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Abstract  

Kriging-based optimization methods are of 
great interest for aerodynamic design 
optimization where high-fidelity thus time-
consuming computational fluid dynamics (CFD) 
are used. In the framework of kriging-based 
optimization, a core technique called sampling 
infill criteria (also called adaptive sampling) is 
used both to search the design space and to 
refine the surrogate models. Among all the infill 
criteria, expected improvement (EI) is the 
favorite one while others are also still in use. 
However, there is little research compared these 
criteria when kriging-based optimization 
method is applied in the aerodynamic design 
optimization. The following paper addresses 
this issue by investigating 6 types of infill 
criteria in the drag minimization problem of the 
RAE2822 airfoil with different number of design 
variables. For each infill criterion and each 
number of design variables, the optimization 
process is repeated 30 times, and the averaged 
value and standard deviation are compared. 
The results show that, some criteria can be 
comparable to EI or even slight better than EI, 
while some criteria are much worse. 

1   Introduction 

While the performance of computing is growing 
rapidly in the modern world, the demand for 
more accurate computer simulation towards 
aircraft design is also growing. Hence, it is still 
rarely feasible to search a design space directly 
using expensive computer codes such as high 
fidelity CFD or CSD codes. The use of 

surrogate models, then, is of great interest and 
playing an increasingly important role in the 
aerodynamic and multidisciplinary design 
optimization. Among many of the surrogate 
models, kriging is the most popular one due to 
its ability to effectively capture the complicated 
responses and providing an error estimation of 
the prediction.  

 In the process of the kriging-based 
optimization, the global optimum can’t be found 
if we only utilize the kriging models built from 
initially sampled data, since the models are not 
accurate globally. Hence, new sample points in 
the promising regions should be added, then the 
kriging models can be refined; this process is 
repeated until the global optimum is found or 
some stop criteria are met. This process is so-
called iterative sampling refinement (or adaptive 
sampling) and the criteria to sample the 
promising regions are so-called infill sampling 
criteria (ISC). Since the iterative strategy 
represents the one of the key technique of the 
surrogate-based optimization, the choice of ISC 
is then of great importance. In the efficient 
global optimization (EGO) method [1], the 
expected improvement (EI) infill criterion is 
introduced and gained extensive attention in the 
application of the aerodynamic design 
optimization [2][3]. However, other infill 
criteria are also available and demonstrated to 
be effective too. For example, J. Laurenceau [4] 
used the lower confidence bounding (LCB) in 
the optimization design of airfoil and wing; F. A. 
C. Viana [5] used the probability of 
improvement (PI) to update the kriging model; 
W. P. Song [6] minimize the surrogate model 
and maximize the EI simultaneously to update 
the kriging model in the airfoil design 
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optimization. In spite of this, little research 
compared these infill criteria when the kriging-
based optimization method is applied in the 
aerodynamic optimization. This paper aims to 
compare 6 typical ISC [7] involving: 
minimizing the predictor (MP), lower 
confidence bounding (LCB), expected 
improvement (EI), probability of improvement 
(PI), maximizing the predicted error (ME), and 
combining EI with MP (EI+MP, two points 
added at a time), when applied to the 
constrained drag minimization of the RAE2822 
airfoil. 

2    Overview of Kriging 

Kriging is a statistical interpolation method 
suggested by Krige [8] in 1951 and 
mathematically formulated by Matheron [9] in 
1963. Kriging was widely used in the context of 
geostatistical problems. In 1989, kriging was 
extended by Sacks et al [10] for the design and 
analysis of deterministic computer experiments. 
Then it was widely used as a surrogate 
modeling technique for predicting the output of 
computer codes in simulation-based analysis 
and optimization [11][12][13]. The ordinary 
kriging is used in this paper. 

• Kriging Predictor and Mean Squared Error 

The kriging treats the output of a 
deterministic computer experiment as a constant 
term plus a stochastic process: 

0( ) ( )Y Zβ= +x x .                    (1) 

The stationary random process ( )Z  has 
mean zero and covariance of  

2[ ( ), ( )] ( , )Cov Z Z Rσ′ ′=x x x x ,          (2) 

where 2σ is the process variance of ( )Z  (it is 
assumed that 2 2( )σ σ≡x for all x , and R is the 
spatial correlation function that only depends on 
the Euclidean distance between two sites x and 

′x . 
We assume that the output of a computer 

code can be approximated by a linear 
combination of the observed data sy , the 

kriging approximation of ( )y x at an untried x  is 
formally defined as  

T
S

1

ˆ( )
sn

i i
i

y w y
=

= =x w y ,               (3) 

where ( )(1) T( ,..., )snw ww = are the weight 
coefficients (called kriging weights). We replace 

( )(1) T
S ( ,..., )sny y=y with the corresponding random 

quantities ( )(1) T
S ( ,..., )snY Y=Y . 

By minimizing the mean squared error 
(MSE) of this predictor, we can obtain the 
following kriging predictor 

T 1
0 s 0

ˆ ˆˆ( ) ( ) ( )y β β−= + −x r x R y 1 ,        (4)                 

where 1  is unit column vector filled with ones 
and 

( ) 1T 1 1
0 Sβ̂

−− −= 1 R 1 1R y ,             (5)                 

and  
( ) ( ) ( )( , ) , ( ) : , ) .i j n n i n

ij i
R R×   ∈ = ∈   R := x x r x (x x  (6) 

The MSE of the kriging prediction at any 
untried x  can be proven to be 

2 T 1 1 2 Tˆ ˆ[ ( )] [1 (1 ) / ]MSE y σ − −= − + −x r R r 1R r 1 R1   (7) 

where  

2 T 1
s 0 s 0

s

1 ˆ ˆˆ ( ) ( ).
n

σ β β−= − −y 1 R y 1               (8) 

• Correlation Models 
The construction of the correlation matrix 

R and the correlation vector r requires the 
calculation of the correlation functions. The 
correlation function for random variables at two 
sites ( ) ( ),i jx x  is assumed to be only dependent on 
the spatial distance. Here we focus on a family 
of correlation models that are of the form 

( ) ( ) ( ) ( )

1

( , ) ( , )
vn

i j i j
k k k k

k

R R θ
=

= −∏x x x x .     (9) 

The correlation function used here is the 
cubic spline: 

2 3

3

1 15 30        for  0 0.2

1.25(1 )            for 0.2< <1 ,  

0                            for   1

k k k

k k k

k

R

ξ ξ ξ
ξ ξ

ξ

 − + ≤ ≤


= −
 ≥

(10) 

where  
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( ) ( ) .i j
k k k kξ θ= −x x                        (11) 

• Kriging Fit 

Hyper parameters of kriging, 1( ,..., )
vnθ θ=θ , 

can be tuned by solving maximum likelihood 
estimation (MLE) problem: 

21
ˆMLE max ln( ) ln

2 sn σ  − +   θ
R= arg  . (12) 

In this paper, the quasi-Newton method is used. 

3   Infill Sampling Criteria 

There are several kinds of infill criteria for 
kriging-based optimization [7]. The 6 kind of 
common used infill criteria and corresponding 
constraint handling methods in this paper are 
described in the following, also see [13] for 
some description. 

3.1   Maximizing the Constrained Expected 
Improvement (EI) 

Expected improvement is defined as the 
improvement we expect to achieve at an untried 
site x . Assume the random variable

2ˆ[ ( ), ( )]Y N y sx x , where ŷ  is the kriging 

predictor defined in Eq.(4)， 2s  is mean squared 
error defined in Eq.(7). Let miny is the current 

best objective function value; the improvement 
is min ( ) 0I y Y= − >x . The expected improvement 
is given by 

min
min

min

ˆ( )
ˆ( ( ))  

( )

[ ( )] ˆ( )
+ s        if   s>0

( )

0                                    if   s=0

y y
y y

s

E I y y

s
φ

  −
− Φ  

 =   −
×  

 


x
x

x

x x

x

    , (13) 

where ( )Φ   and ( )φ   are the cumulative 
distribution function and probability density 
function of standard normal distribution, 
respectively.  

Assume we have a constraint min( )g g>x , and 
we also constructed a kriging model for 

( )g x .Following the same logic of the expected 
improvement, we assume the random variable 

2ˆ[ ( ), ( )]G N g sx x .Then, the probability that the 

constraint is fulfilled is as following: 

[ ] min
min

ˆ ( )

( )

g g
P G g

s

 −
> = Φ  

 

x

x
,         (14) 

where s  is the root mean square error of the 
kriging model of the constraint. Then, the 
constrained expected improvement is: 

[ ] [ ]min min[ ( )] ( ) [ ( )]cE I E I x G g E I P G g= ∩ > = >x x  .   

(15) 

For multiple constraints, the constrained 
expected improvement is obtained by 
multiplying each probability that the constraints 
fulfilled. 

3.2    Minimizing the Predicted Objective 
Function (MP) 

This criterion assumes that the surrogate 
model is globally accurate and we only need to 
validate the optimum of the surrogate. The 
optimum point on the surrogate is found and 
observed to refine the kriging model. 

( )
( )

ˆ:    

ˆ. .               g 0,      1, ,i G

Minimize y

s t i N> =

x

x 
 ,      (16) 

where GN  is the number of the constraints. The 
constraints are handled by the optimization 
algorithm itself, here, the genetic algorithm [11] 
is used.  

3.3   Minimizing the Lower Confidence 
Bounding (LCB) 

The lower confidence bounding is defined 
as following: 

( ) ( ) ( )ˆ ˆLCB y A s= − ×x x x    ,          (17) 

where A  is a parameter defined by the user, and 
in this paper, we use 4. In each iteration, we fit 
the kriging models, and find the lower 
confidence bounding with constraints:

( ) ( ) ( ) ( )
1

ˆ ˆ:  LCB GN

c i ii
Minimize y A s gω

=
= − × +x x x x ,  

    (18) 
where  denotes the absolute value of the 
operand if the operand is negative, and returns a 
value zero otherwise, iω is the weight coefficient. 
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3.4   Maximizing the Probability of 
Improvement (PI) 

The probability of improvement is as 
following: 

( ) ( )
( )

min ˆy y
P I

s

 −
= Φ      

 

x
x

x
    .            (19) 

The constraint handed with the same method in 
the EI criterion, that is, the following 
optimization problem is executed: 

( )
( )

min
,min1

ˆ
:   GN

i i ii

y y
maxmize P G g

s =

 −
 Φ × >    

 
∏x

x
(20) 

3.5   Maximizing the Mean Squared Error 
(ME) 

As we know, the accuracy of kriging 
model affects the search of the design space. 
Since kriging model provides a mean squared 
error, the global accuracy of the model can be 
improved by infilling the point whose mean 
squared error is the maximum in the design 
space. For constraint handling, the method 
introduced in EI criterion is also used here, that 
is 

2
,min1

:    GN

i i ii
maximize s P G g

=
 × > ∏  .         (21) 

3.6   Minimizing the Predicted Objective 
Function (MP) and Maximizing the 
Constrained Expected Improvement (EI) 

This criterion use EI and MP 
simultaneously, that is 2 points are founded and 
added at each iteration cycle. 

4 Framework of the Kriging-Based 
Optimization Method 

In this research, a kriging-based 
optimization system is used [15]. First, several 
initial sample points are generated in the design 
space using design of experiments (DoE). Here, 
we use the Latin hypercube sampling (LHS) 
[16]; then the samples are observed with parallel 
computing to save total wall clock time; after 
that, the kriging models are constructed both for 
the objective function and the constraints, then 

the kriging models are refined repetitively by 
infilling new points obtained with GA under 
specified infill criteria; this iteration terminates 
until some stop criteria meet, for instance, the 
function evaluation budgets exceeds some 
specified value. The framework of the 
optimization is shown in Fig. 1. 

 
Fig. 1.  Framework of the kriging-based optimization 

method 

5   Results 

5.1   Validation of Methodology 

In general optimization problems, there 
exist some constraints. To validate the 6 infill 
criteria and their capability of constraint 
handling, here we introduce the modified Branin 
function [17]: 

Construct Kriging Models 

Choose Infill Criteria 

Solver Solver …… 

Updating the 
Sampled Data 

No 

Use GA to Find 
New Points 

LCB 

Start

DoE

Stop? 

Stop 

Yes 

Solver Solver …… 

PI MP EI ME
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2 2
2 1 12

1 1 1 2

1 2

5.1 5
( ) (15 (15 5) (15 5) 6)

4
1

10 ((1 ) cos(15 5) 1) 5   ,   , [0,1].
8

. .      ( ) 0.2.

f x x x

x x x x

s t g x x

ππ

π

= − × − + × − −

+ × − × − + + =

= >

x

x

(22) 
The global optimum and its function value is 

* * * *
1 2 1 2( , ) (0.96773,0.20667), ( , ) 5.5757x x f x x= = . Fig. 2 

shows the contour of this function; note that, 
above the red line is the feasible region. 

 
Fig. 2. Contour of the modified Branin function 

In each optimization process, 4 initial 
sample points are generated using LHS, and a 
total of 50 function evaluation budges are used. 
For each infill criterion, the entire optimization 
process is repeated 30 times using LHS from 
different random-number seed to prevents the 
“getting lucky” scenario whereby a point in the 
initial DOE falls on or near the global optimum 
[18]. 

Fig. 3 gives all the 30 convergence 
histories for each infill criteria. This figure 
shows that, for EI, LCB, PI, EI+MP, the global 
optimum is found almost every time. This lies in 
the balance of exploitation (sampling where it is 
minimized) and exploration (sampling where 
the prediction error may be high) for these infill 
criteria. However, for MP, the global optimum 
can’t be found every time, since it is a pure 
exploitation infill criterion, and may be trapped 
in local optimum if the initial DOE is not 
“lucky”. The results are similar to MP for ME, 
since it is pure exploration. 

 
a) Convergence histories for EI infill criterion 

 
b) Convergence histories for MP infill criterion 

 
c) Convergence histories for LCB infill criterion 

 
d) Convergence histories for PI infill criterion 
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e) Convergence histories for ME infill criterion 

 
f) Convergence histories for EI+MP infill criterion 

Fig. 3 Convergence histories of the objective for each 
infill criteria 

5.2   Airfoil Design Optimization 

The airfoil design optimization problem 
investigated in this paper is the drag 
minimization of the RAE2822 airfoil at an angle 
of attack of 2 deg., Mach 0.73, with three 
constraints: the airfoil’s lift coefficient does not 
decrease, the absolute value of moment 
coefficient does not increase, and the maximum 
thickness of the airfoil dose not decreases. The 
mathematic model is as following: 

0

0

0

design point:  Ma=0.73, =2.0

:        

. .                (1) C C

                    (2) C C

                    (3) Thickness Thickness

d

l l

m m

objective minimize C

s t

α °

≥
≤

≥

  .    (23) 

The flow analyses are performed with the 
two dimensional Euler solver on O-typed 
structured mesh, using the cell-centered finite 
volume approach. And the second-order 
Jameson’s central scheme is used as spatial 

scheme. To deform the shape of the airfoil, 
Kulfan’s CST [19] parameterization method is 
used here. 

In each optimization process, 2 times of the 
design variable is taken as the number of initial 
sample points, and 10 times of the design 
variable is taken as the number of CFD 
evaluation budges. For each infill criterion, the 
entire optimization process is repeated 30 times 
using LHS from different random-number seed. 
These optimization processes are carried out for 
7 different design variable (8, 10, 12, 14, 16, 18, 
20) problems, hence results in a total of 1260 
optimization processes. 

The mean objective function value for each 
infill criterion, along with the standard deviation 
of the objective function is plotted in Fig. 4. The 
averaged results for each infill criterion are 
plotted together in Fig. 5 for ease of comparison.  

 First, we see that, the averaged drag 
decreased more than a half for all the ISC 
except ME. Second, the best results are get 
when the number of variables is 10 for all the 
infill criteria except ME, and when the 
dimensionality increases, the results is adversely 
affected. From Fig. 5 we see that, there are only 
slight differences among all the ISC except ME 
and the differences between each other are less 
than 2% of the baseline’s objective function. 
But if we examine more carefully, we will find 
that, MP is slightly better than the others, 
followed by EI+MP and PI, and then EI, LCB. 
This is somewhat different with the results of 
analytical function. Finally, ME performs much 
worse than the others as we expected since it 
just fill the gap between the sampled points.  

Fig. 6 shows the convergence histories for 
all the ISC when the number of design variable 
is 10. We can also see that, for ME, not only the 
averaged objective function is worse, but also 
the standard deviation is larger than the others. 
The averaged objective function, standard 
deviation, and the convergent rate are 
comparable for all the ISC except ME. 

Fig. 7 gives one of the airfoil optimization 
results including the pressure coefficient 
distribution and the geometry. 
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a) EI 

 

b) MP 

 

c) LCB 

 

d) PI 

 

e) ME 

 

f) MP+EI 

Fig. 4. Averaged results and standard deviation of the 
optimization design 
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Fig. 5. Averaged results for the 6 infill criteria 
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f) MP+EI 

Fig. 6. Convergence histories of the objective for each 
infill criterion of the 10 variable optimization 

 
a) Comparison of the pressure coefficient distributions 

 of the optimized and baseline airfoils 

 
b) Comparison of the geometries of optimized and 

baseline airfoils 

Fig. 7. One of the airfoil optimization results 

6   Conclusions and Discussion 

The airfoil shape optimization design is 
introduced to compare the infill sampling 
criteria in the kriging-based optimization 

method. To increase the confidence of the 
statistical analysis, 30 optimizations are carried 
out for the each problem, and the averaged 
value and standard deviation are considered. 
The results show that, for EI, MP, LCB, PI, and 
EI+MP, they all perform well and there are only 
slight differences among them, about less than 2 
percent of the baseline’s objective function. 
Unexpectedly, MP performs best for the above 
5 ISC. And as we expected, ME performs worst. 

We can expect that, different ISC can be 
used simultaneously, that is, several points 
added at a time and running the simulations in 
parallel will be more efficient. 
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