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Abstract  

The present paper presents a theory of sound 

generation by surfaces of in arbitrary motion, 

with two generalizations relative to the Ffowcs-

William Hawkins (FWH) equation: (i) it allows 

for the presence of a steady, non-uniform 

potential flow of low Mach number; (ii) it 

includes the effects on the radiation field of 

reflections from solid surfaces, e.g. those which 

cause non-uniformity of the flow. The final 

result is a generalization of the Khirchoff 

integral with: (i) a retarded time modified by 

sound convection by the mean flow; (ii) position 

coordinates of observer and source modified to 

account for the presence of the obstacles which 

reflect sound waves and cause the mean flow to 

be non-uniform. 

1   Introduction  

In most of the aeroacoustics literature, the 

modeling of sound generation by surfaces in 

arbitrary motion is based on the FWH-equation 

[1-3], which has effectively superseded an 

earlier attempt at the same result [4]. Two of the 

most important applications of the FWH 

equation are propeller and rotor noise. A variety 

of methods have been used in connection with 

the noise aircraft propellers [5-34] and the noise 

of helicopter rotors [35-46]. In both applications 

a non-uniform mean flow may be generally 

present, requiring a generalization of the FWH 

equation, that assumes a medium in uniform 

motion. A few examples can be given of non-

uniform mean flow effects: (i) for an helicopter 

in hover, the entrainment of ambient air by the 

rotor causes a non-uniform mean flow; (ii) for 

an helicopter in forward (or other translational) 

flight there is in addition an incident stream, that 

is uniform only far from the helicopter, even for 

straight and steady flight; (iii) the noise of an 

aircraft propeller in flight is also affected both 

by the aircraft speed and entrainment of ambient 

air, leading an non-uniform flow. Since the 

FWH equation assumes a medium in uniform 

motion, these non-uniform mean at flow effects 

are not included. This suggests is an extension 

of the FWH equation allowing (Figure 1) for 

sound generation by surfaces in arbitrary motion 

in a flowing medium. The effect of a steady, 

potential, low Mach number mean flow on 

sound has been shown [47-51] to be equivalent 

to a change in retarded time; this can be 

explained as the effect of convection of sound 

by the mean flow. Thus it may be expected that 

sound generation by surfaces in arbitrary motion 

in a steady, low Mach number potential flow, be 

represented by the Khirchoff integral extended 

in three ways: (i) with the spherical spatial 

decay modified by a Doppler factor due to 

source motion, as in the FWH equation; (ii) the 

effect of a mean flow, either uniform with no 

restriction on Mach number [52-56] or steady, 

potential of low Mach number [47-51] is to 

modify the retarded time; (iii) both in the 

Doppler factor and in the retarded time the 

position vectors of observer and source are 

replaced by modified position vectors 

incorporating the unit perturbation potential of 

the mean flow. This change also accounts for 

the scattering of sound by the obstacle(s) which 

caused the mean flow to become non-uniform. 
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Fig .  1. Observer  (O) r ece iv ing  a d i rec t  (D) 

sound  wave from sound sources(S) on a sur face  

  0ixf  moving  wi th arbi t rary  velocity 
iu  in 

a steady non-uniform po te nt i a l  mean flow of low 

Mach number wi t h  velocity  
ji xU ;  the non-

uni form flow is due to the introduction in an 

uniform s t r ea m of v e l o c i t y  iU  of obs t ac l e ( S )  

(B) t ha t  a lso r e f l e c t  (R) so u nd  wa ve s  towards 

the  obse rver .  

 

After explaining in introduction (§1) the need to 

consider sound generation by moving sources in 

a non-uniformly flowing medium, two 

developments are needed: (§2) the change in 

retarded time due to a steady, non-uniform 

potential, low Mach number mean flow [48], is 

obtained in a different way, that applies also to 

an uniform flow without restriction on Mach 

number;(§3) having accounted for the mean 

flow, as a change in retarded time into the FWH 

equation [3] the latter can be derived, using the 

properties of generalized functions [57-61] in an 

alternative slightly modified way. The 

combination of these results is the Khirchoff 

integral, generalized to moving sources in an 

steady, non-uniform low Mach number mean 

flow, that remains (§4) of convolution type only 

for a uniform flow. This will be applied 

subsequently to the comparison with noise of 

model propellers in wind tunnel tests. It serves 

also to generalize the acoustic reciprocity 

principle [62-65] to moving surfaces in non-

uniform flows (§5). 

2   Influence of steady, low Mach number 

potential flow  

The convected wave equation with sources, 

applies to the acoustic potential: 

 

    

 ,,

,///
2222

txS

txxcxVt

i

iiii




 (1) 

in two cases: (i) a steady, non-uniform, potential 

flow Mach number [47-51]; (ii) an uniform flow 

of arbitrary March number [52-56]. It is 

transformed [48] to the classical wave equation: 

 

     ,,,//
22222 txStxxct Iii  

 (2) 

by a change in time: 

 

     ,,,,/ 2 txtxcxtt iii       (3a,b) 

 

where   denotes the potential of the mean flow: 

    .iji

x

i dzzVx
i

                       (4) 

The interpretation is that convection of sound by 

the mean flow changes retarded time, as will be 

shown next.  

The retarded time, defined as the difference 

between the time t of reception by an observer 

located at position xi, of the sound emitted at 

time  by a source at yi, is given by: 

 

   ,
1

1  dwt
i

i

x

y



                       (5) 

 

where  1w  is the local speed of propagation, 

that equals the sound speed c (constant at low 

Mach number) plus the mean flow velocity Vi 

projected on the direction of propagation from 

observer to source: 

 

,iiiiiii nzyxznVcw   (6a,b) 

 

where ni is a unit vector. Substituting (6a) in (5) 

yields the retarded time: 
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where the Mach vector (7b) was introduced. At 

low Mach number this simplifies to: 

 

    ,/1/1  dcnVct
i

i

x

y
ii                (8) 

 

which is integrated readily: 

 

     ,// 2cyxcyxt iiii         (9) 

 

using the mean flow potential (4) at observer 

and source position. For the classical wave 

equation in a medium at rest the retarded time 

would be given by (l0a): 

 

     ,/

,/

2cyxtt

cyxt

ii

ii






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      (10a,b) 

 

and comparison of (10a) with (9) proves the 

time transformation (l0b). The latter (3a) differs 

from (l0b) in omitting [48] the term  iy  on 

the grounds that the flow potential is defined to 

within an additive "constant"; however, in the 

case of a source distribution, this "constant" will 

have to be evaluated at different source points, 

and it is preferable to retain  iy  in (9) and 

(l0b). 

In the case of an uniform flow (5,6a) simplify 

to: 

 ,/: iiiii nVcyxtconstV      (11) 

 

leading to the retarded time: 
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without restriction on Mach number. At low 

Mach number the retarded time simplifies to: 

 

 
;:1

2

2

c

yxV

c
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tM iiiii 


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    (13) 

 

this (13) agrees with (9) for an uniform flow, 

because then the flow potential is  = Vixi. The 

preceding results apply [47-51] to sound in a 

steady, low Mach number potential mean flow 

in free space. The non-uniform flow may be 

caused by obstacles, which also scatter sound; 

the effect of these obstacles as sound scatterers 

is represented [47,49] by replacing xi  by  

,iii xX   where i  is the unit perturbation 

potential. This further generalization is to be 

pursued later (§4), since the aim next (§3) is to 

consider sound generation by moving surfaces. 

3   Arbitrary moving surfaces as sources of 

sound  

Sound generation by surfaces in arbitrary 

motion in a medium at rest is specified by the 

FWH equation, which has originally derived [3] 

using the properties of generalized functions 

[57-61]; these properties are used next in a 

somewhat different but equivalent way, 

considering (Figure 1) also a surface  0iyf , 

with interior 0f  and exterior 0f , so that 

the mass density  1  inside and  2  outside 

can be represented by the generalized function: 
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  (14) 

 

where H(f) is the Heaviside's unit function, viz. 

0 for f < 0 and 1 for f > 0. Defining similarly the 

mass flux iv , and using the equation of 

continuity on both sides of the surface: 

 
       ,0//:2,1  i

a

i

aa xvt    (15) 

 

leads to: 

 

 

        ,//

//

ii

ii

xfHvtfH

xvt








(16) 

 

where [....] denotes a difference across the 

surface, e.g.: 

 

           ., 112 fH   (17a,b) 
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The derivatives of the Heaviside unit function 

involve the Dirac delta function  f  viz.: 

 

 
 

 
  ,,

t

f
f

t

fH

x

f
f

x

fH

ii 
















 (18a,b) 

 

where ixf  /  in (18a) is normal to the surface, 

and tf  /  in (18b) may be interpreted by 

considering the motion of the surface (19a): 

 

,///0 ii xfutfdtdf   (19a) 

  ,/ f

i

i dtdxu                                      (19b) 

 

where (19b) is the velocity of an arbitrary point 

on the surface. From (19a) follows (20a): 

 

,/// jiiii xfNuxfutf  (20a) 

  ,/// xfxfN ii   (20b) 

 

where iNu1  is the velocity projected on the 

normal (20b) to the surface. 

Substituting (18a, 20a) in (16) leads to the 

equation of continuity valid in all space: 

 

 
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This equation (21) can also be derived by an 

equivalent integral method [3]. The equation of 

momentum on the two sides of the surface: 
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where pij is the total stress tensor, leads by the 

differential method above to: 
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Substitution of (18a, 20a) leads to the 

momentum equation in all space: 

 

   
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This equation could also or alternatively be 

derived by the integral method [3]. 

The surface is assumed to be rigid and 

impermeable, so that on it velocity equals that 

of the fluid (25a) and inside the fluid is assumed 

to be at rest: 
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also the acoustic pressure is separated out of the 

total stresses: 

 

,,' 2 cpppp ijijij   (26a,b) 

 

leading to the continuity (21) and momentum 

(24) equations: 

 

    ,/// iiii xffvxvt   (27a) 
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Elimination between these leads to the classical 

wave equation (28a): 
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where the source S in (28b) has three terms: (i) 

the Lightill tensor, representing the noise of 

turbulence; (ii) the surface stresses, 

corresponding to 'loading' noise; (iii) the surface 

volume change, corresponding to 'thickness' 

noise. The former (i) are volume sources in the 

body of the fluid and the latter (ii-iii) source 

distributions on the moving surface. This 
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equation and its solution are generalized next to 

include the effects sound convection by the non-

uniform mean flow, and of sound scattering by 

acoustically-compact bodies which cause the 

incident stream to become non-uniform. 

4   Khirchoff integral with modified retarded 

time and Doppler factor  

The solution of the wave equation with sources 

(28a) is [62-65]: 

 

 

  ./,

,4

31

2

iiiiii

i

ydyxcyxtyS

txc









(29) 

 

using the retarded time for a medium at rest. 

Neglecting the volume sources represented by 

the Lighthill tensor, viz. the first term of the 

r.h.s. of (28b), the two remaining terms 

represent sound sources on the moving surface, 

leading [3], for an unstretched surface of area 

elements dS to: 

 

 
 

 
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/

/,
,4 dS

cyxuyx

cyxtyQ
txp
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
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where (26b) was used, and the source term is: 

 

      .//,   iiijiji NvyNpyQ (30b) 

 

In the presence (Fig. 1) of a non-uniform, 

steady, low Mach number potential mean flow, 

of potential (xi), the retarded time in (30a) is 

changed [47] to (9): 

      

          (    )   

∫ (     |     |  ⁄  
                           [ (  )   (  )]  

 ⁄ )  
 {|     |    (     )  ⁄ }

      (31) 

 

The moving surfaces not only act as sources of 

sound, but also cause a non-uniform flow of unit 

potential i: 

 

     ,iiijiii XVxxVx    (32a) 

 ,jiii xxX                                (32b) 

 

where 
iV  is the free stream velocity far from the 

surfaces; the surfaces also scatter sound waves, 

and this is represented [47-49] by replacing xi,yi 

by Xi,Yi given by (32b) in (31): 
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that is the final generalization; the substitution 

(32b) holds [47] for compact scatterers, that is 

rigid bodies with scale much smaller than the 

wavelength. 

The generalized Khirchoff integral (33) thus 

represents: (i) sound generation by surfaces 

(30b) in arbitrary motion with velocity ui in 

(19b); (ii) the effect of a non-uniform, steady 

low-Mach number potential mean flow, through 

the retarded time in (31); (iii) the scattering of 

sound by the surfaces through the modified 

coordinates (32b) in (33). If the source is a 

function of bounded variation in a finite or 

infinite time internal, then it can be represented 

respectively by a Fourier series [66-69] or a 

Fourier integral [70-72]. Thus there is no loss of 

generality in considering one term, i.e. an 

harmonic time dependence: 

 

     ,exp,  iyQyQ ii          (34) 

 

so that the acoustic field is now given by: 
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The latter is a convolution integral [73-76] of 

the type: 

 

       ,* dSyxgyhxgh iiii  (36) 
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only if Xi is a linear function of  xi in (32b), i.e. 

in  the absence of a perturbation potential 

0i , when the mean flow is uniform 

constVi  , and the flow potential   iii xVx   

is  linear in ix .  

Thus, for an uniform mean flow, the acoustic 

field is given by: 
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    (37) 

 

without restriction on Mach number, since the 

retarded time (12) was used. In the case of a 

time-harmonic source (34) this becomes: 
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where the A-effect is due to source motion and 

the B-effect due to the mean flow: 

 

      
:iii yxz   
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2
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The acoustic field is then specified by the 

convolution integral: 

 

 

     ,/exp*

,4

i

ti xBciAQe

txp

 








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that has the usual properties, such as equality of 

the spatial derivatives at the observer and source 

ii yx  //
. 

5   Discussion  

Three types of radiation integrals have been 

considered: (i) the original Khirchoff integral 

(29), that is the solution of the classical wave 

equation in a medium at rest [62-65], and has 

been extended to a medium in uniform motion 

with arbitrary Mach number [52-56]; (ii) the 

first extension (30a), which is a solution of 

FWH equation (28a,b), modeling the generation 

of sound by sources in arbitrary motion, in a 

medium in uniform motion with arbitrary Mach 

number [3]; (ii) the second extension [47-51] to 

a steady, non-uniform low Mach number 

potential mean flow; (iii) if the non-uniform 

flow is due to the presence of obstacle(s) in an 

uniform incident stream, their effects on 

compact scatterers of sound is replaced by the 

replacement of the position vector by a modified 

position vector (32b), that includes the unit 

perturbation potential of the mean flow; (iv) the 

combination of the two preceding extensions (ii) 

and (iii) leads (Figure 1) to the most general 

form (33) of the Khirchoff integral, applying to 

sound generation by surfaces in arbitrary 

motion, in a steady, non-uniform low Mach 

number potential mean flow, due to obstacle(s) 

in a free stream, and including the scattering of 

sound by these obstacles. 

The extension of classical wave theory to non-

uniform flows requires two generalizations: (i) 

the form of the wave operator that describes 

sound propagation; (ii) the general integral 

describing the radiation of sound. There are at 

least 60 forms of the acoustic wave equation 

[51,77] generalizing the classical wave operator 

to potential and vertical, steady and unsteady 

flows, with or without viscous and thermal 

dissipation, for linear and non-linear waves. The 

extension of the Kirchoff integral as a general 

forced solution of the classical wave equation is 

available for the convected wave equation. In 

the case of a uniformly moving medium the 

extension is a Galilean transformation to a 

moving frame where the whole fluid is at rest, 

replacing local by material time derivatives, and 

leading from the classical to the convected wave 

equation. In the case of a non-uniform flow 

there is no uniformly moving frame where the 

whole fluid is at rest. It can be proved [47-51] 

that the convected wave equation holds for a 

steady potential flow at low Mach number; it no 

longer holds [50, 51] if any of these restrictions 

is removed. 
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The original Khirchoff integral proves the 

reciprocity theorem allowing interchange of 

source and observer positions in a medium at 

rest: 

   ,,,,,   VxyVyx


   (41) 

 

and its extensions to moving media show that 

[47-51] the reciprocity principle is still valid if 

the mean flow velocity is reversed, in order to 

leave the retarded time unchanged; for example, 

if the mean flow is from observer to source, 

when the observer and source positions are 

interchanged, the direction of the mean flow has 

to be reversed, so that the flow is still from 

observer to source, and the mean flow 

convection effect on the retarded time is the 

same. For the inversion of the non-uniform 

mean flow over all space, it is sufficient to 

reverse the uniform incident free stream, as 

indicated in (41). The extension of the acoustic 

reciprocity principle, with mean flow reversal, 

has been shown to apply to: (i) a uniform mean 

flow of arbitrary Mach number; (ii) a steady, 

non-uniform potential mean flow of low Mach 

number. 

The FWH equation has been applied to rotor 

and propeller noise mostly using numerical 

discretization schemes for the blades and 

surrounding medium and using the mean flow to 

calculate the magnitude of aerodynamic sound 

sources. It applies to moving surfaces and 

generalizes the earlier result for a static surface 

[72]. An interesting alternative would be an 

analytical approach, taking into account the 

effect of the mean flow on the amplitude and 

phase of sound, in uniform as well as non-

uniform mean flows. In the present work these 

effects are included, so that they can be to an 

analytical theory of propeller noise, e.g. 

allowing for angle-of-attack effects. The noise 

of propeller aircraft is of greater concern at take-

off and landing, when the incidence effects 

change both the sound sources and the radiation 

pattern. This is therefore an important 

application of the present theory. The analytical 

approach is well suited to the problem of 

propeller design synthesis: given a desired noise 

radiation pattern in the far-field, determine a 

pressure distribution in the propeller that will 

produce it. This is the inverse of the usual 

problem of determining the far-field noise from 

the pressure distribution on the propeller. In 

general the inverse problem has no unique 

solution, since many sound source distributions 

can produce the same sound field. However, if a 

parametric form of sound source distribution is 

given, the parameters can be chosen to 

approximate as closely as possible a desired 

sound field, and the solution of the problem can 

be made unique. 
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