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Abstract

This paper outlines a feasible scheme to ex-
tract deck trend when a rotary-wing unmanned
aerial vehicle (RUAV) approaches an oscillating
deck. An extended Kalman filter (EKF) is de-
veloped to fuse measurements from multiple sen-
sors for effective estimation of the unknown deck
heave motion. Also, a recursive Prony Anal-
ysis (PA) procedure is proposed to implement
online curve-fitting of the estimated heave mo-
tion. The proposed PA constructs an appropri-
ate model with parameters identified using the
forgetting factor recursive least square (FFRLS)
method. The deck trend is then extracted by sep-
arating dominant modes. Performance of the pro-
posed procedure is evaluated using real ship mo-
tion data, and simulation results justify the suit-
ability of the proposed method into safe landing
of RUAVs operating in a maritime environment.

1 Introduction

The RUAVs have attracted increasing interest
over the past few decades due to their suitabil-
ity for a variety of flight missions [11]. RUAVs
also have the potential to enable a range of new
maritime applications if automatic recovery op-
erations from ships in rough seas are achieved re-
liably [18].

The present work is aimed at landing a RUAV
on an oscillating platform in severe sea environ-
ments. For piloted helicopters, a safe landing can

be completed successfully since the pilot is able
to observe instantaneous relative motion, judge
the level of risk, arrange a feasible approach-
ing trajectory and trigger the proper moment for
landing and touchdown. Besides, any potential
threat during the landing operation can be min-
imized through executing necessary manipula-
tions based on pilot experience. In contrast, the
autonomy of the RUAV requires the automatic
implementation of the entire process without in-
volvement of pilots. This indicates that the flight
control computer should be able to complete the
guidance and control tasks with safety guaran-
tees, which significantly exacerbates the imple-
mentation difficulties.

Safe landing of a RUAV also requires reli-
able navigation capability, which comes from the
vulnerability of the RUAV to impact forces dur-
ing touchdown in a maritime environment. Inte-
grated navigation system makes great efforts to
take advantage of complementary attributes of
multiple sensors, and has been discussed in a
number of papers for a wide variety of applica-
tions [3, 17]. Faruqi and Turner [3], proposed and
evaluated the performance of a linearized inte-
grated GPS/INS model with an extended Kalman
filter for a typical aerospace application. The sen-
sitivity analysis was also conducted to determine
the optimal filter parameters. Jan et al. [17] de-
veloped an integrated navigation system to pro-
vide attitude information with sufficient accuracy
for a quadrotor helicopter. The navigation sys-
tem aimed to ensure the optimal usage of the GPS
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measurements. The unscented Kalman filter was
also applied to some scenarios to improve the
navigation performance [10, 8]. In the consid-
ered application, we are targeting a feasible filter-
ing approach which can be implemented easily at
the cost of limited flight computer memory and
provide sufficient estimation accuracy. Also, due
to the fact that introduction of high-order system
dynamics does not generally lead to an improve-
ment in system performance [4], we use the EKF
in this paper to perform the sensor fusion task.

Another requirement for automatic landing is
an accurate estimation of the mean deck height
so that a smooth descent trajectory can be ar-
ranged. This will help the RUAV to track the
mean deck height as opposed to the instantaneous
deck displacement, thus greatly reducing the risk
of touching down the deck with fatal impact
forces. There are several methodologies available
to construct models for identifying the system
trend, e.g., linear model [19], weighted exponen-
tial model [9] and polynomial model [5]. Prony
Analysis is a branch of parametric curve-fitting
techniques with model parameters giving mag-
nitude, frequency and phase information about
system dynamics, and has been used to analyze
power systems [6, 12]. In the considered applica-
tion, we are aimed at designing an online proce-
dure to extract dominant modes in the oscillating
deck.

This paper is organized as follows: in Sec-
tion 2, we describe the procedure to design a
multi-sensor fusion algorithm using the EKF. The
proposed recursive PA is introduced in Section
3. Section 4 provides the simulation results ob-
tained, and finally brief conclusions are presented
in Section 5.

2 Sensor Fusion using the EKF

This section aims to develop a sensor fusion al-
gorithm by using the EKF technique. Three dif-
ferent sensors (Inertial Navigation Sensor (INS),
Global Positioning System (GPS) and visual
tracking sensor) are utilized to perform the nav-
igation task. The EKF is designed to smooth
out noisy measurements from INS and GPS. It

also serves to estimate the unknown heave mo-
tion of the landing deck. The EKF fuses the
following groups of measurements: RUAV po-
sition (xh,yh,zh) and velocity (vxh,vyh,vzh) given
by the GPS, relative motion (αr,βr,dr) from the
tracking sensor, accelerations (ax,ay,az) and an-
gular rates (p,q,r) from the INS. The velocity
(u,v,w) in the body frame is related to velocity
(vxh,vyh,vzh) in the navigation frame by the di-
rection matrix Cn

b

[vxh,vyh,vzh]
T =Cn

b [u,v,w]
T (1)

with Cn
b expressed in quaternion parameters [15]

Cn
b =

 c11 c12 c13
c21 c22 c23
c31 c32 c33



=

 q2
0 +q2

1 −q2
2 −q2

3 2(q1q2 −q0q3) 2(q1q3 +q0q2)
2(q1q2 +q0q3) q2

0 −q2
1 +q2

2 −q2
3 2(q2q3 −q0q1)

2(q1q3 −q0q2) 2(q2q3 +q0q1) q2
0 −q2

1 −q2
2 +q2

3


Here, quaternion elements q = [q0,q1,q2,q3]

T

are employed to describe the attitude informa-
tion. The singular problems encountered when
attitudes are expressed in Euler forms can be
avoided via adoption of the quaternion form.

Design of the EKF begins with a description
of the state update model given by

Xk = f (Xk−1,k−1)+ εk (2)

where state vector X corresponds to the following
state variables

X = [xh,yh,zh,u,v,w,xs,ys,zs,vxs,vys,vzs,xr,yr,zr,

ψs,Vψs]
T (3)

and system noise (mutually independent with
Gaussian distributions) is ε = [ε1, · · · ,ε17]

T .
Here, RUAV positions (xh,yh,zh), ship positions
(xs,ys,zs) and velocities (vxs,vys,vzs), and relative
positions (xr,yr,zr) are described in navigation
frame. Ship yaw and yaw rate are denoted by
ψs and Vψs. In the considered application, ship
heading (yaw) is known from radio signals sent
by the ship. Equation (2) can be expressed in an
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explicit form

(xh)k = (xh)k−1 +Ts[(c11)k−1uk−1 +(c12)k−1vk−1

+(c13)k−1wk−1]+ (ε1)k (4)
(yh)k = (yh)k−1 +Ts[(c21)k−1uk−1 +(c22)k−1vk−1

+(c23)k−1wk−1]+ (ε2)k (5)
(zh)k = (zh)k−1 +Ts[(c31)k−1uk−1 +(c32)k−1vk−1

+(c33)k−1wk−1]+ (ε3)k (6)
uk = uk−1 +Ts[rk−1vk−1 −qk−1wk−1 +(ax)k−1]

+ (ε4)k (7)
vk = vk−1 +Ts[−rk−1uk−1 + pk−1wk−1

+(ay)k−1]+ (ε5)k (8)
wk = wk−1 +Ts[qk−1uk−1 − pk−1vk−1

+(az)k−1]+ (ε6)k (9)
(xs)k = (xs)k−1 +Ts(vxs)k−1 +(ε7)k (10)
(ys)k = (ys)k−1 +Ts(vys)k−1 +(ε8)k (11)
(zs)k = (zs)k−1 +Ts(vzs)k−1 +(ε9)k (12)
(vxs)k = (vxs)k−1 +(ε10)k (13)
(vys)k = (vys)k−1 +(ε11)k (14)
(vzs)k = (vzs)k−1 +(ε12)k (15)
(xr)k = (xr)k−1 +(ε13)k (16)
(yr)k = (yr)k−1 +(ε14)k (17)
(zr)k = (zr)k−1 +(ε15)k (18)
(ψs)k = (ψs)k−1 +Ts(Vψs)k−1 +(ε16)k (19)
(Vψs)k = (Vψs)k−1 +(ε17)k (20)

In the state update equations mentioned above,
the sampling time is denoted by Ts. System noise
ε(·) and covariance matrix of system noise Q(·)
satisfies

E{εi
(·)[ε

j
(·)]

T}= δ(i− j)Q(·) (21)

where δ is Kronec function taking the form of

δ(i− j) =
{

1 if i = j
0 if i ̸= j (22)

Equations (4)-(6) describe relationship of
velocities between body frame and navigation
frame. Local velocity propagation is revealed
in Eq. (7)-(9) with knowledge of accelerations
(ax,ay,az). In practice, it is impossible to build up

an accurate ship motion model as many parame-
ters are required for specific ship/helicopter com-
binations. However, it is reasonable to assume
ship speed remains constant in forward and side-
ways directions during landing phase, as is shown
in Eq. (10)-(15). The heave motion greatly af-
fects magnitude of the impact force during touch-
down moment. In the model, deck displacement
speed is tentatively set to be constant, and it will
be demonstrated later that the EKF is able to esti-
mate the displacement motion effectively as rel-
ative motion (αr,βr,dr) provided by the tracking
sensor can correct the estimation performance.

Nonlinearities in system model Eq. (2) stem
from the quaternion components ci j in direction
matrix Cn

b , which should be linearized when de-
riving the state transition matrix. The direction
matrix Cn

b can be described in terms of angu-
lar rates after using the first-order approximation
method [4], and can be converted to Eq. (23) (see
next page).

Substituting Eq. (23) into Eq. (4)-(6) leads to
Eq. (24)-(26)(see next page). Here, the angular
rates at time instant k are described by pk,qk,rk.
In our case, the body rate information obtained
from the INS has been filtered and can be used
for sensor fusion with sufficient accuracy. An-
gular rates (pk,qk,rk) do not remain constant and
keep updating when measurements from the INS
change.

The measurement model can be described by

Zk = h(Xk,k)+ξk (27)

where measurements are

Z = [xh,yh,zh,vxh,vyh,vzh,αr,βr,dr,ψs]
T (28)

and measurement noise ε is ξ = [ξ1, . . . ,ξ10]
T .
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Cn
b =

 1+ P̃2 − Q̃2 − R̃2 2(P̃Q̃− R̃) 2(P̃R̃+ Q̃)
2(P̃Q̃+ R̃) 1− P̃2 + Q̃2 − R̃2 2(Q̃R̃− P̃)
2(P̃R̃− Q̃) 2(Q̃R̃+ P̃) 1− P̃2 − Q̃2 + R̃2

 (23)

(xh)k = (xh)k−1 +Ts[(1+
(p2

k−1 −q2
k−1 − r2

k−1)T
2

s

4
)uk−1 +2(

pk−1qk−1T 2
s

4
− rk−1Ts

2
)vk−1

+2(
qk−1rk−1T 2

s
4

+
qk−1Ts

2
)wk−1 +(ε1)k] (24)

(yh)k = (yh)k−1 +Ts[2(
pk−1qk−1T 2

s
4

+
rk−1Ts

2
)uk−1 +(1+

(q2
k−1 − p2

k−1 − r2
k−1)T

2
s

4
)vk−1

+2(
qk−1rk−1T 2

s
4

− pk−1Ts

2
)wk−1]+ (ε2)k] (25)

(zh)k = (zh)k−1 +Ts[2(
pk−1rk−1T 2

s
4

− qk−1Ts

2
)uk−1 +2(

qk−1rk−1T 2
s

4
+

pk−1Ts

2
)vk−1

+(1+
(r2

k−1 − p2
k−1 −q2

k−1)T
2

s

4
)wk−1]+ (ε3)k (26)

The detailed measurement equations are

(xh)k = (xh)k +(ξ1)k (29)

(yh)k = (yh)k +(ξ2)k (30)

(zh)k = (zh)k +(ξ3)k (31)

uk = uk +(ξ4)k (32)

vk = vk +(ξ5)k (33)

wk = wk +(ξ6)k (34)

(αr)k = arctan{(yr)k

(xr)k
}+(ξ7)k (35)

(βr)k = arccos{ (zr)k√
[(xr)k]2 +[(yr)k]2 +[(zr)k]2

}

+(ξ8)k (36)

(dr)k =
√

[(xr)k]2 +[(yr)k]2 +[(zr)k]2 +(ξ9)k (37)

(ψs)k = (ψs)k +(ξ10)k (38)

Measurement noise ξ(·) is mutually indepen-
dent with Gaussian distributions, and covari-
ance matrix of measurement noise R(·) satisfies
E{ξi

(·)[ξ
j
(·)]

T}= δ(i− j)R(·)
Given the system update model and measure-

ment update model, an EKF can be developed to

fulfill the sensor fusion task by following the pro-
cedure in [2].

3 Recursive Prony Analysis

This section starts with an introduction to the tra-
ditional PA followed by a description of the pro-
posed recursive PA. The heave motion estimated
from Section 2 is assumed to sufficiently accurate
such that it can be considered as the true heave
motion.

A weighted linear combination of exponen-
tial terms ŷ is used to approximate the heave mo-
tion sequence

ŷ(kTs) =
n

∑
i=1

Bizk
i , zi = eλiTs , k = 0, ...,N −1

(39)
where each residue Bi corresponds to its complex
pole λi, i= 1, ...,n. The model order is denoted by
n. the complex number zi is termed the discrete-
time system pole, and N the number of samples.
Our objective is to determine Bi, λi and n, such
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that ŷ(kTs) is good approximation to the heave
motion y(k) in the least square sense.

Procedure of the traditional PA can be divided
into the following three steps.

Step 1: The PA begins with constructing the
linear prediction model (LPM) [12]

y(k) = a1y(k−1)+ · · ·+any(k−n) (40)

and determining coefficients ai, i = 1, ...,n.
Step 2: A matrix representation of sequential

samples is constructed by expanding the LPM at
various time instants, and coefficients ai are ac-
quired by solving the following equations using
least square (LS) method,

D = QA; D = [y(n),y(n+1), ...,y(N)]T (41)

D = [y(n),y(n+1), ...,y(N)]T (42)

Q =


y(n−1) y(n−2) · · · y(0)

y(n) y(n−1) · · · y(1)
...

...
...

...
y(N −1) y(N −2) · · · y(N −n)


(43)

A = [a1,a2, ...,an]
T (44)

The corresponding characteristic equation can be
derived from coefficients ai, which is given by

zn −a1zn−1 −·· ·−an−1z−an =
n

∏
i=1

(1− z · z−1
i )

(45)
The zeros zi appear only in the form of real num-
bers or complex conjugate pairs since ai are real
in Eq. (45). If zi is completely real, then [7]

λi =
lnzi

Ts
(46)

Otherwise, if zi is a complex conjugate pair,

λi = αi ± jβi (47)

αi =
ln |zi|

Ts
, βi =

1
Ts

tan−1{ zIi

zRi
} (48)

where zi = zRi ± j · zIi.
Step 3: The residues Bi are obtained through

solving the following linear equations

Y = ΨB (49)

Y = [y(0),y(1), ...,y(N −1)]T (50)

Ψ =


1 1 · · · 1
z1

1 z1
2 · · · z1

n
...

...
...

...
zN−1

1 zN−1
2 · · · zN−1

n

 (51)

B = [B1,B2, ...,Bn]
T (52)

Here, the Vandermonde matrix Ψ is constructed
based on the zero zi of characteristic equation
(45). Normally, if zeros zi appear in conjugate
pairs, the corresponding Bi will also appear in
conjugate forms.

Remark 1 The fundamental limitation of the PA
lies in inverting the large matrices in step 1 and
3. In our case, this involves dealing with a
large number of samples, and greatly exacer-
bates the difficulties in real-time implementation.
Also, manipulation of matrix inversion may suffer
from singularity issues. Ill-conditioned matrices
may occur when inverting large matrices, which
would cause the PA to fail.

Remark 2 The LS only deals with the measure-
ments for a separate sliding window, and starts
estimation without consideration of information
in the previous data window. Therefore, estima-
tion of instantaneous mean is subject to great
changes when successive data windows are pro-
cessed.

To remedy the weakness of the PA, the fol-
lowing factors are considered in the recursive PA:

1. How to obtain accurate and reliable model
parameters when new measurements are col-
lected?

2. How to carry forward system information
for successive sliding windows to achieve an ac-
curate estimation?

3. How to reduce computational burden
to accomplish a rapid online estimation of
monotonous trend?

Remark 3 Regarding the first question, the
FFRLS is employed which introduces a forget-
ting factor to discard the effect of old measure-
ments and highlight contributions of the most re-
cent measurements to system dynamics [16].
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Fig. 1 Flowchart for extracting instantaneous mean
To implement the FFRLS, the vector of

lagged sampled data

φ(t) = [y(t −1), ...,y(t −n)]T (53)

and coefficient vector θ̂(t) = [â1(t), ..., ân(t)]T

up to time instant t is introduced. Coeffi-
cients â1(t), ..., ân(t) are updated recursively to
approach the real values a1, ...,an. The LPM can
be written in a compact form

y(t) = θ̂T (t)φ(t) (54)

The estimation of model coefficients θ̂(t) can
be obtained after minimizing the loss function
[14]

θ̂(t) = [
t

∑
j=1

γt− jφ( j)φT ( j)]−1[
t

∑
j=1

γt− jφ( j)y( j)]

(55)

The FFRLS can be implemented recursively by

θ̂(t +1) = θ̂(t)+K(t +1)[y(t +1)−φT (t +1)θ̂(t)]
(56)

K(t +1) = P(t)φ(t +1)[γ+φT (t +1)P(t)φ(t +1)]−1

(57)

P(t +1) = [P(t)−K(t +1)φT (t +1)P(t)]/γ (58)

θ̂(0) = 0 P(0) = αI (59)

Here, matrix P(t + 1) is referred to as error co-
variance matrix, matrix K(t + 1) denotes the up-
date matrix, and α is a large positive number.

Remark 4 Regarding the second question in Re-
mark 2, the error covariance P(t) and model co-
efficients θ̂(t) are initialized once for the first
sliding window, then the FFRLS carries them for-
ward as the sliding window moves to the next.
This implies the model coefficient vector is slow-
varying and its components for adjacent data
windows are closely related.

Remark 5 Step 3 of the PA can be followed ac-
cording to Eq. (49)-(52). The recursive least
square (RLS) is used to estimate the magni-
tude Bi, and the vector of sampled data φ(t)
in Eq. (53) should be replaced with ρ(t) =
[zt−1

1 , ...,zt−1
n ]T which corresponds to row com-

ponents in Eq. (51). It should be noticed that
the vector ρ(t) at different time instants t varies
greatly. Carrying forwards error covariance ma-
trix and coefficient vector is not proper in this
step, as vector ρ(t) for different time instants are
not slow-varying.

3.1 Determination of model order

Some available information criteria for order
determination are Akaike Information Criterion
(AIC) [1] and Bayes Information Criterion (BIC)
[13]. AIC and BIC aim to make a trade-off be-
tween estimation errors accumulated and model
complexity, and the optimal order is determined
when they reach the minimum. However, when
used to determine the model order, AIC and BIC
consistently decrease when model order becomes
large, and the estimation performance does not
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deteriorate. Underlying this fact is that the extra
exponential terms are trying to fit the noise effect.

Practically, the model order of PA should be
selected such that a trade-off is achieved between
estimation accuracy and computational burden.
The proper model order can be found out by
checking the summed squared error (SSE)

SSE =
N−1

∑
k=0

[y(k)−
n

∑
i=1

Bieλik]2 (60)

The order selection procedure consists of
three steps:

1. Set the predicted model order RN which is
larger than the maximum number of model order
which is expected;

2. Determine the model order nl out of pre-
dicted order RN such that there is a significant
drop in SSE when the LPM is constructed by nl
exponential terms. This gives a lower bound of
acceptable model order;

3. Calculate the computational burden when
order is larger than nl . The proper model order is
chosen when a balance between the match accu-
racy and the computational burden is achieved.

Remark 6 In practice, if the predefined curve-
fitting match accuracy is satisfied, the Prony
model with small order is preferred to reduce the
computational burden. In situations where com-
putational burden is a minor factor, the proper
model order can be found out when there is a sig-
nificant drop in SSE.

3.2 Dominant mode selection criterion

The proposed dominant mode selection criterion
begins with defining a suitable threshold. The co-
efficients Bi with respect to the poles within the
threshold are taken as dominant residues. The
threshold is chosen according to the following
criterion:

1. Choose the pole with its negative real part
closest to the imaginary axis, which corresponds
to the smallest horizontal distance d;

2. The threshold Lp is 5 times of the horizon-
tal distance d;

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

he
lic

op
te

r 
x 

po
si

tio
n 

(m
)

 

 

Real x position
Measured x position
Estimated x position

0 1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

0.4

he
lic

op
te

r 
y 

po
si

tio
n 

(m
)

 

 

Real y position
Measured y position
Estimated y position

0 1 2 3 4 5 6 7 8 9 10
−10.5

−10

−9.5

he
lic

op
te

r 
z 

po
si

tio
n 

(m
)

 

 
Real z position
Measured z position
Estimated z position

Fig. 2 Estimation of RUAV positions using the EKF

3. The width of the box threshold Wp depends
on the magnitude of rounding errors, which takes
a very small value (O(e−8)).

The system trend ȳins can be expressed as

ȳins =
W

∑
i=1

BDieλDi(N−1)Ts (61)

where λDi is dominant pole, and BDi is the corre-
sponding residue. The number of dominant poles
is denoted by W .

The flowchart for online estimation of
monotonous trend of an oscillating deck is de-
picted in Fig. 1. The proposed approach firstly
collects enough samples. Then, model order is
found out based on the SSE in consideration of
the computational burden. Model parameters are
specified using the FFRLS. Also, poles of charac-
teristic equation are computed. Afterwards, the
corresponding residues Bi are calculated using
the RLS. The system trend is obtained after se-
lecting the dominant poles and residues using Eq.
(61).

4 Simulation Results
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Fig. 3 Estimation of ship positions using the EKF

4.1 Evaluation of the Sensor Fusion Algo-
rithm

The EKF algorithm is tested using real-time deck
motion data. In simulations, the RUAV is com-
manded to follow the middle line of the ship,
approach the deck at a constant speed of 3m/s,
and hover at a height of 10 m. For the NovA-
tel GPS receiver on our helicopter, the distance
accuracy is 2 cm ĩn the longitudinal-lateral plane
and 4 cm in the elevation. Thus, white noise with
standard deviations of 2cm, 2cm and 4cm were
added to real positions of the RUAV to test the
performance of the EKF. Also, azimuth angle
αr and elevation angle βr were contaminated by
white noise with standard deviations of 0.18o.
This agrees with the noise levels in our visual
tracking sensor.

Performance of the EKF when applied to es-
timate positions of the RUAV is shown in Fig. 2.
For the sake of observation convenience, estima-
tion results for the first 10 s are plotted. It is no-
ticed that noise effects in positions are attenuated
efficiently. Also, the unknown ship positions are
estimated accurately, as shown in Fig. 3. It takes
around 80 s for the EKF to capture the system dy-
namics accurately. In particular, deck displace-
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Fig. 4 Summed squared errors for different
model orders
ment is estimated smoothly, which greatly con-
tributes to extracting instantaneous mean deck
position for landing operations.

4.2 Extracting the trend of real deck dis-
placement

We firstly seek to collect adequate length of esti-
mated displacement data. The length of the data
window is chosen based on the SNR in Eq. (??).
Given the predefined SNR level SNR=35 dB, it is
found that 600 samples are required to extract the
slow-varying trend. Therefore, the window width
is set N = 600. The model order is chosen based
on the SSE shown in Fig. 4. The order n = 13 is
selected to make a trade-off between match accu-
racy and computational burden.

The deck trends are given in Fig. 5 and Fig.
6 for two groups of real deck data (red dotted).
Since measurement noise is always present, an
EKF is designed to smooth out the deck mo-
tion measurements. This enables the proposed
method to deal with measurements with large
noise level, thus improving the robustness. It is
seen that the estimated deck motion (green solid)
is smoother than the noisy measurements (black
solid) and makes it easier for the PA to handle.
The estimated deck motion using the proposed
PA is shown on the same graphs (blue dotted),
it is seen that data produced by the Prony model
match the measurements well. The standard de-
viations are 0.82 cm and 0.91 cm for Fig. 5 and
Fig. 6. Based on the proposed PA, the deck
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Fig. 5 Extracting monotonous trend of real deck
displacement (group 1)

trend can be estimated about 1 minute, and suf-
ficient time is given for trajectory planning and
controller design.

5 Conclusion

In this paper we focus on building a proper pro-
cedure for extracting the trend of an oscillating
deck. A practical EKF is designed to estimate
the unknown ship displacement motion. A mod-
ified PA was proposed with model order identi-
fied by minimizing squared estimation errors and
model coefficients determined using the FFRLS.
Also, the dominant modes are found out based
on a box threshold selection criterion. Simulation
results justify the suitability of our procedure for
extracting the deck trend.
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