the 
postbuckling behaviour of the plate. In the 
contour plots, blue shading denotes increasing 
compression while red indicates decreasing 
compression (which usually results in regions of 
tension on the bottom surface).  
 
5.1   Longitudinal Edges Fixed In-Plane 
 
In the first example, the longitudinal edges of 
the plate are fixed in-plane, i.e. in the solution 
of Eq. (40) all components of ܝ௜  are forced to 
zero at nodes ݅ ൌ 1  and ݅ ൌ ݊ . The resulting 
distributions of ௫ܰ and ௬ܰ are shown in Fig. 2, 
where it is seen that ௫ܰ is almost longitudinally 
invariant but ௬ܰ is not. 

It should be noted that all the strains and 
stress resultants calculated in Section 4 are those 
at the neutral surface. In practice the stresses 
vary through the thickness on account of the 
curvature, taking their greatest values at the 
surfaces of the plate. Figures 3 and 4 show the 
variation of ௫ܰ  and ௬ܰ  at the top and bottom 
surfaces, respectively, and additionally validate 
the method by comparison with previous 
VICONOPT results [9] and FE results obtained 
with the software ABAQUS [11]. It is seen that 
the present method gives much closer 
agreement to the FE results than does the 
previous VICONOPT analysis. 
 
5.2   Other In-Plane Edge Conditions 
 
The plate was analysed for two further in-plane 
edge conditions. In both cases longitudinal 
displacement was prevented at the longitudinal 

edges, i.e. ݑ௜ ൌ 0 for nodes ݅ ൌ 1 and ݅ ൌ ݊. In 
the first case there was no restraint against 
transverse displacement. In the second case the 
longitudinal edges were held straight, so that ݒ௜଴ 
could be non-zero at these nodes but the other 
components of ݒ௜  were zero. Top and bottom 
surface distributions of ௫ܰ and ௬ܰ are shown for 
these two cases in Figs. 5 and 6, respectively. 
Again it can be seen that there is a considerable 
variation of the stress resultants in both 
directions, which should be taken into account 
when following the postbuckling path. This has 
been done while calculating the effective 
uniform stress resultants of Section 4.6, which 
are therefore expected to provide accurate 
estimates of the postbuckling stiffness of the 
plate. 
 
6   Concluding Remarks 
 
Exact strip analysis provides an efficient 
approach to postbuckling analysis of isotropic 
and anisotropic plate assemblies for use in the 
preliminary design of aircraft structures. This 
paper has presented a theoretical improvement 
to exact strip postbuckling analysis, which 
enhances the accuracy of mode shapes, strain 
and stress distributions. Illustrative numerical 
results have been presented for an isotropic 
plate with various edge conditions and show 
good agreement with finite element results. The 
method will be further assessed by considering 
fully anisotropic plates with combined loading 
conditions. 

The purpose of the work is to provide an 
enhanced procedure for calculating effective 
longitudinally invariant stresses and their 
derivatives for use in the exact strip software 
VICONOPT. Implementation of the method 
into the VICONOPT code is currently in 
progress. When this task is completed, the 
method will be fully assessed by using it in a 
complete postbuckling analysis. It will then be 
further extended to the analysis of stiffened 
panels, to provide additional capabilities for 
aircraft designers. 
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௫ܰ : top surface 

 

 
௫ܰ : bottom surface 
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Fig. 6. Variation of stress resultants across the top and bottom surfaces of a square 
isotropic plate postbuckling in longitudinal compression, with all edges simply 

supported against out-of-plane deflection and the longitudinal edges held straight. 
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Appendix A 
 
Coefficients in equivalent uniform stress 
resultants calculations 
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