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Abstract

This paper present an automatic design process
where a non-deterministic, global search opti-
mization is utilized to optimize a first stage rotor
of a highly loaded transonic compressor. The first
part is focused on finding the best suited meta-
model that can be used to accelerate the design
process. The second part presents the results of
using the meta model within the design process
for an industry relevant case.

Using the radial basis functions as accelera-
tion technique for the optimization was seen to
be very successful. The meta model assisted op-
timization reduced the total design time from ap-
proximately 2 weeks to 3.5 days given that 8 de-
signs could run in parallel on a cluster. The 3D
optimization produced a pareto front where it was
possible to select blades having either high effi-
ciency or high stability.

1 Introduction

A modern compressor design method applica-
ble for industrial purposes requires a fast and
reliable process. The requirements in terms of
aerodynamics for such a design is very often
high stability along the operating line together
with high efficiency at a certain operating point.
To include both objectives in the design chain
while minimizing the total design time requires
efficient optimization algorithms together with a
well planned design logic. The time and com-
putational cost starts becoming a limitation when

focus is put on the actual blade geometries, that
is, once the preliminary compressor layout has
been set using mean line tools and through flow
methods. To find the optimal blade geometries,
low fidelity CFD methods such as quasi-3D anal-
ysis are typically employed first using bound-
ary conditions based on the through flow calcu-
lations. Once a complete 3D geometry has been
defined, further optimization is normally done
using a detailed 3D CFD flow solver. To save
time and computational resources the largest gain
would be to reduce the amount of 3D CFD anal-
ysis. This can be done if a good starting point
for the 3D CFD optimization can be reached by
using quasi-3D analysis in an efficient way. To
reduce the optimization time even further meta
models can be used as a replacement for the CFD
analysis.

To solve the optimization problem various
methods can be employed. A rational exploration
of the design space can be utilized as a support
for the designer, which has been shown to be suc-
cessful in both [1] and [2]. A more sophisti-
cated approach is to use an automatic optimiza-
tion process. This can be done by coupling the
geometric tool, the computational grid generator
and the flow solver together with an optimizer.
The optimizers can be divided into deterministic
and non-deterministic methods. The determinis-
tic methods are generally more time efficient but
they are likely to find a local minima. Moreover,
since information about the gradient of the ob-
jective function is required they are sensitive to
noise and discontinuities. When multi-objective
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optimization is solved by these methods the ob-
jectives must be merged into a single objective,
meaning that the trade-off between the objectives
must be determined before solving the optimiza-
tion problem. In spite of the mentioned draw-
backs, deterministic methods have been success-
ful in many cases such as [3] and [4].

The non-deterministic method is based on
random selected function evalutations thereby re-
ducing the risk of reaching a local minima. Also
it does not require the objective functions to be
continous and noise free. The method is also
capable of dealing directly with multi-objective
optimization problems, where the trade-off be-
tween the objectives is available in terms of a
pareto-front once the optimization is converged.
The main drawback is that it requires much more
function evaluations compared to the determin-
istic methods. One solution to this problem is
to replace most of the CFD analysis with a meta
model. Previous work using various meta-model
assisted optimizations have shown to be success-
ful for turbo-machinery flows in [5, 6, 7, 8, 9,
10, 11, 12, 13, 14]. The work in [15] gives
a good overview of using meta-models for tur-
bomachinery design. From this previous work,
meta-models such as Kriging, Radial basis func-
tions (RBF) and Neuron Network (NN) show
great potential in replacing the costly CFD eval-
uations.

This paper presents an automatic design pro-
cess where a non-deterministic, global search op-
timization is utilized to optimize a first stage ro-
tor of a highly loaded transonic compressor. The
first part of this work is focused on finding a
meta-model that can be used to accelerate the
design process. This is done by comparing dif-
ferent meta models on a test case where a pure
CFD based pareto front is available for compari-
son, presented in [16]. The second part consist
of applying the best suited meta model to the re-
design of a transonic rotor.

2 Design process

The automatic design process without the use of
meta models have been described in [16] and can

be seen in Fig. 1(a). To improve its efficiency, a
meta model was built into the process as shown
in Fig. 1(b).

The design process consists of an inner and
outer loop. It starts in the outer loop where a
trainingset is initialized. The geometries are then
generated by using Volbade, an inhouse devel-
oped code at Volvo Aero Corporation (VAC). The
computational grids are then created and the flow
solver Volsol is here used to acquire the exact

(a) Original

(b) Meta model assisted

Fig. 1 Design process
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function values. This is the expensive part in
terms of time and computational resources. Once
the objectives and constraints are known the meta
model is built. The process then moves to the in-
ner loop where the global optimizer searches the
design space for the optimal solutions (the pareto
front). The performance evaluations are, in this
loop, very fast since it only involves function
evaluations on the meta model. The inner loop
is converged once the location and shape of the
pareto front is constant, typically after 20 genera-
tions corresponding to 30 seconds. However, the
underlying data that generated the meta model is
quite sparsely populated throughout the design
space, thus after the first inner loop, the meta
model needs to be validated. This is done by up-
dating the trainingset with the the "virtual" pareto
front from the inner loop. The flow solver is
then used to evaluate the new designs in the train-
ingset and the "real", CFD based, pareto front can
be extracted. The outer loop convergence is de-
termined by the location and shape of the "real"
pareto front.

2.1 Geometric design space

The geometric design space is constructed by us-
ing composite Non-Uniform Rational B-Splines
(NURBS) [17] for each 2D blade section. This
parameterization ensures a smooth blade and can
generate a large number of different shapes with
relatively few design variables, [17] and [18].
The underlying parameterization is defined by
four NURBS curves, i.e., the leading edge, trail-
ing edge, the pressure and suction side. A thick-
ness distribution and a camber line defines the
pressure and suction side curves while the lead-
ing and trailing edges are given by elliptical arcs.
The intersection between the curves are of C1
continuity. The control points are translated as
much as possible to classical compressor parame-
ters described in more detail in [19]. The param-
eters describing the 2D blade section is shown in
Fig. 2 and summarized in Tab. 1. The complete
3D blade is constructed from stacked 2D blades
along a general stacking axis which can allow for
lean and sweep. Limitations of the design vari-

Table 1 Design variables

tle Leading edge thickness
tte Trailing edge thickness
sle Leading edge skewness
ste Trailing edge skewness

tmax,c Maximum thickness over chord ratio
N Number of blades
cax Axial chord
inc Incidence angle
dev Deviation angle
ξ Stagger angle

ables are set so that the aero mechanical integrity
and manufacture aspects are accounted for.

Fig. 2 Blade profile with design variables

2.2 Grid generation

The computational grid is constructed using
G3dmesh, an in-house code at VAC. Using
the NURBS description of the blade profile a
block structured hexa-hedral grid divided into
five blocks is created, see Fig. 3. Around the
blade an O-grid type block is used, connected to
H-type blocks.

2.3 CFD settings

To evaluate the objective functions the solver
Volsol, developed by VAC, is utilized. It is a
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Fig. 3 Computation domain for a 2D blade section

finite volume code using a three-stage Runge-
Kutta time marching method with a third order
accurate upwind-biased scheme for all convec-
tive terms and a second order accurate compact
centered scheme for all diffusive terms. To solve
for the turbulence, the realizable k-ε turbulence
model is used together with wall-functions and
the Kato-Launder limiter. The blade to blade
analysis referred to as the quasi-3D analysis ac-
counts for the stream tube height variation. The
code was recently validated for this type of tran-
sonic flow in [20]. Upstream of the blade row
a plenum is used to represent the incoming flow
from the inlet guide vane. At the inlet of the
plenum, a mixed pressure boundary condition is
used where P0, T0, β, θ , k and ε are specified.
This ensures that the incoming velocity angle
(in the absolute frame of reference) is fixed dur-
ing the optimization. Downstream of the blade
row an outlet plenum is placed where the aver-
aged outlet static pressure is specified using an
absorbing boundary condition. A mixing plane
boundary type is used at the interfaces between
the rotor domain and the plenums. The mixing
plane formulation is based on tangential averag-
ing and flux correction for full conservation of
the fluxes. This boundary condition is an absorb-
ing one which is necessary to avoid reflections
of shocks at the interface. Detailed information
about the mixing plane implementation can be
found in Stridh [21]. Within the optimization
two different rotational speeds are analyzed to

obtain the values of the two objective functions.
For each rotational speed, the compressor per-
formance was obtained by increasing the outlet
static pressure in steps.

2.4 Optimizer

The Non Sorting Genetic Algoritm (NSGA-II) is
used as optimizer which is a genetic algorithm
which models the evolution in nature. The first
generation of designs are initialized using latin
hypercube samples which gives a good spread
in the design variables. The objective functions
for each individual is evaluated by either the flow
solver or the meta model. The evolution algo-
rithm then forms the next generation based on
non-dominated sorting amongst the individuals
in such a way that the diversity among the pop-
ulation is maintained. The non-dominated indi-
viduals form the pareto front and the evolution
is manually stopped once the pareto front is con-
verged. Elitism is also active in order to achieve
better convergence and the constraints handling
is based on tournament selection. This method is
implemented in modeFrontierTMand is described
in detail in Deb [22].

2.5 Objectives

To rate designs the maximum static pressure re-
covery (Cp,max) is used as a measure for stability
and the pressure loss (ω) in the relative frame of
reference is used to measure efficiency. Thus the
optimization problem consist of the following:
Minimize: f1(x) = ω

Maximize: f2(x) = Cp
where:

ω = P02,isen−P02
P01,rel−P1

Cp = P2−P1
P01,rel−P1

3 Meta models

To investigate which meta model that is suitable
within an optimization of a transonic compressor
blade, a test case was used. The test case consists
of optimizing the rotor blade at 95% span using
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the full design variable set summarized in Tab. 1.
The goal with the optimization was to find the
pareto front describing the trade between pres-
sure loss at design point (ω) and the maximum
pressure recovery at part speed (Cp,max). The case
study includes four types of meta models: least
square second order polynom (2nd poly), Krig-
ing, Neural Networks (NN) and radial basis func-
tions (RBF).

The metamodels are rated against each other
by comparing their estimate of the objective
functions, denoted f̂i(x j), to the exact function,
denoted fi(x j), where x j denotes the jth design
and fi the ith objective function. The error is
measured as the averaged relative error (see Eqn.
1) and the maximum relative error (see Eqn. 2)
averaged over the two objective functions.

Ei,ave =
1
d

d

∑
j=1

∣∣∣∣∣ f̂i(x j)− fi(x j)
fi(x j)

∣∣∣∣∣∗100 (1)

Ei,max = max

(∣∣∣∣∣ f̂i(x j)− fi(x j)
fi(x j)

∣∣∣∣∣∗100

)
(2)

The following subsections give a brief overview
of each meta model, the reader is referred to the
references associated with each meta model if a
more detailed description is desired.

3.1 2nd order polynom

The method consists of fitting a second order
polynom function to the trainingset, for more in-
formation see [23]. Since it is a regression model
it will not necessarily pass directly through the
known points. The equation defining a quadratic
response surface is given by

f̂ (x) = a0 +
k

∑
i=1

bixi +
k

∑
i=1

k

∑
j=1

ci jxix j (3)

The coefficients are determined by least square
regression analysis by fitting the model to the ex-
isting data. To solve the minimization the num-
ber of known points must be larger or equal to the
amount of unknown coefficients, which can be a
major drawback when the design space is high
dimensional.

3.2 Kriging

Kriging is a regression model that is based on
Gaussian processes originally used in geostatis-
tics to predict gold concentration at extraction
sites. The method has since then been spread to
many other areas, and it has been used for tur-
bomachinery design in [6], [7], [11] amongst
others.

The mathematical model consists of two parts
as shown in Eqn. 4. The first part is a polynomial
function (β̂(x)), and the second part is the reali-
sation of a normally distributed Gaussian random
process with zero mean [23].

f̂ (x) = β̂(x)+Z(x) (4)

The polynomial term (β̂(x)) constructs the
global shape of the design space while Z(x) is
used to model the local behaviour by interpola-
tion. The Gaussian correlation function, R, is
used to determine how the designs influence each
other as a function of their distance apart (see
Eqn. 5).

R(xi,x j) = exp

(
−

n

∑
k=1

θk

∣∣∣xi
k − x j

k

∣∣∣pk

)
(5)

where xi
k and x j

k are the kth components of the
sampled points and θk and pk are parameters used
to fit the model, [24]. The interpolant function,
Z(x), is then obtained by

Z(x) = rT (x)R−1( f (x)− β̂(x)) (6)

where

rT (x) = [R(x,x1)R(x,x2)...,R(x,xn)]T (7)

The resulting model includes not only the es-
timate at each point but also a complete proba-
bilistic distribution at each point such as the er-
ror estimate. This could potentially be used to
improve the model itself by iteratively using the
flow solver to update the model where the error
estimate is high. For more extensive theory con-
cering construction of Kriging models, see [23],
[24] and [25].
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3.3 RBF

The method is an interpolator where an estimated
point is a function of the euclidean distance to
its neighbouring known points, see Eqn. 8. The
function, φ, is a distribution function which are
used to rank the importance of the neighbouring
data. The radial function used for this study is
given by Eqn. 9, where σ is a fixed scaling pa-
rameter which determines the shape of the distri-
bution.

f̂ (x) =
n

∑
j=1

c jφ(||x− x j||/σ) (8)

where:
φ(r) = (1+ r2)(−1/2) (9)

The coefficients, c j, are obtained by requiring
that the RBF model must go through the known
values, see Eqn. 10, where f (xi) is the known
data points. Turbomachinery design processes
have been successfully accelerated using RBF,
for instance in [10] and [14]. A detailed descrip-
tion of the underlying theory is given in [26].

f̂ (xi) = f (xi) (10)

3.4 NN

Neural networks mimics the human brain, where
the neurons are connected to each other as shown
in Fig. 4. Following the simplified schematic in
Fig. 4, the design variables are connected with
each neuron in the first hidden layer, and to each
connection a weight is applied. The input given
to one neuron is given by Eqn. 11, where w j are
the weights, x j the design variables and b the bias
term.

s =
n

∑
j=1

w jx j +b (11)

The output of the neuron (y) is then obtained by
using a transfer function, given by Eqn. 12.

y = σ(s) (12)

The transfer function, σ, is usually defined as the
sigmoid function, Eqn. 13.

σ(s) =
1

1+ exp(−s)
(13)

Fig. 4 Neural network structure

The weights are then trained to minimize the
error between the estimated values and the ex-
act values. In this study, the method is based
on classical feedforward Neural Networks, with
one hidden layer, using an efficient Levenberg-
Marquardt back propagation training algorithm.
The neural network is capable of handling very
complex non-linear systems, and several authors
report good results when used for turbomachin-
ery applications, [6], [8] and [9] to name a
few. For a detailed description of the method, see
[23], [27] and [28].

3.5 Test case

The design process shown in Fig. 1(b) has been
used to solve the optimization problem. The
meta models were trained with 78 latin hyper-
cube samples as the initial trainingset, which cor-
responds to the lowest number of designs needed
to fit a second order polynom. For each outer
loop, the trainingset was updated with 20 new
designs, selected along the virtual pareto front.
Furthermore, to verify that the meta-model as-
sisted optimizations produced reasonable results,
the same optimization problem was also solved
by only using the flow solver (referred to as “dis-
crete“). The pareto fronts from the optimizations
are compared in Fig. 5 and the relative errors in
each outer iteration for the meta models are sum-
marized in Tab. 2. As can be seen, the fronts
are quite similar both in location and shape in
spite the general higher error estimates from the
NN, Kriging and 2nd poly based optimizations.
In view of the predictive relative error shown in
Tab. 2, the RBF model seems to have the best
performance. This was also seen during the outer
loop iterations in terms of pareto front conver-
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Fig. 5 Pareto front comparison based on the test case

Table 2 Summary of meta model performance
based on the test case

RBF NN Kriging 2nd Poly
Outer loop Emax Eave Emax Eave Emax Eave Emax Eave

It 1 6.95% 2.55% 11.26% 5.54% 6.18% 2.72% 64.6% 53.7%
It 2 4.54% 1.45% 10.23% 4.17% 6.10% 2.82% 12.70% 5.89%
It 3 5.07% 1.23% 8.27% 2.28% 5.81% 1.02% 8.77% 2.27%
It 4 3.40% 0.71% 8.90% 3.66% 8.50% 1.21% 2.59% 1.11%
It 5 3.33% 0.59% 7.49% 2.27% 14.45% 2.23% 4.87% 1.33%

gence. The location and shape of the RBF based
pareto front was converged after only three iter-
ations while the use of the 2nd poly method to
construct the meta model required five iterations.

4 Rotor re-design

The re-design of the first stage rotor of Blenda is
presented in this section. The original rotor data
is summarized in Tab. 3 taken from [16]. The de-

Table 3 Overall performance data of the Blenda rotor

Design shaft speed 22456 rpm (95.6% of max)
Tip diameter 400 mm

Tip speed 469 m/s
Hub to tip ratio 0.5

Design Mass flow 18.5 kg/s
Total-to-Total Pressure ratio 1.84

sign of Blenda is described in detail in [2]. The

objective of the original rotor was to have high
efficiency at the design rotational speed. The op-
timization was mainly driven by a 3D flow solver
with a high degree of freedom in terms of design
variables. The main goal with the re-design of
the first stage rotor of Blenda is to verify that the
new design process works in a reliable and effi-
cient way for an industry relevant case. Further-
more, the design variables are limited compared
to the original design so that the produced blades
are of a more classical shape.

4.1 Quasi-3D results

Based on the results from the test case, the RBF
was chosen to be used for the design of the first
rotor of the Blenda compressor. Three radial
blade profiles located at 10%, 50% and 95% span
were optimized using the design process shown
in Fig. 1(b). The 95.6% rotational speed is de-
fined as the design speed while the 55% rota-
tional speed is defined as the part speed (PS) used
for maximizing the stability. As for the test case
described above, the optimization problem con-
sisted of finding the optimal blade shapes within
the full parametric design space. The blade pro-
files were constrained to have the same mass flow
capability and total-to-total pressure ratio (PrTT)
as the original Blenda blade profiles. The ini-
tial trainingset was set to 78 designs and the meta
model was updated for each outer loop using 20
evenly spaced designs along the virtual pareto
front. After the fifth outer loop, the pareto fronts
did not show any significant change, thus the op-
timizations were stopped. The resulting optimal
solutions are compared to the Blenda blade pro-
file performance for each radial span respectively
in Fig. 6.

The change in design variables along the
pareto fronts is similar for all three radial span
optimizations. Furthermore, it follows the same
trend as reported in [16] where only the CFD
solver was used to obtain the pareto fronts. The
blade shape for the best efficiency blade (ωopt)
is compared to the blade with the best part speed
stability (Cp,opt) at 95% span in Fig. 7. As can
be seen, Cp,opt is more front loaded with a larger
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Fig. 6 Pareto front based on the quasi-3D opti-
mization
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Fig. 7 Blade profile at 95% span for maximizing
either of the two objectives

blade metal angle compared to ωopt . Also the so-
lidity of Cp,opt is roughly 14% higher then ωopt
due to a higher blade count. The mach contours
for the blades are compared in Fig. 8, where it
can be seen that the lower camber of ωopt leads
to a lower mach number ahead of the passage
shock which gives lower shock losses. However,
at part speed where the incidence angle is higher,
the higher camber and larger blade metal angle of
Cp,opt is needed to avoid a too high suction peak
and which leads to separation as seen when com-
paring Fig. 9(a) to Fig. 9(b).

To obtain a baseline blade in 3D, three blade
profiles were selected along the pareto front. In
this study, the profile at 95% were selected to be
positioned closer to the highest stability point,
due to the fact that the stall problems at part
speed usually originates from the poor perfor-
mance of the tip sections. This profile was com-
bined with the 10% and 50% profiles having the
best efficiency. The profiles were then stacked
so that their masscenter was positioned along
a constant axial position. The total number of
CFD based function evaluations to reach the 3D
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Fig. 8 Mach countour at 95% span at DP
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Fig. 9 Mach countour at 95% span at PS

baseline blade was 534 (3 ∗ 178) while the pure
CFD based optimization in [16] required 3000
(3*1000) evaluations. Thus by using meta model
assisted optimization the total design time was re-
duced by 82%, which is a substantial difference.

4.2 3D optimization

The designprocess, Fig. 1(b), was once more uti-
lized to further optimize the blade in 3D. Due to
the much higher computation resources required
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Fig. 10 Stacking line variations

to drive the optimization, the number of design
variables for each radial span were reduced to
include incidence, deviation and stagger angle.
Also, the stacking line was varied to allow for
sweep. The maximum allowed sweep within the
optimization is compared to the baseline stack-
ing line in Fig. 10. The sweep was applied by
translating the blade profiles along the chordwise
direction of the hub section. The meta model was
initially trained using 78 latin hypercube sam-
ples. For each outer loop, 8 designs were anal-
ysed by the CFD solver and added to the updated
trainingset. Again, 5 loops were required to con-
verge the location and shape of the CFD based
pareto front, seen in Fig. 11. The total number of
function evaluations is thus 118. To reach a con-
verged pareto front with a pure CFD based opti-
mization, a minimum of around 1000 runs were
required for the same pareto front resolution, thus
the design time has been decreased rapidly.
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Fig. 11 Pareto from based on 3D optimization
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The performance of the best efficiency design
(ωopt), the best stability design (Cp,opt) and the
baseline design are shown in Fig. 12 and Fig.
13 together with the throttle line. As reference,
the original rotor of Blenda is also included. The
performance of the stacked quasi-3D optimized
profiles, denoted baseline, is rather good, with a
high peak efficiency and reasonably good stabil-
ity at part speed relative the 3D optimized blades.
However, two main problems can be seen; the op-
erating point at design rotational speed is quite
far from the peak efficiency point and the mass
flow capability is off by roughly 6% compared to
the goal. This issue is clearly due to the mismatch
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Fig. 13 Comparison of rotor performance at 55%
speed

between the quasi-3D blade to blade analysis and
the full 3D analysis, also reported in [16]. Dur-
ing the 3D optimization, these issues vanishes
since the matching of the required operating point
is directly controlled. It can also be seen that the
original Blenda rotor has higher peak efficiency
compared to ωopt , which is mainly due to the lim-
its set in the design variables within the optimiza-
tion. For instance, the optimized blades have a
thicker blade root relative Blenda to reduce the
blade root stress.

The blade profiles of baseline, ωopt and Cp,opt
at 50% span are compared in Fig. 14. The main
difference between the baseline and the 3D op-
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Fig. 15 Comparison of the optimized blades and
the baseline in the meridional view

timized blades is the stagger angle, which has
decreased to facilitate the higher massflow re-
quired at the design point. The largest differ-
ence between the two 3D optimized blades is the
sweep seen in Fig. 15. At the design point, the
mach number ahead of the passage shock is gen-
erally lower for ωopt compared to Cp,opt lead-
ing to lower shock losses seen in Fig. 16. This
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Fig. 16 Mach contour at 50% span at DP

is even more pronounced for the baseline, but
as mentioned above, the blade is unable to pass
the required massflow rate. To find the reason
why the stall margin is different for ωopt and
Cp,opt , the outlet effective area for each stream-
tube were extracted from the 3D flow results and
compared at three operating points, seen in Fig.
17. Streamtubes with lower outlet effective area
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Fig. 17 Outlet effective area for different throttle
settings

are required to perform more diffusion, thus com-
paring the outlet effective area show which radial
section that limits the pressure rise capability.
The two designs show similar distribution at the
design operating point (denoted as "OP") at both
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rotational speeds, see Fig. 17(a) and Fig. 17(b).
However, as the rotor is throttled, the stream-
tubes in the vicinity of the midspan starts to devi-
ate for Cp,opt at the design rotational speed while
the streamtubes in ωopt maintains their unifor-
mity. For the 55% rotational speed, the situation
is reversed, but the region of non-uniformity ap-
pears at the tip between 80% span and the shroud.
The reason to the streamtube deviation around
midspan is due to a shock induced boundary layer
separation at midspan seen in Fig. 18. The blades
are coloured by static pressure, and the separa-
tion is visualized with an iso-surface of negative
axial velocity. Downstream of the blade an outlet
plane is included coloured by axial velocity. The
velocity vectors are also included, extracted a few
cells away from the blade wall, in order to see the
fluid motion in the boundary layer. At 55% ro-

(a) ωopt

(b) Cp,opt

Fig. 18 3D flow field at near stall at 95% rota-
tional speed

(a) ωopt

(b) Cp,opt

Fig. 19 3D flow field at near stall at 55% rota-
tional speed

tational speed, a separated region is created just
downstream of the leading edge at around 70%
span, seen in Fig. 19. This low momentum fluid
is pushed radially outwards due to the centrifu-
gal force. However, due to the sweep, a high
pressure region close to the shroud balance the
centrifugal force. This effect is more pronounced
for the higher sweep of Cp,opt . The ωopt has a
larger separated region and since the radial blade
pressure force, is less then Cp,opt , the low mo-
mentum fluid is concentrated at the shroud, creat-
ing a large blockage which acts as a local throttle
decrease. The observed trends are similar to the
work in [29].

5 Conclusions

Performance comparison between several
different meta models has been done for an
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optimization of a transonic blade profile. In this
study, the radial basis functions was selected
since it had the lowest predictive error of the
models. The use of RBF for re-designing the
first rotor of Blenda gave good results in both
the optimization of blade profiles and in the
3D optimizaton. A significant decrease in
computational resources have been reported
compared to the case when only a flow solver
has been used within the optimization. The meta
model assisted optimization reduced the total
design time from approximately 2 weeks to 3.5
days given that 8 designs could run in parallel
on a cluster. New blades were found which
increased the stability at part speed compared to
the original Blenda rotor, however no blade was
found which had a higher peak efficiency point
relative Blenda. This is not surprising, since the
design variables used in this study were limited
to produce classical blade profiles. To increase
the performance of the optimized blades, a
higher degree of freedom is probably needed in
the 3D optimization. Moreover, forward sweep
has been seen to play an important role in the 3D
optimization, especially when high stability is
required at part speed.
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