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Abstract

The bending frequencies of a wing are calculated
based on the model of a beam clamped at the root
and free at the tip; since the mass and the moment
of inertia (per unit span) vary along the span, a
non-uniform beam is considered. For a swept-
back wing with straight leading- and trailing-
edges, the chord is a linear function of the span;
the same linear function of the span applies to
thickness, in the case of constant thickness-to-
chord ratio. Thus, the bending modes of a non-
uniform beam are considered, with mass and mo-
ment of inertia respectively quadratic and quartic
functions of the span. There is no exact solu-
tion expressible in finite terms using elementary
functions, and thus power series expansions are
used. The boundary conditions, that the wing is
clamped at the root and free at the tip, lead to the
natural bending frequencies. The fundamental
bending frequency is calculated for a delta wing,
and compared with a rectangular wing, with the
same span, mean chord and thickness, mass den-
sity and Young modulus. It is shown that the fun-
damental frequency is higher by a factor 11.32
for the delta wing., i.e., it is stiffer because it has
a higher proportion of the mass near the root; it
is also shown that the case of the tapered swept-
back wing is intermediate between the delta and
the rectangular wing.

1 Introduction

The representation of a wing as a beam of con-
stant cross-section is adequate for a rectangular
wing, with airfoil section and material proper-
ties constant along the span. Retaining the lat-
ter case of an homogeneous wing, but with non-
uniform chord and/or thickness, the mass and
moment of inertia of the section vary along the
span. Thus the model must be extended to a beam
of non-uniform cross-section, e.g., for a swept-
back wing. This is particularly true for a delta
wing, for which the mass and moment of inertia
vanish at the tip.

The study of wing bending in general, and its
natural vibration frequency in particular has been
of interest since many years and it is a standard
topic of elasticity [1–3], vibrations [4–6] and
aeroelasticity [7–9]. For example, the analytical
study of vibration modes of cantilever beams has
already been well documented by Volterra and
Zachmanoglou [10]. A detailed analytical study
of natural vibration frequency of bending bars
subject to different boundary conditions has been
made by Chen [11], including numerical results
for a truncated conical bar. More recently, Bal-
akrishnan and Iliff [12] developed an aeroelastic
analytical model for the bending-torsion dynam-
ics of a slender high aspect-ratio wing in invis-
cid subsonic airflow. It comprised of a cantilever
beam model as structural model, and a potential
field model as linear aerodynamic model, and it
studied the aeroelastic modes and flutter instabil-
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ity in two-dimensions. The study of physical phe-
nomena involving any combination of solid me-
chanics, dynamics and fluid mechanics are be-
coming more and more recurrent in aerospace,
namely in the study of airplanes.

The knowledge of exact analytical solutions
of dynamic response of rather simplistic wing
structures offers valuable data. It can be used
as benchmark to validate high-fidelity compu-
tational fluid-structure interaction models, that
upon validation, can then be used to tackle com-
plex wing configurations. The work presented
here intends to provide such reference data for
sweptback wings.

This paper is divided into five main sections.
Section 2 lays out a few basic geometric and
physical function definitions for straight leading-
and trailing-edges wings. The equation of trans-
verse vibrations is applied to such wings and gen-
eral expressions of amplitude and frequency of
oscillation are derived in Sec. 3. The solutions for
tapered wings are determined in Sec. 4, while the
particular cases of rectangular and delta wings
are included in Sec. 5 and Sec. 6, respectively.
Finally, the paper ends with some remarks about
the findings of the work presented.

2 Spanwise distribution of mass and moment
of inertia

The starting point for the representation of a wing
with arbitrary planform and airfoil section as a
non-uniform beam, is to specify the mass and
moment of inertia (per unit span) as a function of
the spanwise coordinate y. In the case of Fig. 1
of a sweptback (or sweptforward) wing, with
straight leading- and trailing-edges, the chord at
spanwise section y is given by

c(y) = cr +(ct − cr)
y
L
, 0≤ y≤ L , (1)

where L is the semi-span and cr, ct are the chord
at the root and tip. The latter are related to
the mean chord, c̄ ≡ (cr + ct)/2, and taper ratio,
λ≡ ct/cr, by

cr =
2c̄

1+λ
, ct =

2c̄λ

1+λ
, (2)
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Fig. 1 Sweptback wing with straight leading- and
trailing-edges.

and thus the chord (1) is given by

c(y) =
2c̄

1+λ

[
1+(λ−1)

y
L

]
, (3)

as the function of the spanwise coordinate. If the
wing sections have a constant thickness-to-chord
ratio, then (3) also applies to the thickness distri-
bution along the span,

e(y) =
2ē

1+λ

[
1+(λ−1)

y
L

]
, (4)

where ē is the mean thickness; in such case,
the thickness-to-chord ratio is e(y)/c(y) = ē/c̄ =
const.

Assuming that the section is homogeneous
with mass density µ, the mass per unit span,

m(y) = µc(y)e(y) , (5)

is given by a quadratic function (6a) using the ex-
pressions (3),(4),

m(y) = m0

[
1+(λ−1)

y
L

]2
, (6a)

m0 ≡ m(0) =
4µc̄ē

(1+λ)2 , (6b)

where (6b) would be the constant value for a rect-
angular wing. Likewise, the moment of inertia
per unit span relative to the z-axis, for a rectangle
with height equal to the mean thickness of the
airfoil e(y) and length equal to the chord c(y), as
illustrated in Fig. 2, is given by

I(y) =
1
12

µc(y) [e(y)]3 . (7)
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Fig. 2 Moment of inertia per unit span for an
arbitrary section at spanwise position y.

Substituting (3) and (4) in (7) leads to a quartic
function (8a),

I(y) = I0

[
1+(λ−1)

y
L

]4
, (8a)

I0 ≡ I(0) =
4
3

µc̄ē3

(1+λ)4 , (8b)

where (8b) would be the constant value for a rect-
angular wing. The radius of gyration,

r(y) =

√
I(y)
m(y)

= r0

[
1+(λ−1)

y
L

]
, (9a)

r0 ≡ r(0) =
√

I0

m0
=

ē√
3(1+λ)

, (9b)

varies along the span as the chord (3) and thick-
ness (4).

3 Transverse vibrations of beam with non-
uniform cross-section

The transverse or vertical displacement X(y, t) of
an elastic beam, with Young modulus E(y), mass
m(y) and moment of inertia I(y) per unit span,
satisfies the equation of bending waves [13],

m(y)
∂2X(y, t)

∂t2 =
∂2

∂y2

[
E(y)I(y)

∂2X(y, t)
∂y2

]
. (10)

For a homogeneous wing, the Young modu-
lus is constant, and for a swept wing with
straight leading- and trailing-edges and constant
thickness-to-chord ratio, the substitution of the
mass (6a) and moment of inertia (8a) in (10)
lead to the linear partial differential equation with
non-uniform coefficients,[

1+(λ−1)
y
L

]2 ∂2X(y, t)
∂t2

=
EI0

m0

∂2

∂y2

{[
1+(λ−1)

y
L

]4 ∂2X(y, t)
∂y2

}
. (11)

Since the coefficients do not depend on time,
there are sinusoidal oscillations with frequency
ω expressed as

X(y, t) = F(y)cos(ωt) , (12a)

whose amplitude satisfies a linear ordinary differential
equation with variable coefficients,

d2

dy2

{[
1+(λ−1)

y
L

]4 d2F(y)
dy2

}
+

(ω/r0)
2

E

[
1+(λ−1)

y
L

]2
F(y) = 0 , (12b)

where the reference radius of gyration (9b) was
introduced. The change of independent variable,
with λ 6= 1,

z≡ 1+(λ−1)
y
L
, (13a)

F(y)≡ G(z) , (13b)

which implies that d
dy =

λ−1
L

d
dz and

d2

dy2 =
(

λ−1
L

)2
d2

dz2 , transforms the coefficients
in (12a) to powers in (14),

d2

dz2

[
z4 d2G

dz2

]
+Ω

2z2G = 0 , (14)

where the only parameter is the dimensionless
frequency,

Ω≡ ω/r0√
E

(
L

λ−1

)2

=
ωL2

ē

√
3
E

λ+1
(λ−1)2 , (15)

which involves the frequency of oscillation ω,
material properties through the Young modulus
E, and wing geometry through the semi-span L,
mean thickness ē and taper ratio λ. Note that the
mass density µ and mean chord c̄ have dropped
out because they do not appear in the radius of
gyration (9b).

Upon the expansion of (14), the resulting
linear fourth-order ordinary differential equation
with power coefficients (16),

z4G′′′′+8z3G′′′+12z2G′′+Ω
2z2G = 0 , (16)

has no exact solution which can be expressed
in finite terms using only elementary functions.
Since the only singularities are z= 0,∞, and z= 0
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is a regular singularity, there are solutions as
Frobenius-Fuchs series [14]:

G(z) =
∞

∑
n=0

an(σ)zn+σ , 0≤ λ < z≤ 1 < ∞ , (17)

which has infinite radius of convergence, 0 < z <
∞, and thus covers the region of interest λ≤ z≤ 1
in (13a) corresponding to 0 ≤ y ≤ L. Thus the
solution (17) will be needed at most only in the
unit interval 0 ≤ z ≤ 1, in the case of the delta
wing with zero taper ratio (λ = 0) and tip chord
(ct = 0). Substituting the Frobenius-Fuchs se-
ries (17) in the differential equation (16), and
equating to zero the coefficients of the powers of
z, leads to the recurrence formula:

(n+σ)(n+σ−1)

[12+(n+σ−2)(n+σ+5)]an(σ)+Ω
2an−2(σ) = 0 .

(18)

Note that (18) implies that the coefficients de-
cay like an ∼ o(n−4), ensuring the uniform and
absolute convergence of the series (17) for finite
z < ∞ [15]. Setting n = 0,1 in (18), leads to

n = 0 : (σ−1)σ(σ+1)(σ+2)a0(σ) = 0 , (19a)

n = 1 : σ(σ+1)(σ+2)(σ+3)a1(σ) = 0 , (19b)

for the even and odd modes, respectively involv-
ing a2n and a2n+1. If a0(σ) = 0, then by (18)
all a2n(σ) = 0, and similarly if a1(σ) = 0, then
by (18) all a2n+1(σ) = 0, and a trivial solution
G(z) = 0 would result from (17). Thus at least
one of a0(σ) 6= 0 6= a1(σ) cannot vanish, imply-
ing from (19) that

a0(σ) 6= 0 : σm = 1,0,−1,−2 , (20a)

a1(σ) 6= 0 : σm = 0,−1,−2,−3 . (20b)

For each of the four values of the index m cor-
responds a particular solution of (17) as a power
series:

m = 1,2,3,4 : Gm(z) =
∞

∑
n=0

an(σm)zn+σm . (21a)

From the difference of the indices in (20a)
and (20b), logarithmic solutions may occur [16–
18].

Since the four particular solutions (21a) are
linearly independent, the general solution is
given by their linear combination:

a0(σm) = 1 : G(z) =
4

∑
m=1

CmGm(z) , (21b)

where the arbitrary constants Cm are determined
by boundary conditions and incorporate the coef-
ficients a0(σm), which can be put equal to unity.

4 Clamped-free boundaries and natural fre-
quencies

The general solutions (21b) must satisfy bound-
ary conditions, which will specify the natural fre-
quencies. The four boundary conditions are de-
termined by setting the beam:

(i) clamped at the root y = 0,z = 1, i.e., zero
displacement (22a) and slope (22b):

I : X(0, t) = 0 ⇒ F(0) = 0 ⇒ G(1) = 0 ,

(22a)

II :
∂X(0, t)

∂y
= 0 ⇒ F ′(0) = 0 ⇒ G′(1) = 0;

(22b)

where the definitions (12a) and (13) have been
used.

(ii) free at the tip y = L,z = λ, i.e., zero bend-
ing moment (23a) and transverse force (23b):

III : M(y→ L) = lim
y→L

EI(y)
∂2X(y, t)

∂y2 = 0

⇒ lim
z→λ

h(z)G′′(z) = 0 , (23a)

IV : V (y→ L) =
∂M
∂y

= lim
y→L

∂

∂y

[
EI(y)

∂2X
∂y2

]
= 0

⇒ lim
z→λ

λ−1
L

d
dz

[
h(z)G′′(z)

]
= 0 ,

(23b)

where

h(z)=EI0z4
(

dz
dy

)2

=
4µc̄ē3

3
E
(

z
1+λ

)4(
λ−1

L

)2

.

(23c)
In addition to the definitions mentioned
above, (8a) and (8b) have also been used.
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The boundary conditions at the wing root (22)
readily apply to (21b):

I : G(1) =
4

∑
m=1

CmGm(1) = 0 , (24a)

II : G′(1) =
4

∑
m=1

CmG′m(1) = 0 . (24b)

Concerning the boundary conditions at the wing
tip z→ λ (23), the case of the delta wing λ =
0 will be excluded (it will be addressed subse-
quently in section 6), so that,

III : lim
z→λ

h(z)G′′(z) = h(λ)G′′(λ)

= h(λ)
4

∑
m=1

CmG′′m(λ) = 0 , (25a)

IV : lim
z→λ

λ−1
L

d
dz

[
h(z)G′′(z)

]
=

λ−1
L

h(λ)
4

∑
m=1

CmG′′′m (λ) = 0; (25b)

in the derivation of

lim
z→λ

d
dz

[
h(z)G′′(z)

]
= h(λ)

4

∑
m=1

CmG′′′m (λ)+h′(λ)
4

∑
m=1

CmG′′m(λ) = 0 ,

(25c)

the last term vanishes by (25a), and thus (25c)
reduces to (25b). The four boundary con-
ditions (24) and (25) form a linear homoge-
neous system of equations in (C1,C2,C3,C4) 6=
(0,0,0,0), which cannot be all zero. Hence the
determinant of coefficients must vanish:∣∣∣∣∣∣∣∣

G1(1) G2(1) G3(1) G4(1)
G′1(1) G′2(1) G′3(1) G′4(1)
G′′1(λ) G′′2(λ) G′′3(λ) G′′4(λ)
G′′′1 (λ) G′′′2 (λ) G′′′3 (λ) G′′′4 (λ)

∣∣∣∣∣∣∣∣=H(Ω,λ)= 0 .

(26)
For fixed variable z = 1 or z = λ, the partic-
ular solution (21a) depend though the coeffi-
cients (18) only on the dimensionless frequency
defined by (15). Thus, for each taper ratio λ, the
roots of the determinant (26) specify the natural
frequencies Ωn(λ), of which the real root with

smaller modulus is the fundamental frequency
Ω1(λ).

Before proceeding to calculate the natural
frequencies, the case of the delta wing λ = 0,
excluded from (25), is considered. The follow-
ing analysis is similar for even and odd modes,
and the former will be considered next for a delta
wing. The two boundary conditions at the wing
root (22) are unchanged (24) for the delta wing,
but at the wing tip, the condition of zero bending
moment (23a) leads to

III : lim
λ→0

h(λ)G′′m(λ)

= lim
λ→0

h(λ)
d2

dλ2

∞

∑
n=0

an(σm)λ
n+σm

∼ lim
λ→0

λ
2 d2

dλ2 λ
σm = lim

λ→0
σm(σm−1)λσm = 0 , (27a)

where the leading term of (21a) was considered
by setting n = 0, a0(σm) = 1, and h(λ) ∼ λ4 for
z = λ in (23c). Using (20a), this expression tends
to zero for m = 1,2 or σm = 1,0, but to infin-
ity for m = 3,4 or σm = −1,−2, so G′′3(0) = ∞

and G′′4(0) = ∞ must be excluded by setting C3 =
0 and C4 = 0; the condition of zero transverse
force (23b) leads to

IV : lim
λ→0

λ−1
L

d
dλ

[
h(λ)G′′(λ)

]
=−1

L
lim
λ→0

d
dλ

[
h(λ)

d2

dλ2

∞

∑
n=0

an(σm)λ
n+σm

]

∼ lim
λ→0

d
dλ

[
λ

4
(

d2

dλ2 λ
σm

)]
= lim

λ→0
σm(σm−1)(σm +2)λσm+1 = 0 , (27b)

where the leading term of (21a) was considered
as in (27a). Using (20a), this expression tends
to zero for σm = 1,0,−2 corresponding to m =
1,2,4, and is finite for σm =−1 corresponding to
m = 3, so the solution G3 is excluded by setting
C3 = 0. Thus, in the case of a delta wing, (24)
simplifies to

λ= 0 : C3 = 0=C4,

[
G1(1) G2(1)
G′1(1) G′2(1)

][
C1
C2

]
= 0 ,

(28)
because there are at most two non-zero constants
of integration (C1,C2) 6= (0,0). They cannot both
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vanish, so the determinant in (28) must vanish,

λ = 0 : G1(1)G′2(1)−G2(1)G′1(1) = H(Ω,0) = 0 ,
(29)

and this is the condition that determines the nat-
ural frequencies Ωn(0) in the case of the delta
wing.

5 Comparison with the corresponding rect-
angular wing planform

The particular case, distinct from the preceding,
which is the simplest, is the rectangular wing,
with the same mean chord and thickness,

λ = 1 : c̄ = c(y) = const , (30a)
λ = 1 : ē = e(y) = const , (30b)

for which the mass and moment of inertia per unit
span are constant,

λ = 1 : m̄ = µc̄ē , (31a)

λ = 1 : Ī =
1

12
µc̄ē3 . (31b)

In this case, the equation of transverse vibra-
tions (10) has constant coefficients,

λ = 1 : m̄
∂2X
∂t2 = EĪ

∂4X
∂y4 , (32a)

and in the case of constant frequency ω (12a), it
leads to

λ = 1 :
d4F
dy4 +

ω2m̄
EĪ

F = 0 . (32b)

The change of independent variable

ρ≡ y
L
, (33a)

F(y)≡ H(ρ) , (33b)

which implies that d
dy = 1

L
d

dρ
and d2

dy2 = 1
L2

d2

dρ2 ,
leads to

H ′′′′+ Ω̄
2H = 0 , (34a)

where the dimensionless frequency,

Ω̄≡ ωL2

√
m̄
EĪ

=
ωL2

ē

√
12
E

, (34b)

replaces (15), which is not valid for λ = 1; note
that the change of variable (13a) also does not
apply for λ = 1, and was replaced by (33a).

The case of the rectangular wing is the sim-
plest because (34a) has elementary solutions:

α≡
√

Ω̄ : H(ρ) = B1 cos(αρ)+B2 sin(αρ)

+B3 cosh(αρ)+B4 sinh(αρ) .
(35)

The boundary conditions of clamping at the root
y = 0,ρ = 0 (22) can be expressed as

I : X(0, t) = 0⇒ F(0) = 0

⇒ H(0) = B1 +B3 = 0 , (36a)

II :
∂X(0, t)

∂y
= 0⇒ F ′(0) = 0

⇒ H ′(0) = α(B2 +B4) = 0 ,
(36b)

which leaves two out of four constants of integra-
tion independent:

H(ρ)=B1[cos(αρ)−cosh(αρ)]+B2[sin(αρ)−sinh(αρ)] .
(37)

The boundary conditions at the tip
y = L,ρ = 1 (23),

III :
∂2X(L, t)

∂y2 = 0⇒ F ′′(1) = 0

⇒ H ′′(1) =−B1(cosα+ coshα)

−B2(sinα+ sinhα) = 0 ,
(38a)

IV :
∂3X(L, t)

∂y3 = 0⇒ F ′′′(1) = 0

⇒ H ′′′(1) = B1(sinα− sinhα)

−B2(cosα+ coshα) = 0 ,
(38b)

form a linear homogeneous system, which has a
non-trivial solution if the determinant of coeffi-
cients vanishes:

(B1,B2) 6=(0,0) :
∣∣∣∣ cosα+ coshα sinα+ sinhα

sinhα− sinα cosα+ coshα

∣∣∣∣
= 2(1+ cosαcoshα) = 0 . (39a)

Thus the natural frequencies for the rectangular
wing are the roots of

λ = 1 : sech(
√

Ω̄) =−cos(
√

Ω̄) , (39b)
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Fig. 3 Natural dimensionless frequencies Ω̄n =
α2

n of rectangular wing determined by the inter-
sections of sechα and −cosα.

and are illustrated in Fig. 3. The dimension-
less frequency of the fundamental mode α1 =
1.875104 is calculated in Tab. 1, leading to Ω̄1 =
α2

1 = 3.51602. Higher-modes were computed us-
ing numerically and are summarized in Tab. 2.

6 Fundamental natural frequency for delta
wing

The calculation of the fundamental frequency of
bending oscillations is less simple for a non-
rectangular wing because it involves the four
non-elementary functions (21a), of which only
two are needed in the case (29) of a delta wing.

The first fundamental G1(z) in (21a) corre-
sponds to the index m = 1. For the coefficients of
even order (20a), this corresponds to σ1 = 1, thus
the recurrence formula (18) yields

σ1 = 1 : an(1) =−
Ω2an−2(1)

n(n+1)(n+2)(n+3)
. (40a)

This determines the coefficients of even order
starting with a0(1) = 1:

a2n(1) =
(−1)nΩ2n

2n(2n+1)(2n+2)(2n+3).(2n−2)(2n−1)(2n)(2n+1)...

=
2.3.(−1)nΩ2n

(2n)!!(2n+1)!!(2n+2)!!(2n+3)!!
, (40b)

where the double factorial notation has been in-
troduced: n!! = n(n− 2)(n− 4).... The coeffi-

cients of even order (40b) lead to the solution

G1(z) =
∞

∑
n=0

a2n(1)z2n+1

= a0(1)z+a2(1)z3 +a4(1)z5 + ...

= z− Ω2z3

120
+

Ω4z5

100800
+O(Ω6z7) , (41)

whose first three terms have been written explic-
itly. For the coefficients of odd order (20b), sub-
stituting the first index σ1 = 0 in the recurrence
formula (18) leads to

σ1 = 0 : an(0) =−
Ω2an−2(0)

(n−1)n(n+1)(n+2)
. (42a)

This determines the coefficients of odd order
starting with a1(0) = 1:

a2n+1(0) =
(−1)nΩ2n

(2n)(2n+1)(2n+2)(2n+3).(2n−2)(2n−1)(2n)(2n+1)...

=
2.3.(−1)nΩ2n

(2n)!!(2n+1)!!(2n+2)!!(2n+3)!!
, (42b)

The coefficients of odd order (42b) lead to the
solution

G1(z) =
∞

∑
n=0

a2n+1(0)z2n+1

= a1(0)z+a3(0)z3 +a5(0)z5 + ...

= z− Ω2z3

120
+

Ω4z5

100800
+O(Ω6z7) , (43)

which reverts to the same solution as (41), since
the indexes σ1 in (20a) and (20b) differ by unity
and the recurrence formula just replaces 2n by
2n+1.

The second fundamental G2(z) in (21a) cor-
responds to the index m = 2. For the coefficients
of even order (20a), this corresponds to σ2 = 0,
thus the recurrence formula (18) yields

σ2 = 0 : an(0) =−
Ω2an−2(0)

(n−1)n(n+1)(n+2)
. (44a)

This determines the coefficients of even order
starting with a0(0) = 1:

a2n(0) =
(−1)nΩ2n

(2n−1)2n(2n+1)(2n+2).(2n−3)(2n−2)(2n−1)2n...

=
2(−1)nΩ2n

(2n−1)!!(2n)!!(2n+1)!!(2n+2)!!
. (44b)
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The coefficients of even order (44b) lead to the
solution

G2(z) =
∞

∑
n=0

a2n(0)z2n

= a0(0)+a2(0)z2 +a4(0)z4 + ...

= 1− Ω2z2

24
+

Ω4z4

8640
+O(Ω6z6) , (45)

whose first three terms have been written ex-
plicitly. For the coefficients of odd order (20b),
the substitution of the second index σ2 = −1 in
the recurrence formula (18) and the expansion of
the particular solution lead to a solution similar
to (45) using the second root in (20b), for the
same reasons explained for the first fundamental.

The study of even (20a) and odd (20b) modes
is similar, and the former are considered next. For
a delta wing (29), the functions (41) and (45) are
needed, together with their derivative. Differen-
tiating (41) with respect to z and substituting the
coefficients using (40b) results in

G′1(z) =
∞

∑
n=0

(2n+1)a2n(1)z2n

= a0(1)+3a2(1)z2 +5a4(1)z4 + ...

= 1− Ω2z2

40
+

Ω4z4

20160
+O(Ω6z6) , (46a)

and similarly, differentiating (45) with respect
to z and substituting the coefficients using (44b)
yields

G′2(z) =
∞

∑
n=0

(2n)a2n(0)z2n−1

= 2a2(0)z+4a4(0)z3 + ...

=
Ω2z
12

+
Ω4z3

2160
+O(Ω6z5) . (46b)

The condition (29) that specifies the natural fre-
quencies of the delta wing can then be used.

The simplification of condition (29) for even
modes is detailed in Appendix A and its numer-
ical evaluation is included in Appendix B. The
higher order approximations are calculated in Ta-
ble 3 and lead to the fundamental frequency for
the delta wing:

0≤ λ≤ 1 : 3.51602 = Ω̄1

= Ω1(1)≤Ω1(λ)≤Ω1(0) = 19.91343 , (47)

which is higher than for the rectangular wing, be-
cause the delta wing is stiffer, i.e., it has a larger
fraction of the mass near the root. The result (47)
can be converted from dimensionless Ω to dimen-
sional ω frequency using (15) and (34b):

λ = 1 : ω̄1 =
Ω̄1 ē
L2

√
E
12

=
3.51602×0.1

62

√
70×109

12
= 745.9rad/s ,

(48a)

λ = 0 : ω1 =
Ω1(0) ē

L2

√
E
3

=
19.91343×0.1

62

√
70×109

3
= 8449.5rad/s ,

(48b)

0 < λ < 1 : ω1 =
Ω1(λ) ē

L2

√
E
3
(λ−1)2

λ+1
, (48c)

where the values (48a) and (48b) were calculated
for an aluminum wing E = 70 GPa, with semi-
span L = 6 m and mean thickness ē = 0.1 m. The
fundamental frequency varies most between the
delta and rectangular wing,

Ω1

Ω̄1
=

Ω1(0)
Ω1(1)

= 5.66 , (49a)

ω1

ω̄1
= 2

Ω1

Ω̄1
= 11.32 , (49b)

and for a swept wing with intermediate taper ra-
tio,

λ = 1/2 : ω =
Ω ē
L2

√
E

108
, (50)

lies in the range (50).

7 Discussion and conclusions

The natural bending frequency of a sweptback
wing was derived using the governing differ-
ential equation for the unsteady deflection of a
beam. The frequencies were obtained by casting
the problem in the form of an eigenvalue prob-
lem, which translated into a root finding problem,
H(Ω,λ) = 0, once the proper expressions were
derived for the sweptback wing.

As expected, for wings with the same span
and mean chord (and thus area) and material, the
fundamental natural bending frequency is higher

8
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for a delta planform, when compared to a rectan-
gular planform, by a factor of 11.32. A tapered
planform exhibits a frequency that lies within
these two cases.

The results shown were restricted to wings
with straight leading- and trailing-edges but a
generalization is possible at the expense of a
more complex derivation.
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A Calculation of eigenvalues for the delta
wing

This appendix presents a method of calculating not
only the fundamental but also the higher-order modes
of a delta wing, by finding the roots of (29), where the
factors are given by (41), (45), (46a) and (46b),[

∞

∑
n=0

a2n(1)

][
∞

∑
m=0

(2m)a2m(0)

]

=

[
∞

∑
n=0

a2n(0)

][
∞

∑
m=0

(2m+1)a2m(1)

]
, (51)

where a0(0) = 1 = a0(1). Since the series are uni-
formly convergent, the rule of multiplication [15, 19],(

∞

∑
n=0

bn

)(
∞

∑
m=0

cm

)
=

∞

∑
n=0

n

∑
m=0

bmcn−m , (52)

applies to both sides of (51) resulting
∞

∑
n=0

n

∑
m=0

[
a2m(1)(2n−2m)a2n−2m(0)

−a2m(0)(2n−2m+1)a2n−2m(1)
]
= 0 . (53)

Substituting (40b) and (44b) in (53) yields a series of
powers of Ω2,

P∞(Ω
2)≡ 2.2.3.

∞

∑
n=0

(−1)ndnΩ
2n = 0 , (54)

with coefficients

dn ≡
n

∑
m=0

{
1

(2m)!!(2m+1)!!(2m+2)!!

1
(2n−2m)!!(2n−2m+1)!!(2n−2m+2)!![

2n−2m
(2m+3)!!(2n−2m−1)!!

− 2n−2m+1
(2m−1)!!(2n−2m+3)!!

]}
, (55)

whose roots ±Ωn are the natural frequencies.
The successive approximations to the eigenvalues

can be obtained by considering the series (54) trun-
cated after N +1 terms, which is a polynomial of de-
gree N in Ω2:

PN(Ω
2)≡ 2.2.3.

N

∑
n=0

(−1)ndnΩ
2n

= dNΠ
N
m=1

[
Ω

2− (Ω
(N)
m )2

]
= 0 , (56)

whose roots ±Ω
(N)
1 , ...,±Ω

(N)
N are approximations to

the first 2N eigenvalues. By increasing the degree
of the polynomial, N = 1,2, ..., more eigenvalues are
found, and better approximations are obtained, e.g.,
the successive approximations to the fundamental fre-
quency are Ω

(1)
1 ,Ω

(2)
1 ,Ω

(3)
1 , ..., which tend to the exact

value:
Ω1 ≡ lim

N→∞
Ω

(N)
1 . (57)

This process of successive approximations is illus-
trated in Tab. 3, for the fundamental frequency and
next five harmonics. For a given N, the estimate is
more accurate for the fundamental frequency Ω

(N)
1

than for the higher harmonics.

B Calculation of natural frequencies

α1 ≡
√

Ω̄1 f (α) = sechα+ cosα

2 −1.5×10−1

1.8 +9.5×10−2

1.9 −3.1×10−2

1.87 +6.3×10−3

1.88 −6.1×10−3

1.875 +1.3×10−4

1.8751 +5.0×10−6

1.87511 −7.4×10−6

1.875105 −1.2×10−6

1.875104 +8.5×10−8

α1 = 1.875104, Ω̄1 = 3.51602

Table 1 Calculation of the fundamental dimen-
sionless frequency Ω̄1 of a rectangular wing.

α1 α2 α3 α4 α5 α6
1.87510 4.69409 7.85476 10.99554 14.13717 17.27876

Ω̄1 Ω̄2 Ω̄3 Ω̄4 Ω̄5 Ω̄6
3.51602 22.03449 61.69721 120.90192 199.85953 298.55553

Table 2 Fundamental dimensionless frequency
and higher harmonics Ω̄n of a rectangular wing,
where Ω̄n = α2

n : f (αn) = 0.

N ±Ω
(N)
1 ±Ω

(N)
2 ±Ω

(N)
3 ±Ω

(N)
4 ±Ω

(N)
5 ±Ω

(N)
6

1 4.47214 - - - - -
2 - - - - - -
3 13.06453 - - - - -
4 - - - - - -
5 18.43387 - - - - -
6 20.34592 23.35716 - - - -
7 19.89385 27.35107 32.73381 - - -
8 19.91421 26.40442 - - - -
9 19.91341 26.45232 43.54070 - - -

10 19.91343 26.45003 - - - -
11 19.91343 26.45011 47.27125 56.12092 61.31242 -

...
20 19.91343 26.45011 47.40761 54.01666 83.06464 92.04460

...
100 19.91343 26.45011 47.40761 54.01666 83.06464 92.04460

Table 3 Calculation of the fundamental dimen-
sionless frequency and higher harmonics Ωn of
a delta wing, to successively higher orders in
Ω(2N).
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