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Abstract

The paper presents recent developments in
exact strip postbuckling analysis for anisotropic
plates with combined in-plane loading and
various in-plane edge conditions. The analysis
improves the accuracy of the postbuckling mode
and the consequent prediction of stresses and
strains in the postbuckling range. Plates are
divided into longitudinal strips, for which the
governing equilibrium equations are derived
and solved analytically. Implementation of the
improved analysis into the exact strip software
VICONOPT enables accurate stress
distributions to be found for each stage of the
postbuckling analysis. Numerical results are
presented and compared with previous results
from VICONOPT and finite element analysis for
validation.
Principal Nomenclature
A;,B;D; membrane, bending-membrane
and flexural stiffness matrices
for node i
length of plate
width of strip i
displacement vector
eigenparameter, i.e. load factor
trial value of f
unit matrix of order 5
number of eigenvalues below f*
Jo number of fixed end
eigenvalues below f*
Jm number of fixed end
eigenvalues of member m
below f*

SO S e

S

K,, member stiffness matrix

K(f) global stiffness matrix

n number of strips

NyijNy;j,Nyy;; stress resultants at node i

O: null matrix of order 5

P perturbation force vector

s{K(f)} sign count of K(f)

Ujj Vi) in-plane displacements at node i

Viir Vyir Viyi  Work done by applied loads

Wi Pij out-of-plane displacements and
rotations at node i

X, Y, Z longitudinal, transverse and

lateral directions
Exij+Eyij Yxyij Membrane strains at node i
Nxijs Nyij» Nxyij Parameters used in effective
stress resultant calculations

Kqxij:Kyij Kyyij CUrvatures at node i

A longitudinal half-wavelength

o coefficient, = wb; /A

Subscripts
node reference number

Ji solution case: j = 0,¢,s,C, S
give terms to be multiplied by
factors 1, cosx/A,sinmx /A,
cos 2mx/A,sin 2mx /A

m member

X, V, Xy longitudinal, transverse, shear

1 Introduction

Minimising the weight of aircraft structures is a
major objective in reducing the manufacturing
cost, fuel consumption and environmental



impact. To achieve this objective, composite
materials are commonly used to replace
traditional metals, to ensure low mass and high
performance. Additionally, the postbuckling
reserve of strength is often considered in
modern aircraft design, e.g. to reduce the weight
of stiffened wing and fuselage panels.

Exact strip analysis provides a reliable
efficient approach to aircraft design, which
reduces the computation and modelling time
when compared with finite element (FE)
analysis by avoiding discretisation.  This
approach gives rapid solutions with satisfactory
accuracy, and is therefore of particular benefit in
the preliminary design stage. For buckling and
vibration problems, the exact strip method leads
to a transcendental eigenproblem rather than the
linear eigenproblem encountered in FE analysis.
Using the Wittrick-Williams algorithm [1], the
eigenvalues (i.e. critical buckling load factors or
natural frequencies of free vibration) and the
corresponding mode shapes of rectangular
plates and prismatic stiffened panels can be
found efficiently and reliably for any
longitudinally invariant loading combination.

The paper outlines recent developments in
exact strip postbuckling analysis. The governing
in-plane equilibrium equations are derived and
solved analytically, using a formulation which
extends that of Stein [2] to include fully
anisotropic laminates, including the effects of
bending-membrane coupling. The accuracy of
the postbuckling mode shape and the
consequent prediction of stress and strain are
thus enhanced in the postbuckling range.
Implementation in the exact strip analysis and
optimum design software VICONOPT [3]
allows the improved mode shapes and stress and
strain distributions to be found at each stage of
the postbuckling analysis. Numerical results are
given and compared with previous VICONOPT
results, and also with FE results to validate the
proposed analysis.

2 Exact Strip Analysis and Wittrick-
Williams Algorithm

The exact strip method provides a reliable
alternative approach to FE for accurate solutions
and fast analysis of rectangular plates and

B. Che, D. Kennedy, C. Featherston

prismatic plate assemblies. It assumes a
continuous distribution of stiffness and mass
over the entire structure, so avoiding the
discretisation of stiffness and mass to nodal
points used in FE analysis. The analysis is based
on analytical [4] or numerical [5] solutions to
determine the in-plane and out-of-plane
deformations of the component plates. The
component member stiffness matrices k,, ,
which include transcendental terms, are
assembled into the global stiffness matrix K for
the overall structure. K relates a finite set of
displacements D and the corresponding
perturbation forces P at the nodes of the
structure by

KD =P (1)

The critical buckling loads or natural
frequencies of the structure are obtained by
finding the eigenvalues from the solution of

K(f)D = 0 )

where the eigenparameter f is the load factor or
frequency. Since K(f) is a transcendental
function of f, Eq. (2) represents a highly
nonlinear transcendental eigenproblem which
cannot be solved by the standard methods for
linear eigenproblems.

The Wittrick-Williams algorithm [1] is a
reliable numerical technique for finding the
eigenvalues for such a transcendental
eigenproblem.  Instead of finding the
eigenvalues directly, the algorithm counts the
number of eigenvalues which lie below any trial
value f* of f, and then converges on them to
the required accuracy by bisection or
interpolation on the determinant of K(f) [6]. In
its general form, the Wittrick-Williams
algorithm can be written as

J =1Jo + s{K(f} 3)

where J is the number of eigenvalues lying
between zero and the trial value f*; J, is the
number of eigenvalues which would still be
exceeded by f* if constraints were imposed so
as to make all the displacements D zero;
s{K(f*)} is known as the sign count, i.e. the
number of negative diagonal elements of the
upper triangular matrix K2(f*) obtained from
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K(f*) by Gauss elimination [1]. J, can be
calculated from

Jo = Jm (@)

where [, is the number of eigenvalues of
member m exceeded at the trial value f* when
its ends are fully restrained.

3 Exact Strip Software VICONOPT

The exact strip software VICONOPT [3] was
developed at Cardiff University and has been
utilized in research and industry for many years.
It covers both isotropic and fully anisotropic
prismatic plate assemblies and includes analysis
for elastic buckling, local postbuckling and free
vibration, as well as an optimum design
capability. Typical panel sections that can be
analysed by VICONOPT and a typical plate
component with in-plate loading are shown in
Fig. 1. VICONOPT is coded in Fortran 77 and
incorporates the earlier programs VIPASA
(Vibration and Instability of Plate Assemblies
including Shear and Anisotropy) [4] and
VICON (VIPASA with CONstraints) [7].

In the VIPASA analysis, the mode shape of
buckling or vibration is assumed to vary
sinusoidally in the longitudinal (x) direction.
The computation is repeated for a set of user
specified half-wavelengths A and converges to
the required eigenvalues for each A to any
required accuracy. Exact solutions are obtained
for isotropic and orthotropic panels with simply
supported ends and which carry no shear load.
In the VICON analysis, Lagrangian multipliers
are introduced to couple the responses of
different half-wavelengths A in order to analyse

panels which are anisotropic or carry shear load.

The VIPASA analysis of VICONOPT was
first extended to include local postbuckling
analysis by Powell et al. [8]. Further
developments, described fully in [9], have been
applied to the multi-level optimisation of an
aircraft wing, allowing for postbuckling effects
[10]. The postbuckling analysis comprises a
number of cycles, each defined by an increment
of the longitudinal strain. At each cycle,
iterations are performed to converge on
consistent values of the postbuckling mode and
its amplitude, the total applied load and the
distribution of stress across the structure.
Instead of using the Wittrick-Williams
algorithm for eigenanalysis, Newton iterations
are performed to obtain accurate convergence
on the postbuckling mode shape, from which
the stress distributions are calculated. At each
iteration it is necessary to calculate K and its
derivatives with respect to the components of D
[9].

VICONOPT gives a good initial evaluation of
load versus end shortening when compared with
experimental and FE results. However the
predicted postbuckling stress and strain
distributions show poor agreement. This is due
to the assumptions made in VICONOPT
concerning the longitudinal invariance of stress
and the sinusoidal longitudinal variation of both
the out-of-plane and the in-plane deflections.
These assumptions are appropriate for initial
buckling analysis, but reduce the accuracy of
subsequent  postbuckling  analysis.  The

procedure described in Section 4 identifies the
true distributions of the in-plane displacements,
strains and stresses, and so enhances the
accuracy of each iteration in the VICONOPT
postbuckling analysis.

(a)

Fig. 1. (a) Prismatic plate assemblies. (b) Component plate, showing in-plane loading.

(b)



4 Improved Exact Strip Postbuckling
Analysis

Slender aircraft structures such as stiffened
panels are often able to carry loads far in excess
of their critical buckling loads on account of
stress re-distributions across the structure. To
minimise the weight of such structures, the
postbuckling reserve of strength must therefore
be considered. However, due to the assumptions
of longitudinal invariance of stress and
sinusoidal buckling modes, previous
postbuckling analysis with VICONOPT gave
good agreement for load and end shortening in
initial postbuckling but poor predictions of the
associated stress and strain distributions.

In the improvements described here, the
governing equilibrium equations are derived and
solved analytically for general anisotropic
plates, allowing for the effects of bending-
membrane coupling. The VIPASA analysis is
used, so that the out-of-plane displacements are
assumed to vary sinusoidally with a half-
wavelength A, which divides exactly into the
plate length a. But, in an extension to Stein’s
method [2], the in-plane displacements, strains
and stress resultants are now assumed to vary as
the sums of sinusoidally varying responses with
two half-wavelengths A and 1/2. By assuming
the sinusoidal out-of-plane displacements
obtained from the VICONOPT analysis, the in-
plane displacements are obtained by solving the
in-plane equilibrium equations. Then accurate
distributions of the longitudinal, transverse and
shear strains and stress resultants are obtained.
Finally, energy considerations are used to give
equivalent longitudinally invariant  stress
resultants which will be used in the next
iteration of the VICONOPT analysis.

4.1 Description and assumptions of the
analysis

At present the postbuckling analysis is restricted
to classical plate theory, i.e. no allowance is
made for transverse shear deformation. Plates
are assumed to have no initial imperfection, but
in-plane and out-of-plane anisotropy and
curvature effects (i.e. general A, B and D
matrices) are permitted. The analysis calculates
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the variations of the in-plane displacements
within the plates; these no longer have the same
sinusoidal  variation as the out-of-plane
displacements, but include contributions with
two half-wavelengths and allow for curvature
effects in coupled problems. The analysis finds
the longitudinal, transverse and shear stress
resultants at the longitudinal edges of each strip,
i.e. at node level; the strip level values required
by VICONOPT are obtained by averaging the
values on the two edges of each strip.

4.2 Displacements

Each plate is divided into n — 1 strips with
equal width, and is identified by the n nodes at
the strip edges. At each node i, the out-of-plane
deflections w; and rotations i; about the x axis
are assumed to vary sinusoidally in the
longitudinal direction with half-wavelength 4,
and are written in the form

X
cos —
Wil [Wic Wis A
llJi] - [lpic l/Jis] sin =¥ ©)
A

It is assumed that ¥;; = w;;. The subscript j
indicates terms which are to be multiplied by
different sinusoidal factors, and prime denotes
the derivative with respect to the transverse
direction y. The presence of both sine and
cosine terms in Eq. (5) allows for the skewing
of the nodal lines which occurs for shear-loaded
and anisotropic plates. In the absence of shear
and anisotropy, w;. and ¥, are zero.

The in-plane longitudinal (u;) and transverse
(v;) deflections are assumed to take the form

] =[50+

X
COS —

. TIX (6)
[uio Ui Uiz Ujc uis] SIh—r

Vio Vic Vis Vic Vis 27X
cos—

- 2mx
sin—
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In EqQ. (6), the sine and cosine terms with half-
wavelength A occur for coupled laminates with
B; # 0, and otherwise can be ignored. The
linear term allows for the application of a
uniform longitudinal strain &,.

4.3 Calculation of Strains and Curvatures

The neutral surface strains and curvatures given
by von Karman’s large deflection theory are

aui n 1 <aWi)2
dx 2\ 0x
avi " 1 <aWi)2
Exi 1 ay 2 ay
Syl' % n % aWi aWi
Yxyi| |0y 0x  0Ox Oy
Kyi - aZWL_
Kyi T 9x2
K .
a4 _azwl
0y? (7)
0%w;
dxdy
— 1 -
X
[ €xio €xic €xis €xic €xis T COST
gyio gyic eyis gin eyiS X

Yxyio Yxyic Yxyis Vxyic Vxyis || SI 7
Kxio Kxic Kxis Kxic Kxis 27X
Kyio Kyic Kyis Kyic Kyis ||COS 1

_nyiO nyic nyis nyiC nyiS_

- 2mx
_Sll’l 1
Substituting from Eq. (6) into Eq. (7) gives
&1 _ So(Wi)] lrg €1,
“i]_[Ko(wi) +b[o]“i+[0]“i ®)
_vio_
Vic
Wio] Vis
Wic Vic
w; v
W= = [ (910
lpic Uic
—l/)is— Uis
Uic
L Ujs

r €xio
Exic
Exis
Exic
Exis
gyiO
Syic

gin

EyiS
)/xyiO
nyic
nyis
nyiC
_yxyiS i

g(wp) =

&yis |,

T
£x+4__/12

T
ﬁ (Wislpic - Wiclpis)

A
7 Wisic + wicis)

m
| 57 Wisthis = Wictic) |

422

[ Kxio ]
Kxic
Kxis
Kxic
Kxis
KyiO
Kyic
Kyis
Kin
KyiS

nyiO
nyic
nyis
nyiC

_nyiS_

2 -
Wiz +wis)

0
0
2
T
Wi —wi)
TL'Z
- ﬁwicwis
1
Z (lplzc + 1:blzs)
0
0

1

Z (lplzc - l/)lzs)
1
El/)icl/)is

0
0

(11,12)

(13)



koW) = | —ypr. (14)
0

0s Os
0s Is
I; Os

0 0
0 0 l
0 0 @an
0 2w;
—2w; 0

, £y = (15,16)

Tl.'bi
wi =7

where O¢ and I< are null and unit matrices of
order 5, respectively.

(18)

4.4 Stress-Strain Relationships

After obtaining the above expressions for strain
and curvature, the stress resultants N,;, N,,; and
N,,; are needed for the equilibrium equations.
For a general anisotropic plate, the in-plane
stress-strain relationships at node i take the form
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Ny Ai11 Ai12 Ai16- [ Exi ]
Nyi = AilZ Ai22 Ai26 gyi +
Niyi [Aize Aiyg Aigel Vxyil
B. B B 1. ] (19)
i11 i12 i16 | [ Kxi
Bi;, Biy, Biyel| Ky
_Bi16 Bi26 Bi66- _nyi_

Substitution from Eq. (8) into Eq. (19) gives
Ni] % [so(wi)] 5 [Ko(wi)]
=R +B;|
[Ni "leg(wy) " Lo (W)
u

1 i il 4 u; (20)
+E i€1 [u{] + A€ [ugl]

where
[ inO 1
inc
ins
inC
inS
NyiO
Nyic
N; = | Nyis (21)
Nin
NyiS
nyiO
nyic
nyis
nyiC

_nyiS_

A 05 A
A =4l A

[Aigels A

I. A
I. A
I. A

i1615
i2615 (22)
Is

i12
i22

i26 i66

B
B, = |B
B

| Pi16

I B,ls B
Is Bypls B
I. B I. B

i1615
i26l5 (23)
I5

i11

i12

i26 i66
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£o(w;) ,
ﬁ (Wicwic + Wiswis)
0
0

2
% Wisthis — wicic)
77.'2
222
1
E (lpiclpfc + lpislp{s)

0
= 0 (24)
1
E (l/)icl/){c - l/)islplfs)
1
E (l/)isl/)l{c + lpiclplfs)

n ! !
ﬁ (Wislpic - Wiclpis)
0
0

T[ ! !
ﬁ (Wisl/}ic + leislpic + Wicl/)is)

T ! 2 ! 2
_ﬁ (Wisl/}is + l/Jis - Wicl/)ic - lpic)_

(Wisl/)ic + Wicl/)is)

0

7.".2

?lpic

77.'2

A_zl/)is
0
0
0

, ~Pic

Ko(W) =| ! (25)

0

0

0
2,
_TIIJis

2n
7¢ic
0
0

The derivatives u; and u;’ are obtained by the
following finite difference approximations, with

adjustments by parabolic interpolation at the
plate edges.

Zbiu;
=3u; + 44U — Uy i=1

=94 "Wi—g + Wiy (1<i<n) (26)
u;_, —4u;_; + 3u; (i=n)

bZu!
2u; = 5uy 4w, —u3 ((=1)
=4q4U;_1 — 2ui +u;q (1 <i< Tl) (27)

u;_3; —4u;_, +5u;_; —2u; (i = n)

Explicit expressions for N; and N; in terms of
u; and w; are obtained by substituting Egs. (9)-
(16), (22)-(23) and (26)-(27) into Eq. (20).

4.5 Equilibrium Equations
To solve for the in-plane displacements u;, the

in-plane equilibrium conditions for node i are
given by

ON,; ON,,,;
yi xyi
= 28
ady * d0x 0 (28)
ONyy; 0Ny
R 29
ady + dx 0 (29)
and are expressed in component form by
yio = 0 (30)
, T
Nyic + Znyis =0 (31)
, A
yis — Inyic =0 (32)
21
leziC + TnyiS =0 (33)
, 2
NyiS - TnyiC =0 (34)
Nyyio =0 (35)
, T
nyic + Iins =0 (36)



, VA
nyis - Iinc =0 (37)
2r
N)éin + TinS =0 (38)
) 21
nyiS - TinC =0 (39)

Substituting  the  explicit  expressions
previously obtained for N; and N; gives ten
equilibrium equations for each node in terms of
the in-plane and out-of-plane displacements u;
and w; . The equations for each node are
assembled into the global equilibrium equations
which can be written in matrix form as

Hu = G(w) (40)

where u includes the unknown in-plane
displacements w; for all the nodes of the
structure, H is a square matrix with constant
coefficients and G(w) is a non-linear function
of the out-of-plane displacements w which are
known from the VICONOPT analysis. Equation
(40) is solved to give the in-plane displacements
as

u=H1G(w) (41)

from which distributions of the in-plane stress
resultants N; are calculated using Eq. (20).

4.6 Calculation of Equivalent Uniform
Stress Resultants

The stress resultants calculated in Section 4.5
cannot be used directly in the next iteration of
VICONOPT, because they include sinusoidal
terms and so vary in the longitudinal direction.
So equivalent longitudinally invariant stress
resultants are calculated as follows, based on
energy considerations.

The work done by the applied loading at node
i is given by

V= in + Vyi + nyi (42)
where
A
in = blf ingxidx (43)
0
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A
Vyi = le. Nyieyl-dx (44)
0
A
nyi = bif nyiyxyidx (45)
0
Writing the stress resultants as
in
Ny | =
nyi
1
X
COST
x (46)
inO inc ins inC inS sin —
NyiO Nyic Nyis Nin NyiS A
nyiO xyichyisnyiCnyiS coszﬂ
A
_ 2mx
Sin——
L .

and substituting Egs. (8)-(16) and (46) into Egs.
(43)-(45), the components of V are written as

in = inoﬂxio + incnxic + insnxis (47)
+NyicNxic + NyisNxis
Vyi = Nyiollyio + Nyiclyic + Nyistyis (48)
+NyicNyic + Nyistyis
Vyi = nyionxyio + nyicnxyic (49)

+nyisnxyis + nyicnxyic + nyiST]xyiS

where the parameters 1, 7,;; and 7,,,;, listed
in Appendix A, are expressed in terms of the
known quantities &,, u; and w;.

Comparing  with  the  corresponding
expressions for uniform loading yields the
following expressions for equivalent
longitudinally invariant stress resultants, which
are used by VICONOPT to calculate the strip
stiffness matrices.

Ny = Nyjo +
1 < incnxic +insnxis ) (50)
+inCnxiC + inSUxiS

Nxio
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ZI

< ylcnylc lsnyls ) (51)

Nyio +Nle77le + N yisTyis

nyi = nyiO +
1 ( nyicnxyic + nyisnxyis > (52)
+nyiCnxin + nyiSnxyiS

nxyio

4.7 Calculation of Stress Resultant
Derivatives

The Newton iterations of VICONOPT require
derivatives of the global stiffness matrix K with
respect to the out-of-plane displacements. These
derivatives are calculated by a finite difference
procedure in  which the out-of-plane
displacement components w, (representing
Wic, Wis, P;. and ;; for each node i) are
perturbed in turn, resulting in perturbations of
the effective stress resultants derived in Egs.
(50)-(52). In order to calculate these
perturbations, it is not necessary to repeat the
whole analysis of Section 4; instead they can be
calculated analytically by obtaining the
derivatives of N; with respect to each
component wy,.
Differentiating Eq. (20) gives

oN; dgg(wy) - Ixg(w;)

=Aj—F—+Bi———
aWk aWk aWk (53)

1 odu; _  Ou

+bA &g EI +Al 250 "

in which the first two terms on the right-hand
side can be obtained by differentiating Egs. (13)
and (14), respectively with respect to wy. The
third term is obtained by differentiating Eq. (41)
to give

du L 9G(w)

=H" 54
aWk aWk ( )

noting that the previously inverted matrix can be
re-used for these calculations. Finally, the fourth
term of Eq. (53) is obtained from the third term
by the use of finite difference approximations
analogous to those of Eqg. (26).

5 Illustrative Results

This section gives illustrative results for an
isotropic square plate loaded in longitudinal
compression. All four edges were simply
supported with respect to out-of-plane
displacement. The plate had length and width
0.3 m, thickness 0.001 m, Young’s modulus
110 kNmm~2 and Poisson’s ratio 0.3 . For
postbuckling analysis the plate was divided into
10 longitudinal strips of equal width.

.

y

Ny

Fig. 2. Variation of stress resultants across the
neutral surface of a square isotropic plate
postbuckling in longitudinal compression, with
all edges simply supported against out-of-plane
deflection and the longitudinal edges fixed in-
plane.
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Fig. 3. Variation of stress resultants across the top surface of a square isotropic plate
postbuckling in longitudinal compression, with all edges simply supported against out-
of-plane deflection and the longitudinal edges fixed in-plane.
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Fig. 4. Variation of stress resultants across the bottom surface of a square isotropic plate
postbuckling in longitudinal compression, with all edges simply supported against out-
of-plane deflection and the longitudinal edges fixed in-plane. 11



In order to simulate the intended use of the
improved analysis, a postbuckling analysis was
carried out using the previous version of
VICONOPT [9]. At cycle 10, when the
longitudinal strain exceeded the initial buckling
strain by 45.1%, the out-of-plane displacements
w were saved and used as input to the procedure
described in Section 4. The distributions of the
N, and N,, stress resultants were found, together
with the effective longitudinally invariant
distributions to be used in the next iteration of
the VICONOPT postbuckling analysis. In the
figures below these distributions are shown
graphically to give a qualitative indication of the
postbuckling behaviour of the plate. In the
contour plots, blue shading denotes increasing
compression while red indicates decreasing
compression (which usually results in regions of
tension on the bottom surface).

5.1 Longitudinal Edges Fixed In-Plane

In the first example, the longitudinal edges of
the plate are fixed in-plane, i.e. in the solution
of Eqg. (40) all components of u; are forced to
zero at nodes i =1 and i =n. The resulting
distributions of N, and N,, are shown in Fig. 2,
where it is seen that N, is almost longitudinally
invariant but N,, is not.

It should be noted that all the strains and
stress resultants calculated in Section 4 are those
at the neutral surface. In practice the stresses
vary through the thickness on account of the
curvature, taking their greatest values at the
surfaces of the plate. Figures 3 and 4 show the
variation of N, and N, at the top and bottom
surfaces, respectively, and additionally validate
the method by comparison with previous
VICONOPT results [9] and FE results obtained
with the software ABAQUS [11]. It is seen that
the present method gives much closer
agreement to the FE results than does the
previous VICONOPT analysis.

5.2 Other In-Plane Edge Conditions
The plate was analysed for two further in-plane

edge conditions. In both cases longitudinal
displacement was prevented at the longitudinal
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edges, i.e.u; = 0for nodesi =1andi =n. In
the first case there was no restraint against
transverse displacement. In the second case the
longitudinal edges were held straight, so that v;,
could be non-zero at these nodes but the other
components of v; were zero. Top and bottom
surface distributions of N, and N,, are shown for
these two cases in Figs. 5 and 6, respectively.
Again it can be seen that there is a considerable
variation of the stress resultants in both
directions, which should be taken into account
when following the postbuckling path. This has
been done while calculating the effective
uniform stress resultants of Section 4.6, which
are therefore expected to provide accurate
estimates of the postbuckling stiffness of the
plate.

6 Concluding Remarks

Exact strip analysis provides an efficient
approach to postbuckling analysis of isotropic
and anisotropic plate assemblies for use in the
preliminary design of aircraft structures. This
paper has presented a theoretical improvement
to exact strip postbuckling analysis, which
enhances the accuracy of mode shapes, strain
and stress distributions. Illustrative numerical
results have been presented for an isotropic
plate with various edge conditions and show
good agreement with finite element results. The
method will be further assessed by considering
fully anisotropic plates with combined loading
conditions.

The purpose of the work is to provide an
enhanced procedure for calculating effective
longitudinally invariant stresses and their
derivatives for use in the exact strip software
VICONOPT. Implementation of the method
into the VICONOPT code is currently in
progress. When this task is completed, the
method will be fully assessed by using it in a
complete postbuckling analysis. It will then be
further extended to the analysis of stiffened
panels, to provide additional capabilities for
aircraft designers.
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1 2 3 4 5 B T 8 9 1w 1n
N, : top surface

1 2 3 4 5 B8 7 3 9 10 1
N, : bottom surface

i 2 3 4 &5 6 7 &8 9 10 11
N, : bottom surface

Fig. 5. Variation of stress resultants across the top and bottom surfaces of a square
isotropic plate postbuckling in longitudinal compression, with all edges simply
supported against out-of-plane deflection and the longitudinal edges free.
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Appendix A

Coefficients in equivalent uniform stress
resultants calculations
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