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Abstract  

Integrity is a measure for the correctness of the 
position solution and is crucial for safety 
critical applications. The integrity of a 
navigation system can be checked by Receiver 
Autonomous Integrity Monitoring (RAIM). This 
paper will present simulation results of a RAIM 
algorithm using reference points that are nearly 
uniformly distributed on the earth’s surface. 

1   Introduction 

For safety critical applications such as precision 
landing procedures in aviation as well as precise 
maritime harbor applications it is important to 
know how much the user can rely on the 
navigation system. The integrity of a navigation 
system is a measure for the correctness of the 
position solution determined by the system and 
indicates a confidence level for using the 
position information. There are basically three 
different kinds of approaches to provide an 
estimate for this level of trust: GPS combined 
with satellite-based augmentation systems 
(SBAS), the Galileo integrity concept (see [5]) 
by means of the freely accessible Safety-of-Life 
service and the RAIM method (see [1], [3], [4], 
[6], [8]) that can be applied on the user side.  
SBAS is based on differential GPS providing 
the user with corrections. The RAIM method is 
performed directly within the receiver, thus the 
term autonomous monitoring.  

Unfortunately, the GPS+SBAS and the 
Galileo approach are not fully compatible, e.g. 

the Galileo integrity information cannot be used 
for GPS satellites in a combined GPS-Galileo 
satellite scenario available in the near future. 
Therefore, this paper will focus on the RAIM 
method which overcomes this limitation.  

RAIM uses the residuals of an over-
determined position solution, e.g. at least five 
satellites have to be visible to the user. It is an 
method that can be easily implemented since no 
additional hardware is needed beside the 
receiver. The benefits of a navigation system, 
which is able to monitor its own integrity at 
receiver level, are obvious. Furthermore, as a 
result of the reconstruction of the Russian 
GLONASS system as well as the upcoming 
Chinese Compass system, users will be able to 
use lots of satellites (GPS, Galileo, GLONASS, 
Compass) for navigation in the near future.  

2    RAIM availability 

Basically, the RAIM method consists of two 
parts. First we have to take a closer look at the 
geometry of the satellite constellation from the 
user’s point of view in order to check if the 
current geometry allows the RAIM method to 
be applied. If this is the case, RAIM is available 
and during a second step a threshold can be 
calculated. 

The first requirement for the geometry is 
that the number of visible satellites n is at least 
five in order to result in an over-determined 
position solution. 

For every visible satellite we calculate a 
slope value that shows how an error on this 
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satellite will affect the position error of the user. 
This 3d-problem will be decomposed in three 
1d-problems in a user orientated coordination 
system. First, we calculate B as an auxiliary 
quantity 
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where H is the design or geometry matrix, M is 
the transformation of the pseudo-ranges to the 
user orientated coordination system and CovPR 
is the covariance matrix for the pseudo-range 
measurements. 
 

 
Fig. 1. Illustration of the Approximated Radial-Error 
Protected (ARP). 
 

In order to use a conservative estimate we 
assume that an error is occurring on the pseudo-
range measurement which is having the highest 
impact to the position solution, namely having 
the maximum slope value. 

This leads us to the Approximated Radial-
Error Protected (ARP) which is illustrated in 
Fig. 1 and can be calculated as follows 
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The threshold T needed to calculate Eq. (5)-(7) 
will be derived in section 3. 

In the absence of measurement noise, the 
ARP value and the resulting protection level 
(see Fig. 1) will be the same. If there is noise 
and assuming it is normally distributed in each 
position component, the confidence radius Rconf 
will result to 
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where k(Pmd) is the quantile of the normal 
distribution that is only exceeded with the 
probability of missed detection Pmd. 

Overall, this gives us the horizontal 
protection level (HPL) and the vertical 
protection level (VPL) 
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The protection levels are a function of the 
geometry of the satellite constellation from the 
user’s point of view and the requirements in 
terms of integrity and continuity from which Pfa. 

and Pmd can be calculated. 
The alarm limit (see Fig. 1) is the 

maximum position error that can be tolerated for 
a certain navigation procedure (e.g. precision 
approach) without triggering an alarm. 
Normally, one differentiates between the 
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horizontal alarm limit (HAL) and the vertical 
alarm limit (VAL). An overview of alarm limits 
for the different flight phases provided by ICAO 
can be found here [2]. 

Finally, the satellite geometry at the user’s 
position allows for error detection by means of 
RAIM if 

andHALHPL 
  

andVALVPL 
  

.4n
  

If RAIM is not available a warning has to be 
given to the user. 

3    Least Squares Residual RAIM 

The Least Squares Residual (LSR) RAIM 
method is based on the linearized pseudo-range 
measurement equation given as 

 Hxy  (13) 

where y is the n×1 linearizes measurement 
vector (.e.g. differences between the measured 
pseudo-ranges and the ranges calculated based 
on the nominal satellite position), x is the 4×1 
vector containing the incremental deviation with 
respect to the nominal state (e.g. three elements 
for the position components and one for the 
clock bias), H is the n×4 design matrix between 
x and y and ε is the n×1 error vector of the 
measurement which may consist of a 
deterministic and a random component. 

To be able to detect errors and 
inconsistencies, one has to choose a threshold 
which is heavily related to the noise of the 
pseudo-range measurements. Saying that the 
RAIM method is checking the measurements 
with respect to self-consistency, it is obvious 
that the number of measurements n in Eq. (1) 
has to be greater than or equal to 5. 

Solving Eq. (1) in a least square sense will 
result in 
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where x̂  is the least square estimate of x. 

One measurement of consistency suggested 
by [7] is the least squares residual 
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where ŷ  is the least square estimate of the 
pseudo-ranges and I is the n×n unit matrix.  

Let us assume for the moment that all 
pseudo-range measurements will be 
independent and having the same standard 
derivation. Thus, each component of ε and w 
will be normally distributed 
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As mentioned earlier, one needs to find a 
threshold related to noise and inconsistency of 
the pseudo-range measurements. A test statistic 
satisfying these requirements can be found by 
the absolute square sum of residuals, here called 
Sum of Squared Errors SSE, which is 2X -
distributed with n-4 degrees of freedom 
according to Eq. (6) 
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This scalar test statistic has a known probability 
density function under the assumptions made 
above. 

Given a probability of false alarm faP , this 

allows us to calculate a threshold T for this 
probability density function. If the test statistic 
SSE exceeds the threshold T an alarm will be 
send to the user since an inconsistency or a 
significant error in the pseudo-ranges has most 
likely occurred. 

Assuming that all the pseudo-range 
measurements will have the same standard 
derivation is a strong simplification.  
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Especially since it is obvious that satellites 
having small elevation angles will be more 
affected by the troposphere and also multipath 
effects are more likely to occur. Thus, the 
accuracy of the pseudo-range measurements can 
be approximated as a function of the elevation 
angle resulting in 
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It was already stated that the test statistic 
SSE is 2X -distributed with parameter σ=1 and 
n-4 degrees of freedom. Hence, we have to find 
a threshold T of the 2X -distribution which is a 
function of the probability of false alarm faP
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where ν is the number of degrees of freedom 
and Γ is the gamma function we have to solve 
Eq. (23) in order to find a suitable threshold 
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There is no closed-form solution for this 
term, so one has to use numerical integration. 
However, we are able to find a closed-form 
solution for ν=2 
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By successfully performing the statistical 
hypothesis testing 

TSSE 
 (26) 

the pseudo-ranges are assumed to be gross error 
free and can be trusted for navigation purposes. 
 

4   Parametric study  

4.1   Reference points  

Most of the present RAIM simulations (see 
[3], [4], [6], [9]) used a constant spacing in 
longitude and latitude for the reference points, 
e.g. 5x5°, resulting in high point densities in the 
pole regions and therefore heavily biased 
overall RAIM availability. This parametric 
study will apply the RAIM algorithm using 
reference points that are nearly uniformly 
distributed on the earth’s surface derived by an 
icosahedron (see Fig. 1.). 

 
Fig. 1. Reference points for the RAIM simulation nearly 
uniformly distributed on the earth’s surface derived by an 
icosahedron. 
 

Starting point is an icosahedron with 20 
identical equilateral triangular faces, 12 vertices 
and 30 edges. These 12 vertices are then 
projected on a sphere where they are uniformly 
distributed. Subsequently all the edges will be 
divided in halves and neighboring points will be 
connected. The newly generated vertices are 
again projected on the sphere. This will be 
iterated until a suitable density of reference 
points is achieved. In a final step the reference 
points from the sphere are projected on the 
earth’s reference ellipsoid where they are nearly 
uniformly distributed since the reference 
ellipsoid slightly differs from a sphere. 

In Fig. 1 you can see the 2562 reference 
points that are nearly uniformly distributed on 
the earth’s surface derived by the method 
described here. 
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4.2   Probability of false alarm and 
probability of missed detection 

This study is not following most of the present 
RAIM simulation by treating the probability of 
false alarm faP  and the probability of missed 

detection mdP  as constant values. Instead, we 

make use of the approach derived by [10] where 

faP
 
and mdP

 
is calculated from the performance 

requirements towards continuity and integrity as 
well as the likelihood of an error occurring on a 
single satellite. 

This will lead to probabilities being a 
function of the number of satellites visible to the 
user. For example faP

 
will vary between 

7107.7   (5 GPS satellites) and 7105.1   (14 
GPS, 13 Galileo and 12 Glonass satellites). mdP  

is ranging between 3104.6   (5 GPS satellites) 
and 2109.1   (14 GPS, 13 Galileo and 12 
Glonass satellites). 

4.3   Alarm limits  

This parametric study is investigating whether 
satellite based navigation together with RAIM 
can meet the International Civil Aviation 
Organization (ICAO) requirement and thus can 
be used as a primary means of aircraft 
navigation. The first scenario investigated is 
APV-I (Approach Procedure with Vertical 
Guidance) requirement which leads to a HAL of 
40m and a VAL of 50m (see [2]). The second 
scenario is the CAT-I precision approach 
resulting in a HAL of 40m and a VAL of 15m 
(see [2]) and therefore being more challenging. 

4.4   Simulation results 

4.4.1   RAIM availability for the GPS scenario 
By using the 29 active GPS satellites and an 
elevation masking of 5° the user will have 
access to 9.8 satellites as an average. The GPS 
satellite constellation will be the same again 
every day from the user’s perspective. 
Therefore, the simulation covered 10 full days.  

The RAIM availability for this GPS 
scenario over all nearly uniformly distributed 
reference points and over all time steps covered 

by the simulation is illustrated in Fig. 2 (under 
the APV-I requirement: HAL 40m, VAL 50m) 
and in Fig. 3 (under the CAT-I requirement: 
HAL 40m, VAL 15m). In Fig. 2 one can see a 
RAIM availability of 100% for nearly all the 
regions except some areas between 70° and 80° 
latitude. 

 
Fig. 2. RAIM availability of a 29 satellite GPS 
constellation over all reference points under the APV-I 
requirement (HAL 40m, VAL 50m). 

 
Fig. 3. RAIM availability of a 29 satellite GPS 
constellation over all reference points under the CAT-I 
requirement (HAL 40m, VAL 15m). 

 
In addition to these contour plots, we can 

calculate an overall RAIM availability being the 
average over all reference points (e.g. potential 
user position on the earth’s surface) and over all 
time steps. The big advantage of the nearly 
uniformly distributed reference points compared 
to the commonly used constant spacing in 
longitude and latitude is that it will not lead to a 
biased overall RAIM availability due to high 
point densities in the pole regions. It also makes 
sense to calculate the RAIM availably at the 
worst user location (e.g. the reference point with 
the lowest RAIM availability) in order to have a 
conservative estimate. 
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The RAIM availability under the APV-I 
scenario is 99,997% overall and 99.43% at the 
worst user location where it is 97.77% overall 
and 87.81% at the worst user location for the 
CAT-I scenario. Since the requirement towards 
availability for APV-I and CAT-I is between 
99.0% and 99,999% according to [2], this 
parametric study seems to prove that monitoring 
the integrity using GPS satellites is always 
possibly under the APV-I requirement. 

 
4.4.2   RAIM availability for the Galileo 
scenario 
The Galileo scenario is assuming a constellation 
of 30 Galileo satellites (27 active and 3 spares) 
with an elevation masking of 10°. The elevation 
masking of 10° is necessary due to the Galileo 
transmitter antenna design. This scenario which 
will be available for future users would allow 
the user to have access to 9.15 satellites as an 
average. In accordance with the GPS scenario, 
the simulation covered 10 days after which the 
Galileo satellite constellation will be the same 
again from the user’s perspective.  

 
Fig. 4. RAIM availability of a 30 satellite Galileo 
constellation over all reference points under the APV-I 
requirement (HAL 40m, VAL 50m). 
 

The RAIM availability for the Galileo 
scenario over all nearly uniformly distributed 
reference points and over all time steps covered 
by the simulation is illustrated in Fig. 4 (under 
the APV-I requirement: HAL 40m, VAL 50m) 
and in Fig. 5 (under the CAT-I requirement: 
HAL 40m, VAL 15m). It can be seen that the 
RAIM availability of the Galileo satellite 
constellation under the APV-I requirements is 
always 100%. This result is better than the one 
obtained with the GPS scenario even though we 
have fewer satellites visible to the user as well 

as higher elevation masking. Therefore, we can 
assume that the Galileo constellation is superior 
in terms of integrity. 

 
Fig. 5. RAIM availability of a 30 satellite Galileo 
constellation over all reference points under the CAT-I 
requirement (HAL 40m, VAL 15m). 
 

In Fig. 5 one can see the RAIM availability 
under the CAT-I requirements which is 
symmetrical with respect to the equator. This is 
quite obvious due to the symmetry of the 
Galileo satellite constellation. The RAIM 
availability under the CAT-I scenario is 91.54% 
overall and 81.19% at the worst user location. 
The lowest RAIM availability can be expected 
between  35  latitude (see Fig. 5). 
 
4.4.3   RAIM availability for a combined GPS- 
Galileo-GLONASS scenario 
Another graphical illustration method besides 
the contour plots (see Fig. 2-Fig. 5) can be 
obtained by looking at the probability density 
function of the protection levels of all reference 
points and over all time steps (see Fig. 6 to Fig. 
9). In the two-dimensional domain defined by 
the vertical and horizontal protection level the 
probability density for a certain protection level 
combination is indicated by a color bar where 
the dark colors are referring to a high 
probability density. In addition, this method also 
allows us to display the vertical and horizontal 
alarm limit dividing the two-dimensional 
domain in four sectors. For every sector we 
calculated the probability of a protection level 
combination occurring in this sector.  

In Fig. 6 one can see the probability 
density function of the protection level using the 
GPS constellation and displaying the APV-I 
requirement (HAL 40m, VAL 50m). The 
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probability that both the vertical and the 
horizontal protection level are smaller than the 
respective alarm limit is 99.997% (this was 
already stated in section 4.4.1).  

 
Fig. 6. Probability density function of the protection level 
using the GPS constellation and displaying the APV-I 
requirement (HAL 40m, VAL 50m). 
 

For the Galileo constellation (see Fig. 7) 
one can see the scattering around the mean 
value is quite limited compared with the GPS 
constellation. Again, this is clearly showing that 
the geometrical constellation of the Galileo 
satellites has certain advantages over GPS in 
terms of integrity. The maximum protection 
levels obtained within this simulation are 
17.38m in horizontal and 33.54m in vertical 
direction. 

 
Fig. 7. Probability density function of the protection level 
using the Galileo constellation and displaying the APV-I 
requirement (HAL 40m, VAL 50m). 
 

For a combined GPS-Galileo constellation 
both the APV-I and the CAT-I requirements can 
be met since this constellation will allow for an 
overall RAIM availability of 100%. Only under 
the CAT-I scenario the availability at the worst 
user location will decrease to 99.95%. The 
maximum protection levels obtained for this 

combined constellation are 12.17m in horizontal 
and 16.67m in vertical direction. 

 
Fig. 8. Probability density function of the protection level 
using a combined GPS-Galileo constellation and 
displaying the CAT-I requirement (HAL 40m, VAL 
15m). 

 
Fig. 9. Probability density function of the protection level 
using a combined GPS-Galileo-GLONASS constellation 
and displaying the CAT-I requirement (HAL 40m, VAL 
15m). 
 

The full GPS-Galileo-GLONASS 
constellation can be obtained by introducing a 
nominal GLONASS constellation consisting of 
24 satellites and using an elevation masking of 
5° to the simulation. Since the GLONASS 
satellite constellation will repeat after seven 
days from the user’s perspective, the simulation 
for the GPS-Galileo-GLONASS scenario 
covered 70 days. This constellation consisting 
of 80 navigation satellites will met both the 
APV-I and the CAT-I requirements – overall 
and at the worst user location – always resulting 
in an availability of 100%. This can also be seen 
in Fig. 9 where the probability density function 
of the protection level using a combined GPS-
Galileo-GLONASS constellation is displayed 
under the CAT-I requirement. The maximum 
protection levels obtained for this full 
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navigation satellite constellation are 6.98m in 
horizontal and 12.19m in vertical direction. 

5   Summary and conclusions 

This parametric study calculated the RAIM 
availability using the following scenarios of 
navigation satellites to be accessible to the user: 

 GPS, 
 Galileo, 
 GPS and Galileo, 
 GPS, Galileo and GLONASS. 
The reference points used for the 

parametric study are uniformly distributed on 
the earth’s surface and were derived by an 
icosahedron. Compared to constant spacing in 
longitude and latitude, this method will not 
result in high point densities in the pole regions 
and therefore heavily biased overall RAIM 
availabilities. 

This parametric study also showed some 
promising first results indicating that satellite 
based navigation using more than one satellite 
navigation system (e.g. GPS and Galileo or 
GPS, Galileo and GLONASS) can meet ICAO’s 
APV-I and CAT-I requirements. This can lead 
to future developments allowing satellite 
navigation to be used as a primary means of 
aircraft navigation. 
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