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Abstract  

In the requirements of static aeroelasticity 

the constrained deformations usually are the 

torsional deformations of along-stream wing 

sections, because the twist values determine 

angles of attack and consequently aerodynamic 

forces. Thus, the bending deformations have no 

matter; this circumstance opens new 

capabilities for optimization of structures swept 

and delta wings, for which one the bending and 

torsional deformations are interdependent. So, 

for example, loosening a trailing edge of a delta 

wing in a direction of span and allowing 

thereby large vertical displacement, it is 

possible to reduce the twisting of along-stream 

sections. Naturally weakening is necessary to 

implement not to the detriment of safety. 

We suggest the method which have 

selectivity to kinds of deformations and reliably 

determine not only area of a structure, where it 

is necessary to add a material for reaching 

demanded stiffness, but also area where it is 

possible to weaken structure, for increasing of 

demanded (useful) deformations. 

1   Basic Theory  

Consider the search for a structural design with 

minimal volume (mass) with a generalized 

displacement constraint at a single point on the 

structure. To develop our constraint relationship, 

we first apply a unit generalized force (unit load) 

in the direction of the constrained displacement 

(either a displacement or a rotation such as 

twist).  We use the Maxwell-Mohr
1
 formula to 

                                                 
1
 This is also referred to as the unit load or dummy load 

method. 

calculate this constrained displacement, that 

called  . We first assume that the design is 

broken into m finite elements, each in a plane 

stress condition, so that 
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Here iiiR   represent internal forces in 

element i due to the unit loading; iiiR   

represents internal forces in element i due to the 

applied loading; i  is the thickness of the 

element; iS  is the planar area of the element; iE  

and i  are the modulus of elasticity and 

Poisson's ratio of the element material. 

The internal loads due to the unit generalized 

force and applied loading are called iR  and iR ; 

they are determined by the usual finite element 

procedure. If finite elements with a constant 

stress field are used, Eqn. 1 becomes: 
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For thin-walled structures whose elements are in 

a plane stress condition, the volume of material 

is written as  
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We minimize this volume under the condition 

that 

o                                                                (4) 

and   
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Fig. 1. Cantilever beam. 

 
Fig. 2. Internal loads and Mohr integral 

values 

where o  is the given value of the generalized 

displacement.  

The elements of the series in (2) provide the 

contribution of each element to the 

displacement, which is constrained. If the value 

]R[ *

i
 is large, the displacement is largely 

determined by deformations of the i element. If 

the size ]R[ *

i
 is negative then reducing the 

material volume or modulus of elasticity will 

reduce the deflection. Because the unit 

generalized force is in the direction of the 

constrained deformations, a negative value of the 

Mohr integral shows where it is necessary to 

reduce the volume of an element.  

For an illustration of this method, consider a 

cantilever beam loaded with two forces, as 

shown in Fig. 1. The tip bending displacement 

angle   in Fig. 1 is to be constrained to be zero. 

 

First apply a unit bending moment 1M   to the 

end of the beam in the   direction and find the 

Mohr integral, defined in this case as 
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M dz
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MM
I                                                  (6) 

Let's assume for simplicity that EI = constant. 

By multiplying the distribution of the moments 

from the applied and unit load cases we find the 

distribution of Mohr integrals over the length of 

the beam shown in Fig. 2. 

From the distributions in Fig. 2 it is seen that the 

reduction in bending stiffness between points 2 

and 3 will cause an increase the angle  , while 

the reduction of stiffness in site 1 will result in a 

reduction of  . 

 

The angle   of the tip section can be reduced by 

stiffening or strengthening zone 2-3, or de-

stiffening zone 1, or taking these actions 

simultaneously. 

 

Negative values of the Mohr integrals always 

identify design zones that are can be weakened 

to satisfy displacement constraints. 

 

From (2) we see that in these regions it is 

advisable to choose the minimum thickness 

allowed for strength, construction or other 

technological reasons. In formula (2) we collect 

all terms bearing a negative term so that the 

equation is written as 
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Here: i is the minimum allowable thickness of 

elements with negative values of the Mohr 

integrals; 
i

~
  is the thickness of elements for 

which the Mohr integrals are positive; n is the 

number of elements where the Mohr integrals 

are positive. 

Let's define two terms 
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Then 
  .                                         (10) 

The condition in equation (4) will look like 
   o .                                       (11) 
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If, in zones with negative Mohr integrals, the 

minimally allowable thicknesses are used, the 

thickness of these elements are eliminated as 

design variable and we find optimum 

distribution of a material only in zones with 

positive Mohr integrals. Thus, we have a task of 

conditional optimization: to minimize volume of 

a material of a design 
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under the condition in Eqn. 11. 

We will use LaGrange multipliers to find the 

solution.  Let's define a function 
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where 1  is the LaGrange multiplier. The 

conditions of a minimum of the function are:  
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From Eqns. 14 and 15 we have 
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Substituting (16) into equation (15) we find the 

LaGrange multiplier 
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Equation (16), accounting for formula (17), can 

be written as 
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Formula (18) defines the “law of distribution” of 

a material for elements of the design ensuring 

the constraint on the generalized displacement 

with internal forces iR  and iR . 

Let's calculate the required volume of the design 

from (3) by substitution of i

~
  from (18) and the 

minimally allowable thickness i . 
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Let's examine formulas (18) and (19). In the 

presence of zones with negative Mohr integrals, 

that is by 0 , we have an opportunity to 

develop a design with a constrained zero 

generalized displacement: 0o  . Moreover, the 

satisfaction of the requirement 0o   is 

possible, provided that  o . If the zones 

with negative Mohr integrals are absent, we can 

only reduce the existing generalized 

displacement. 

1.1   Property of the found material 

distribution 

Expression (14), determining minimum 

condition of a material volume of a structure by 

limitation  = 0 we represent as follows: 
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Substituting values ]R[ *

i  from (1) into (21) 

and taking into account, that iii

~
R  , we 

receive 
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From here it is visible, that the equation (14) 

determines the relevant property of the created 

in according with the formula (18) project, 

namely: the specific energy of internal forces 

from unit loading, on deformations from real 

loading should be constant in all structure 

elements.  

The condition (22) can also be considered 

as some generalization of the known 
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Z.Wasiutynski theorem [1] about equality of a 

specific potential energy of deformation in all 

elements most of rigid structures made from a 

given volume of a material. 

 

In an optimal structure with given value of 

generalized displacement, in zones with 

positive Mohr integrals the specific energy of 

internal forces from unit loading on 

deformations from a real loading should be 

constant in all elements of structure.  

 

In zones with negative Mohr integrals it is 

necessary to permit structures to be deformed as 

much as possible, for what to use in these places 

materials with low elasticity modulus and large 

allowable deformations. 

2   Theory application  

An aeroelastic stiffness requirement such as 

absence the divergence, can be posed, 

approximately, as a limitation on deformation. 

To use optimality criteria, these constraints 

enter as inequalities and, in the case of wings, 

the measure of design stiffness is taken as an 

elastic displacement at a finite number of 

selected, “characteristic” or “typical” cross-

sections. The deformations of these so-called 

cross-sections and their aerodynamic properties 

for our needs are representative of the elastic 

twist angle )( z  of the structure along the wing 

(the coordinate z  is the nondimensional 

distance from the lifting surface root and the 

typical section). The rule to choose the “typical” 

cross-section for individual wing is out of this 

paper, but that method is applicable to different 

wing structure type including small aspect ratio 

wings [2]. 

As an example of application optimization 

method we design the forward swept wing 

structure with constraint on twist angle of the 

wing section placed on z =0.81. We choose the 

constraint 0o   to exclude the divergence in 

flight. As prototype we consider the wing with 

the form in plane from airplane Sukhoi S-47 

“Berkut” but having another sizes and made 

from isotropic material, see Fig. 3. 

 

 
Fig. 3. Fighter S-47 “Berkut”. 

 

The applied loading has the forward center of 

pressure and corresponds to a flight situation 

with the maximum g-loading. Loading during 

the optimization was defined with taking into 

account elastic features of wing. As initial 

material distribution we take the identical skin 

thickness equal 1mm, wall of ribs also have the 

thickness equal 1mm. Wall of spars have the 

thickness 2.5mm. Spars and ribs cap equal 

10mm
2
. Wing deformation with the initial 

material distribution is shown on Fig. 4.  

 

 
Fig. 4. The displacements of initial structure. 

 

Optimization results are shown on Fig. 5,6,7. 

 
Fig. 5. The displacements of optimal structure. 
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Fig. 6. Skin thickness distribution. 

 

 
Fig. 7. Mohr integrals distribution in the skin. 

 

It can be seen from fig. 5 that elastic twist 

angles )( z  of the aerofoil are negative along 

the wing.  

 

Therefore the divergence of such wing is 

impossible.  

 

Fig. 6 shows that it is necessary to increase the 

skin thickness only at the leading edge where 

Mohr integrals are large positive, see fig. 7. 

By the way, achieved result supposes the using 

in structure traditional, well known materials. 

2.1   New wing structures 

The new optimality criteria enable to control 

structure deformations at the designing stage 

and to develop airframes in which elastic 

displacements of one part structure are 

controlled by material distribution in another 

part of structure. Such control effectiveness 

shows Mohr integral distribution.  

For airplane with high cruise speed and good 

takeoff and landing characteristics we suggest 

the combined wing shown on fig.8. 

 

 
 

Fig. 8. The combined wing. 

 

Here the back swept wing part controls the 

deformations of the forward swept part of 

structure and the whole structure has in flight 

the elastic deformation shown on fig. 9 (after 

optimization). 

 
Fig. 9. The displacements of combined wing. 

 

In particular regarding material distribution, on 

fig. 10 is shown the optimal skin thicknesses. 

 

 
Fig. 10. Upper skin thicknesses. 
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Another type of combined wing is represented 

on fig. 11. This turbo propelled aircraft has high 

cruise speed (low local shock wave drug due 

swept parts of wing) and good takeoff and 

landing characteristics (due forward swept and 

unswept parts). 

 
Fig. 11. Airplane with combined wing. 

 

This wing has deformation in flight shown on 

fig. 12. It can be seen, that elastic twist angles of 

the aerofoil along the wing are zero. 

 

 
Fig. 13. Elastic displacements in flight. 

 

Here we not implement the optimization of 

material distribution. These deformations meet 

the typical material distribution for torsion-box 

type wing with skin thicknesses which is shown 

on fig. 13. 

 
Fig. 13. Upper skin thicknesses. 

3   Resume 

The new optimality criteria enable to get the 

optimal structures with required deformations 

not only by increasing structure stiffness but 

also by decreasing some part stiffness of 

structure. This allows find the high effective 

structures. 
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