

FLIGHT TESTING OF NOISE ABATING RNP PROCE-DURES AND STEEP APPROACHES

Helmut H. Toebben*, Vilmar Mollwitz*, Lothar Bertsch**, Bernd Korn*, Dirk Kügler* DLR German Aerospace Center, Institute of Flight Guidance*, Institute of Aerodynamics and Flow Technology**, Lilienthalplatz 7, 38108 Braunschweig

> *helmut.toebben@dlr.de* **Keywords**: steep approach, curved approach, noise abatement procedures

Abstract

To test different types of noise abatement approach procedures the Institute of Flight Guidance and the Institute of Aerodynamics and Flow Technology performed flight tests on the 6th September 2010 with a Boeing 737-700. In total 13 approaches to the Research Airport in Brunswick were flown while the approach area of the airport was equipped with six noise measurement microphones. Brunswick airport is equipped with an experimental ground based augmentation system (GBAS) which allows the implementation of 48 ILS lookalike precision approach procedures with different approach angles simultaneously.

1 Introduction

One of the major concerns regarding the expected growth in air traffic is the increase of air pollution and the related climate change as well as the increase of noise especially in the vicinity of airports.

Actually there are two large research programs in Europe which address this development. On the one hand it is the Joint Technology Initiative "Clean Sky JTI" [1] which will develop breakthrough technologies related to the aircraft itself to reduce environmental impact. On the other hand it is the Single European Sky ATM Research (SESAR) [2] program which is the technological and operational dimension of the Single European Sky (SES). SESAR is trying to make flying more environmentally friendly from the air traffic management point of view. Both programs look for steep changes in air transport with major improvements but also with a relatively large time horizon.

Minor improvements can be reached already nowadays by implementing new approach procedures that can be flown by many of today's aircraft.

This paper describes the design of new approach procedures for Frankfurt airport which were implemented at the research airport Brunswick and flight tested with a Boeing 737-700. The approach procedures consisted of steep approaches [3] with approach angles from 4.5° over 5° to 5.5° as well as of marginal steeper approaches with 3.2° approach angle instead of the widely use 3.0° as well as area navigation (RNAV) procedures and required navigation performance (RNP) procedures.

In order to fly the different approach angles under precision approach conditions the experimental ground based augmentation system (GBAS), which is in operation at the research airport Brunswick since 2009, delivered the necessary navigation performance.

To guarantee the highest precision all the approaches where flown in 0.10-nmi RNP mode.

2 Procedure Design

The RNAV procedures that have been validated in the flight trials have originally been developed by the "forum flughafen und region" in cooperation with the German Air Navigation Service Provider Deutsche Flugsicherung GmbH (DFS) for the use at Frankfurt airport [4]. The procedures, which can be seen in Fig. 1 (green lines), are designed to avoid the densely populated area of Offenbach, which lies under the extended centerlines (blue line) of the

two main runways of Frankfurt (25L and 25R) at a distance of about 14km or 8NM from the threshold. The newly designed procedures will lead the aircraft around Offenbach in the south and onto the extended centerline at the waypoint OBERA. Here, the aircraft intercept the ILS-Approach at an altitude of 2000ft, about 1650ft above the thresholds. As these procedures should be evaluated at Braunschweig airport, they were transferred to Braunschweig as can be seen in Fig. 2 [5] [6] [7] [8] [9]. The distance and bearing from the threshold of Braunschweig runway 26 to the different waypoints are exactly the same as to the waypoints from Frankfurt's runway 25L. Hence the transferred procedure looks exactly the same as the original one, only rotated to fit the different runway orientation at Braunschweig airport.

Fig. 1 Straight in (blue line) and RNAV (green lines) procedure for runway 25 in Frankfurt (EDDF)

Fig. 2 Straight in (blue line), RNAV (green lines) and RNP (red line) procedure for runway 26 in Brunswick (EDVE)

Fig. 2 also shows a third procedure in the south leading from waypoint VE907 via VE906 and ENTSD to the runway. This procedure was added by DLR to investigate the feasibility of

RNP-approaches, where the aircraft is lead onto the extended centerline in a fixed-radius turn. When the aircraft intercepts the extended centerline, it has a height of just 1000ft above the threshold, while already descending on a constant flight path angle of 3° .

The three procedures can also be seen in detail in Fig. 3 and Fig. 4. The abovementioned third procedure leads from VE906 to the waypoint ENTSD, which is the Final Approach Fix (FAF), but does not lie on the extended centerline. At ENTSD the aircraft will intercept at an altitude of 2000ft a glide slope of 3° leading constantly to the threshold of runway 26. Behind ENTSD, the aircraft - now in a constant descent of 3° - enters at VE905 a turn with a fixed radius of 2.0NM which ends at VE904 exactly on the extended centerline. At VE904 the height above threshold on the 3° glide slope is precisely 1000ft. From there, the aircraft continues on the centerline and on the constant glide path to the runway, as on any ordinary ILS-approach.

Fig. 3 RNAV and RNP procedures for Brunswick (EDVE) in detail

Fig. 4 Fixed radius turn of RNP procedure for Brunswick (EDVE) in detail

The expected noise reduction through the avoidance of the dense populated areas of Offenbach can be seen in Fig. 5.

Fig. 5 Comparison of awakenings per flight for the different scenarios based on a rough estimation of population density: a) estimation of the population density, b) affected people for a straight in, c) affected people for RNAV, d) affected people for RNP

Based on the Corinne Land Cover (CLC) data [10] for the Frankfurt area, a simplified scenario has been designed called Prankfurt. The land usage data allows a rough estimate of the population density similar to the Frankfurt area, Fig. 5 a). For this scenario, the aircraft noise induced awakenings [11] have been evaluated with DLR's noise prediction tool PANAM [12]. The prediction results for the Prankfurt scenario confirm the expected noise dislocation effects. Fig. 5 b) shows the prediction for the straight in 3 degree approach to runway 25 L. Compared to this approach, the RNAV procedure results in a 16 % reduction in simulated awakenings for the Prankfurt scenario (Fig. 5 c)). The RNP procedure will even decrease this number by 40 %, as depicted in Fig. 5 d).

Besides the RNAV and RNP procedures also slightly steeper approaches with 3.2 degree approach angle on a 15 nm long straight final were tested that were also developed by the forum flughafen und region in cooperation with the German Air Navigation Service Provider Deutsche Flugsicherung GmbH (DFS) for the use at Frankfurt airport [13]. On top DLR tested steep approaches at 4.5, 5.0 and 5.5 degree on straight 15 nm long final.

3 Test

For the flight test and the noise measurements a Boeing 737-700 from Air Berlin was chartered performing 13 different approaches to the research airport in Brunswick. The aircraft was flown by Captain Marc Altenscheidt (chief pilot of the 737 fleet) and Captain Tim Techt (training captain of the 737 fleet). The flight trials were conducted in a series of two legs.

Table 1 Test matrix 1st leg

	Approach	Final Approach	Remarks
	Transition		
BWE –	RNAV Ap-	GLS 4.0° GPA	Low Ap-
BWE	proach		proach
	BSRVL		
BWE –	RNP Ap-	ILS 3.5° GPA	Low Ap-
BWE	proach		proach
	BSHRY		-
BWE –	RNAV Ap-	GLS 4.0° GPA	Low Ap-
BWE	proach		proach
	BSHRY		-
BWE –	Traffic Pat-	GLS 3.0° GPA	Low Ap-
BWE	tern 26,		proach
	15NM Final		
BWE –	Traffic Pat-	GLS 3.2° GPA	Low Ap-
BWE	tern 26,		proach
	15NM Final		
BWE –	Traffic Pat-	GLS 4.5° GPA	Low Ap-
BWE	tern 26,		proach
	15NM Final		
BWE –	Traffic Pat-	GLS 5.0° GPA	Low Ap-
BWE	tern 26,		proach
	15NM Final		
BWE –	Traffic Pat-	GLS 5.5° GPA	Low Ap-
BWE	tern 26,		proach
	15NM Final		

The approach area was equipped with a set of 6 noise measurement microphones. The position of the microphones can be seen in Fig. 2. The two positions called "13034 straight in" and "13034 segmented" are located in a distance of 13034 meters to the runway threshold and correspond to a noise measurement point which also exists at Frankfurt airport and is located in the city center of Offenbach. The two points called "Fahrwerk I" and "Fahrwerk II" are located in an area where the gear should be down.

The measurement point "BSOBR" is located at a point where the flaps setting should be finalized. At the measurement point "1000 ft" the aircraft should be established on final approach especially after following the RNP route.

Table 2	Test	matrix	2^{nd}	leg
---------	------	--------	----------	-----

	Approach	Final Approach	Remarks
	Transition		
BWE –	Traffic Pat-	GLS 3.0° GPA	Low Ap-
BWE	tern 26,		proach
	15NM Final		
BWE –	Traffic Pat-	GLS 3.2° GPA	Low Ap-
BWE	tern 26,		proach
	15NM Final		
BWE –	RNAV Ap-	GLS 3.0° GPA	Low Ap-
BWE	proach		proach
	BSRVL		-
BWE –	RNAV Ap-	GLS 3.0° GPA	Low Ap-
BWE	proach		proach
	BSHRY		
BWE –	RNP Ap-	ILS 3.5° GPA	Low Ap-
BWE	proach		proach
	BSHRY		-

4 Results

4.1 Precision

The precision with which the aircraft follows the predefined flight track is a crucial item in the Required Navigation Performance concept (RNP). As the name implies, RNP requires the aircraft to show navigational performance, i.e. precision, within a certain value, e.g. 0.3 nautical miles (NM), which is then called RNP0.3. Accordant to the RNP concept, an RNP of for instance 0.05 NM means it is assured the aircraft is within a radius of 0.05 NM around the indicated position 95% of flight time. The onboard navigation systems of the aircraft constantly monitor the Actual Navigation Performance (ANP). Whenever the ANP is above the RNP, in this example worse than 0.3 NM, the procedure for which the certain RNP is required has to be aborted. The ANP itself is continually calculated on-board by the navigational systems depending on data availability and general assumptions about drift rates as well as data integrity under different circumstances. The mentioned assumptions are based on experience

obtained during the certification process of a certain system used for navigation in the aircraft or general rules and formulae outlined in the certification guidelines.

Fig. 6 Actual Navigation Performance (ANP) and altitude during 1st leg

Fig. 7 Actual Navigation Performance (ANP) and altitude during 2nd leg

Fig. 8 Actual Navigation Performance (ANP) and altitude during approach phase and cruise flight

Fig. 6 to Fig. 8 show the altitude and the ANP during the flight evaluations in Braunschweig. Fig. 6 shows ANP during the first leg, containing several approach procedures. Fig. 7 shows the ANP during the second leg, also containing several approach procedures. The simple result derived from these Fig.s is that the ANP

always remained at the value of 0.02 NM. GPS and an Inertial Navigation System (INS) were used in combination to achieve this value. It has been stated by the flight crew involved in the flight evaluations that from their experience, the ANP is almost always 0.02 NM near the ground and increases only during cruise flight at higher altitudes. As evidence for this, Fig. 8 shows altitude and ANP during a flight that first contained several short approaches, i.e. stayed near the ground, thereafter one cruise flight at a typical cruise altitude of 27000 ft. When the aircraft is above 10000 ft and during taxiing after completion of the flight, the ANP is higher than 0.02 NM. Nevertheless, ANP never exceeded 0.031 NM during this flight campaign and thus always remained below the RNP of 0.1 NM required for approaches by a fair margin.

Fig. 9 Position of the microphones (red pinboard needles) and GPS Track of the test flights

4.2 Noise

The outcome of the noise measurements has to be viewed with respect to the fact that the measurements were single events. As the conditions always vary slightly during such trials (especially the wind) one would need a much higher number of flights, a higher number of microphones, and a correlation with recorded weather data to get a good statistic. Nevertheless, based on these actual measurements earlier simulation results and expected noise dislocation effects might be confirmed. Table 3 and 4 show selected results of the measurements. The maximum levels of the a-weighted sound pressure level SPL(A) are provided. Measurements indicate, that RNAV and RNP procedure reduce noise levels in the sensitive area of Offenbach by 6 to 8 decibel (A) compared to a straight in approach, i.e.a clearly noticeable change in apparent loudness. The turn on final approach at the end of the RNAV and RNP procedure did not show any noise level increase compared to a straight in approach. There are minor variations between the different approaches due to different approach speeds.

The slightly steeper approaches at an angle of 3.2 degree are a little bit less noisy than the 3.0 degree approaches. A reduction of 0.4 decibel (A) was measured during the first leg. During the second leg an increase by 4.4 decibel (A) was measured on the 3.2 degree approach. This increase can be traced back to a higher approach speed (52 km/h) due to a slightly stronger tailwind.

Much larger reductions of the noise level were achieved with the steeper approaches at angles of 4.5, 5.0 and 5.5 degree. At an angle of 4.5 degree a reduction of 2.1 decibel (A) was measured compared to a 3.0 degree approach. At an angle of 5.0 degree the reduction was 3.6 decibel (A). Along the 5.5 degree approach it was as high as 4.6 decibel (A), which is a clearly noticeable reduction of perceived ground noise levels.

5 Conclusion

The noise measurement results for the segmented RNAV and RNP approaches obviously showed a high reduction of the noise level for the areas lying in the east of Frankfurt airport like Offenbach. Therefore these routes are in operation by Frankfurt airport since 10th February 2011 in the time between 11.00 pm and 5.00 am.

Fig. 10 Comparison of two noise contours. The outer noise contour shows lines of equal noise for a 3 degree approach. The inner noise contour with the constriction shows lines of equal noise for a 5 degree, at the position of the pin needle changing to 3 degree.

At approach angles of 3.2 degree the tailwind might become a problem sometimes. To reduce the speed the aircraft has to put the flaps earlier which might lead to a higher noise level than sticking to the 3.0 degree approach.

Steeper approaches show a higher reduction in noise level direct under the flightpath but actually can be flown down to landing only by a small number of aircraft, primarily turboprops.

Therefore DLR is going to investigate the flyability of segmented steep approaches with its test aircraft D-ATRA an Airbus 320. This means the approach will start at high approach angles like 5.0 degree for example and during the approach the approach angle will be reduced to 3.0 degree. This would reduce the noise level at least in the region with the steep approach angle. Fig. 10 shows a comparison of two noise contours calculated with the DLR noise prediction tool PANAM [11] for two different approach profiles. The outer noise contour shows lines of equal noise for a 3 degree approach. The inner noise contour with the constriction shows lines of equal noise for an approach starting at an approach angle of 5 degree an then (at the position of the pin needle) changing to 3 degree. The noise reduction in the area with steeper approach angle clearly can be seen, but there might be very a small increase around the area where the approach angle is changed.

Acknowledgements

Thanks go to Airberlin, Fraport and Deutsche Flugsicherung DFS that were involved in preparing and executing the trials. Special thanks go to the team of people of Fraport and DLR that operated the noise measurement stations.

References

[1] Clean Sky JTI, http://www.cleansky.eu/. 2010

[2] Single European Sky ATM Research. http://www.sesarju.eu/. 2010.

[3] Geister R.. Segmented steep precision approaches based on GLS. CEAS Aeronautical Journal. http://dx.doi.org/10.1007/s13272-011-0016-6. 2011

[4] Forum Flughafen und Region. http://www.forumflughafenregi-

on.de/uploads/media/Hintergrund_segmented_Layout.pdf , 2010.

[5] ICAO. Doc 9613. Performance – Based Navigation (PBN) manual. International Civil Aviation Organisation. 3ed., 2008.

[6] ICAO. Doc 8168. Procedures for air navigation services – aircraft operations – volume I – flight procedures. International Civil Aviation Organisation, 5 ed., 2006.

[7] ICAO. Doc 8168. Procedures for air navigation services – aircraft operations – volume II – construction of visual and instrument flight procedures. International Civil Aviation Organisation, 5 ed., 2006.

[8] EUROCONTROL. RNAV Approaches European Organisation for the Safety of Air Navigation. http://www.ecaenav.com/rnav, 2010.

[9] ICAO, Doc 9905 Required Navigation Performance Authorization Required (RNPAR) procedure design manual. International Civil Aviation Organisation, 1ed., 2009.

[10] CORINE Land Cover (CLC2006); Federal Environment Agency, DLR-DFD 2009

[11] M. Basner, A. Samel, U. Isermann. Aircraft noise effects on sleep: Application of the results of a large polysomnographic field study. Journal of the Acoustical Society of America, 119(5), pages 2272-2784. 2006

[12] L. Bertsch, S. Guerin, G. Looye, M. Pott-Pollenske. The Parametric Aircraft Noise Analysis Module - status overview and recent applications. AIAA-2011-2855, 17th AIAA/CEAS Aeroacoustics Conference, Portland, Oregon, USA, 5-8 June 2010.

[13] Forum Flughafen und Region. http://www.forumflughafenregi-

FLIGHT TESTING OF NOISE ABATING RNP PROCEDURES AND STEEP APPROACHES

on.de/uploads/media/Hintergrund_erhoehter_Anfluggleit winkel_3_2_Grad_Layout.pdf, 2010.

Copyright Statement

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material included in this paper. The authors also confirm that they have obtained permission, from the copyright holder of any third party material included in this paper, to publish it as part of their paper. The authors confirm that they give permission, or have obtained permission from the copyright holder of this paper, for the publication and distribution of this paper as part of the ICAS2012 proceedings or as individual off-prints from the proceedings.

Table 3 Noise measurements 1st leg

	LASmax [dB(A)]	Altitude [m] SL	Speed [km/h]	Flaps [°]	Gear
RNAV RVL GBAS 4°					
13034 "segmented"	65.8	798	333	5	າມກ
Fahrwerk I	no data	,,,,	000	c	۳P
Fahrwerk II	59.1	733	327	5	up
BSOBR	71.4	637	310	15	down
1000 ft	71.3	479	269	15	down
RNP HRY ILS 3.5°	;_	.,,,	_ • ;		
BSOBR	58.8	632	302	15	down
1000 ft	72,5	443	279	15	down
RNAV HRY GBAS	, _,e			10	40 111
4°					
13034 "segmented"	67.1	805	317	10	up
Fahrwerk I	57	783	315	10	up
Fahrwerk II	63,3	741	312	10	up
BSOBR	69,8	678	299	15	down
1000 ft	73,7	482	253	15	down
3.0° Fraport	,				
13034 "straight in"	63	789	327	5	up
LMP Fahrwerk I	65,4	744	330	5	up
LMP Fahrwerk II	68,1	689	326	15	down
BSOBR	72,1	583	307	15	down
1000 ft	73,3	387	260	15	down
3.2° Fraport					
13034 "straight in"	62,5	846	331	5	up
Fahrwerk I	64,1	794	334	5	up
Fahrwerk II	68	733	337	5	up
BSOBR	71,6	626	312	15	down
1000 ft	73,8	417	266	15	down
GBAS 4.5°					
13034 "straight in"	64,8	1124	264	40	down
Fahrwerk I	65,4	1049	263	40	down
Fahrwerk II	64,8	972	260	40	down
BSOBR	65,5	839	259	40	down
1000 ft	70,7	536	250	40	down
GBAS 5.0°					
13034 "straight in"	63,1	1225	276	30	down
Fahrwerk I	62,2	1194	268	40	down
Fahrwerk II	65,3	1118	264	40	down
BSOBR	65,1	923	273	40	down
1000 ft	68,3	580	261	40	down
GBAS 5.5°					
13034 "straight in"	62,3	1234	283	30	down
Fahrwerk I	62	1232	268	40	down
Fahrwerk II	63,4	1180	259	40	down
BSOBR	64	1012	254	40	down
1000 ft	67,4	638	267	40	down

FLIGHT TESTING OF NOISE ABATING RNP PROCEDURES AND STEEP APPROACHES

	LASmax [dB(A)]	Altitude [m] SL	Speed [km/h]	Flaps [°]	Gear
3.0° Fraport					
13034 "straight in"	62,5	805	336	5	up
Fahrwerk I	64,5	758	338	5	up
Fahrwerk II	68,9	670	332	15	down
BSOBR	70,9	599	314	15	down
1000 ft	74,2	400	276	15	down
3.2° Fraport					
13034 "straight in"	66,9	852	388	5	up
Fahrwerk I	68,3	804	388	5	up
Fahrwerk II	69,6	736	389	5	up
BSOBR	73,8	633	369	15	down
1000 ft	75,2	420	316	15	down
RNAV RVL GBAS					
13034 "segmented"	67 1	791	326	5	up
Fahrwerk I	57.6	767	324	5	up
Fahrwerk II	61.2	729	315	5	up
BSOBR	70.3	660	292	15	down
1000 ft	74,1	385	286	15	down
RNAV HRY GBAS	,				
3 °					
13034 "segmented"	69,4	747	336	15	down
Fahrwerk I	58,3	715	326	15	down
Fahrwerk II	60,7	648	318	15	down
BSOBR	70,1	565	302	30	down
1000 ft	73,6	391	277	30	down
RNP HRY ILS 3.5°					
BSOBR	57,6	638	327	30	down
1000 ft	72,2	432	294	30	down

Table 4 Noise measurements 2nd leg