A HIGHLY EXPANDABLE LOW-COST OPEN-SOURCE UAV
SYSTEM WITH HIGH ON-BOARD PROCESSING POWER

Marcin Kmiecik* , Krzysztof Sibilski* , Wieslaw Wroblewski*
*Wroclaw University of Technology, Poland
marcin.kmiecik @pwr.wroc.pl; krzysztof.sibilski @ pwr.wroc.pl; wieslaw.wroblewski @ pwr.wroc.pl

Keywords: UAYV, autopilot, open-source, ROS, SLAM

Abstract

The paper presents a novel open-source UAV au-
topilot architecture, currently supporting multi-
rotor Vertical Take-Off and Landing (VTOL)
type aircrafts. It is mainly aimed at research
purposes. It utilizes an ArduPilot Mega (APM)
[1] autopilot hardware, a PM-PV-D5251 Single
Board Computer (SBC) [2] for high on-board
processing power and Robot Operating System
(ROS) [3] software for the ease of development
and code reusability. The system’s capabili-
ties have been presented by performing an in-
door scene mapping by means of an open-source
SLAM algorithm’s implementation.

1 Introduction

Over the past 10 years, the Unmanned Aerial
Vehicle (UAV) market has grown rapidly and it
is expected that this market expansion will con-
tinue for the foreseeable future. While much of
this growth is attributed to defense applications,
there are an increasing number of applications for
UAVs in the commercial and university research
sector. This is particularly so for smaller sized
UAVs categorized as Miniature UAVs. While the
quadrotors’ popularity has only increased in re-
cent years, there are many existing designs avail-
able. These designs can be broken down into
two main categories: toys and professional com-
mercial products. While the first are not suitable
for research because of eg. very low payload,
short flight time or non-modular hardware and/or

software design, the latter’s main disadvantage is
very high cost. Platforms available currently for
academic research known to the authors in terms
of costs also fall into the last category. Prices
ranging from 10000USD still make it beyond the
reach of most research units in developing coun-
tries not sponsored by defense agencies or gov-
ernments. In our work we have focused to fill
this gap and provide a below 1000USD solution
with good performance and flight time for rapid
development.

Our design originates from legacy Ar-
duCopter code. It has completely rewritten using
only the driver (low-level) portion of the afore-
mentioned project (as a reference driver imple-
mentation). It is a layered, object-oriented archi-
tecture currently intended for multirotor VTOL
UAV’s. It provides a set of application pro-
gramming interfaces (APIs) together forming the
main layers, that UAV designers usually have to
implement, allowing developers mostly to con-
centrate on functionality. Furthermore, it pro-
vides a Hardware Abstraction Layer (HAL), for
easy on-board device changeability and integra-
tion of new drivers. The main benefit of the
project is the already mentioned ROS compatibil-
ity. ROS provides libraries and tools to help soft-
ware developers create robot applications. It’s
fully supported on Linux, but other experimen-
tal versions for different operating systems are
also available, including Windows and OS X.
ROS is licensed under an open source, BSD li-
cense. It provides hardware abstraction, device
drivers, libraries, visualization tools, message-



MARCIN KMIECIK, KRZYSZTOF SIBILSKI & WIESLAW WROBLEWSKI

passing, package management, and more.

Fig. 1 Quadrotor platform created and used in
the lab

Fig. 2 Quadrotor platform test-bench for stabi-
lization strategies testing. 1) LiPo battery, 2) PM-
PV-D5251 SBC, 3) ArduPilot Mega, 4) Hokuyo
URG-04LX-UGO1 Laser Scanner

A complete, ready to fly platform weights
slightly above 1kg with a 3300mAh LiPo battery
included, providing 600g of extra thrust for ad-
ditional payload. The quadrotor is capable of 15
minutes hover without additional payload. In our
four-rotor configuration, its diameter measures
70cm and it is 30cm high.

2 Hardware Description

The project is based on ArduPilot Mega (APM)
autopilot created by the DIY Drones Internet
community. APM hosts an Atmega2560 Atmel
AVR processor running at 16MHz with 256k of
flash memory. APM is used to interface In-
ertial Measurement Unit (IMU) and other on-
board sensors, perform attitude estimation and
drive up to eight motors. An onboard PM-PV-
D5251 computer featuring a dual core Intel Atom
1,8GHz processor, 2GB RAM and four USB 2.0
ports (see [2] for further details) provides addi-
tional computational power for high-level tasks.
Both computers interchange data over an RS232
to USB FTDI chip. Connectivity with a ground
station is ensured via IEEE 802.11b/g USB wire-
less network card added on-board (but any other
radio module exploiting available hardware inter-
faces can be used). See Fig. 3 for a block dia-
gram.

=

UAV IEEE 802.11b/g|
[ USB | [ _USB | [ USB |
PM-PV-D5251
(Intel Atom D525, 2x1,8GHz, 2GB RAM)

USB
UART/FTDI
APM
(Atmel Atmega 2560, 16MHz)
[ GPIO/SPI |
GPIO/SPI
IMU

Fig. 3 Hardware architecture



A HIGHLY EXPANDABLE LOW-COST OPEN-SOURCE UAV SYSTEM

3 Software Architecture

The system’s software architecture has been de-
signed with the below priorities in mind:

e ROS compatibility, hence the choice of
C++ programming language.

e modularity at a degree allowing for sys-
tem’s components to be easily maintained
or replaced, without the risk of causing
neighbouring modules’ failures or uncon-
sciously altering their behaviour — this
directly led to utilizing a strictly object-
oriented design.

e least possible dependency of microproces-
sor’s specific libraries, hence effort has
been made to move all hardware depen-
dent code to a Hardware Abstraction Layer
(HAL).

All the above requirements led to a design shown
on Fig. 4. All components pictured will be de-

High-Level Software Architecture

Translates native APM messages
ROS Packages

to ROS messages and generates
/ coordinate-frame transforms (TFs)
Serializes messages and transfers
HCELIEE them between embedded
/ platform and the onboard SBC

1 ros_serial |

Onboard Computer
(PM-PV-D5251)

Remote Controller

Run synchronously at a
State Estimation programmable frequency.
Control objects can be
™ switched during flight
allowing for dynamic flight
mode changes.

Attitude Control Altitude Control )
Motor Control

Embedded Hardware (APM)

!

5 Provi APIs of
Hardware Abstraction Layer || Provides APIs of anboard

hardware devices

Fig. 4 High-Level Architectural Design

scribed in more detail in later sections.

The core, i.e. embedded part of the
system, runs in a synchronous fashion, with
the only exception of microprocessor inter-
rupts for the sake of I/O operations and time-
based work-scheduling. = Each of the con-
trol classes must implement an IController

interface, a specialization of which is avail-
able for each kind of controller.  This al-
lows for in-flight controller replacement in turn
making dynamic flight-mode changes possible
(e.g. NullAltitudeController can be
replaced by SonarAltitudeController
allowing for turning altitude-hold on basing on
user’s input). An exemplary controller hierarchy
is shown on Fig. 5.

«interface»
IController

+IController()

JAN

«interface»
lAltitudeController

NullAltitudeController SonarAltitudeController

Fig. 5 Controller class hierarchy

3.1 Remote Controller

The RemoteController class is responsi-
ble for timely reading user’s input (in a man-
ual UAV operation mode). It then stores cur-
rent readings in a structure passed further to other
components, which makes them independent of
RemoteController’s implementation. As
the spoken module has access to ROS data, it can
easily be reimplemented to either work basing on
ROS-provided manual input, hence eliminating
the need to use expensive RC-equipment, or to
fully automate UAV’s operation.

3.2 State Observer

A separate class-hierarchy is provided for state
estimation. The reference implementation uses a
complementary filter as described in [4]. Itis a
robust and fast attitude estimation algorithm well



MARCIN KMIECIK, KRZYSZTOF SIBILSKI & WIESLAW WROBLEWSKI

suited for the low-power ATmegal280 micropro-
cessor board available onboard. Yaw drift can-
cellation is made possible with a Hokuyo URG
04LX laser scanner measurement provided via
ROS drivers. The complementary filter has been
directly defined on a SO(3) rotation matrix, i.e.
the structure of the filter used and its error for-
mulation build on R defined in SO(3).

3.3 Attitude Control

Attitude controller constantly updates percentual
thrust corrections to be sent to motor controller.
For that sake it reads StateObserver’s esti-
mated attitude and attitude-rates and provides in-
put for MotorController. It’s programmed
using PD control assuming decoupled horizon-
tal X-Y dynamics, with an inner loop for pitch-
/ yaw-rate damping, as suggested in [5].

RCinput
\ > i» » Kp | >< > » » MotorController
1 1
estimated Kd
Euler angles
‘ filtered gyroscope
StateObserver readings

Fig. 6 Horizontal PD-controller’s structure

3.4 Altitude Control

The AltitudeController component im-
plements a PID-loop for SONAR-based altitude
control, linearized around hover-thrust (recog-
nized as the moment altitude control mode has
been turned on). When activated, it provides ini-
tial thrust for MotorController.

3.5 Motor Control

The task of motor controller component is to
send motor commands according to desired to-
tal thrust and percentual thrust corrections for an-
gular orientation provided by attitude controller.
The IMotorController class’es APl is in-
dependent of the amount of propellers, hence

providing an abstract interface for all kinds of
VTOL aircrafts propeller systems. A reference
implementation is provided for a quadrotor air-
craft.

3.6 Hardware Abstraction Layer

HAL’s function is to hide possible differences of
various hardware specifics. In case the system
ought to be ported to another hardware platform,
most of the higher-level code wouldn’t have to
be altered (it is very hard to assure no changes
would have to be made in case of a shift from
an AVR uc to e.g. ARM architecture). It com-
prises of a set of pure virtual classes (interfaces),
hence enforcing functionality each type of hard-
ware component has to provide, see Fig. 7 for
an example. Access to all drivers is made possi-

ISonar

+sample() APMSonar

+filter() Q—
+getLastTimeSampled() : unsigned long
+getlLastTimeFiltered() : unsigned long
+getDistanceFiltered() : float
+getDistanceRaw() : float

Fig. 7 Application Programming Interface of a
SONAR sensor

ble via an abstract factory, one of which have to
be implemented for each hardware platform — a
factory implementation returns proper ISonar
(singleton) object for the current platform, an
APMSonar in our case.

3.7 ROS Compatibility and Logging

For the sake of data interchange between ROS
system and the autopilot, a serialization mecha-
nism had to be provided. A decision was made
to utilize ROS Serial package [6], which is a
point-to-point version of ROS communications
over serial, primarily for integrating low-cost mi-
crocontrollers (Arduino) into ROS. ROS serial
consists of a general p2p protocol, libraries for
use with Arduino, and nodes for the PC/Tablet
side (currently in both Python and Java). An ad-
ditionally provided ros_proc package gener-



A HIGHLY EXPANDABLE LOW-COST OPEN-SOURCE UAV SYSTEM

ates coordinate-frame transforms and publishes
them as ROS TFs. This enables for full two-
way communication, data-logging and presenta-
tion using ROS-provided means.

The autopilot gives broad logging pos-
sibilities. Each component (specifically
IController) can be configured or re-
programmed, to log data as ROS-topic at a
desired frequency. These informations can be
stored using rosbag, a ROS program designed
for data recording and playback.  Another
application, rxbag, can be used for data visu-
alization and generating charts (see section 4
for an example). Finally, thanks to a simple, yet
effective mechanism for launching distributed
systems over SSH called roslaunch, it is
possible to run the whole solution with just one
terminal-command.

4 Example of Use

We’ve chosen to present capabilities of our
plaftorm by implementing a process called Si-
multaneous Localisation and Mapping (SLAM).
It enables autonomous mobile robots to localize
in previously unexplored environments and in-
crementally construct a map of its surroundings.
Only open-source, freely available ROS pack-
ages have been used.

For indoor odometry, a laser scan-matcher [7]
package has been used. It is an incremental laser
scan registration tool allowing for scan matching
between consecutive laser scanner messages, and
publishing the estimated position of the sensor.
The algorithm was fed with additional roll-pitch
data from the autopilot’s IMU to provide alpha-
beta filtering [8] and serves as an odometry esti-
mator. It utilizes Andrea Censi’s Canonical Scan
Matcher [9] implementation.

We have used GMapping [10, 11, 12] as
a SLAM solution. GMapping is a highly ef-
ficient Rao-Blackwellized particle filer to learn
grid maps from laser range data for which a ROS
wrapper is available.

Lastly, hector_map_server
and hector_geotiff packages of
hector_slam [13] ROS-stack have been

used for travelled path and obtained map
visualization.

It has been chosen to log data from
StateObserver component and GMapping
package. Some possible charts are shown on Fig.
8,9, 10 and 11 below.

5 Summary

Integrating an Open-Source autopilot with ROS
thus makes it possible to reuse cutting edge al-
gorithms developed by the community for UAV
control and navigation, data logging, online au-
topilot status monitoring, multi-agent coopera-
tion, etc. Its very low price makes is available
for small research institutes, or even hobbyists.

All hardware (rotors, frame, propellers) can
be picked arbitrarily, depending on design re-
quirements. The hardware-design freedom fur-
ther decreases maintenance costs, as crashes are
an unevitable cost-factor in the process of new
UAV algorithms development, and it’s usually
best to pick building parts easiest available on the
local market for fast replacement.

During design, another high-power ARM-
based SBC (BeagleBoard-xM) have also been
tested. We have succeeded to compile and install
ROS and integrate it with the autopilot. Though it
has shown to have too little computational power
for running SLAM algorithms, which led to PM-
PV-D5251, it still may provide enough for many
users and hence should be considered if lower
cost is a priority.

A noticeable drawback of current autopilot
board (APM) is the lack of native USB support
of ATmega2560 which limits APM to ROS com-
munication bandwith — which we hope will be
solved with future APM releases.

The project source-code and doc-
umentation can be found under
http://code.google.com/p/4clover/.

References

[1] Anderson, Chris et al.,, ArduPilot Mega.
http://code.google.com/p/ardupilot-mega/.




MARCIN KMIECIK, KRZYSZTOF SIBILSKI & WIESLAW WROBLEWSKI

= rollPitchYaw.x

| = rollPitchYaw.y

27y .
AN J.J"
odei LUVPRE o S S S LR
q"ﬁi I F,M-u\_f oS Fig. 11 SLAM algorithm outcome
-2+ t fw’""’w v
16 18 30 22 24 26 28
[2] iEi Technology Corp, PM-PV-D5251-R10 Tech-
Fig. 8 Estimated roll and pitch angles (in degrees) nical note. http://www.ieiworld.com/.
[3] Quigley, Morgan et al., ROS: An Open-Source
= rollPitchYaw.z Robot Operating System, ICRA Workshop on

1004 Open Source Software, 2009.

[4] Mahony, Robert et al., Nonlinear complemen-
tary filters on the special orthogonal group,
Automatic Control, IEEE Transactions on,
53(5):1203-1218, June 2008.

[5] Beard, Randal, Quadrotor Dynamics and Con-
trol, Brigham Young University, February 2008.

[6] Stambler, Adam, Ferguson, Michael, ROS Serial
http://www.ros.org/wiki/rosserial.

504

504

-100+4
[7] Dryanovski, Ivan, Morris,
150 William, Laser Scan-Matcher
http://www.ros.org/wiki/laser_scan_matcher.
) ] [8] Alpha-Beta Filter
Fig. 9 Drift corrected yaw angle (in degrees) http://en.wikipedia.org/wiki/Alpha_beta_filter.

[9] Censi, Adrea, An ICP variant using a point-
to-line metric Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), 2008.

[10] GMapping http://openslam.org/gmapping.html.

= gyroVector.z

[11] Grisetti, Giorgio et al., Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle
Filters IEEE Transactions on Robotics, 2006.

= gstGyroBias.z

0.057 Y [12] Grisetti, Giorgio et al., Improving Grid-based
N *1 ; ik SLAM with Rao-Blackwellized Particle Filters
.o_oo—ﬁ;;i;;p-----liﬁ---.;’ias',]"’ib;‘;%;_‘u___ji ________ T T by Adaptive Proposals and Selective Resampling
F ) kﬂ;l 1 | Y‘E‘” A A Proceedings of the IEEE International Confer-
0054 ) . AN S WU SO ence on Robotics and Automation (ICRA), 2005.

[13] Hector SLAM http://www.ros.org/wiki/hector_slam.

Fig. 10 Raw gyroscope yaw-rate reading vs mea-
sured estimation error (in deg / s)



A HIGHLY EXPANDABLE LOW-COST OPEN-SOURCE UAV SYSTEM

Acknowledgement

This work has been supported by a grant sponsored by
Polish National Centre for Research and Development for
years 2010-2013.

Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of
any third party material included in this paper, to publish it
as part of their paper. The authors confirm that they give
permission, or have obtained permission from the
copyright holder of this paper, for the publication and
distribution of this paper as part of the ICAS2012
proceedings or as individual off-prints from the
proceedings.



