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Abstract

This paper presents five direct identification
methods for estimation of nonlinear aerodynam-
ics of unstable aircraft. This type of identification
is hard under the best of circumstances. In the
context of system identification, direct means
that no knowledge of the stabilizing flight control
system (FCS) is used. This makes the methods
more general and they could thus be used easily
for different aircraft.

JAS 39 Gripen is designed to be subsonic pitch
unstable and supersonic pitch stable to gain
performance. For maneuvering close to trim
conditions, the aerodynamics can be considered
linear, but for aggressive, high angle-of-attack
maneuvering and flight at transonic speeds
where aerodynamic shocks are present there
will be nonlinearities. This leads to the need
for a flight control system that can handle these
complexities. The FCS of JAS 39 Gripen is gain
scheduled and has many different flight modes.
In order to design the control laws, high quality
simulation models are needed. This in turn
makes system identification an important task.

Here five methods that can be used to estimate
nonlinear aerodynamic characteristics from flight
test data will be presented. The first method that
we will discuss here is a parameterized observer
(PO) approach where the observer gain is added
to the unknown parameters to be identified. This
gives a simple but fast method. The second and

Fig. 1 JAS 39 Gripen test aircraft.

third approaches are the Extended (EKF) and the
Unscented (UKF) Kalman filter, both nonlinear
versions of the ordinary Kalman filter. These
three first methods are versions of the prediction
error method and involve iterative minimization
of a cost function using a Levenberg-Marquardt
optimization procedure. The fourth method add
the unknown parameters as new states with zero
dynamics and the state vector in this augmented
system (AUG) is then estimated with an EKF in
a single run. All these four methods rely on the
possibility to predict the system output.

The fifth method is a bit different. It uses a
constrained Levenberg-Marquardt (CLM) opti-
mization procedure to minimize a Lagrangian
function which does not depend on simulation of
the system at all. Therefore the instability is not
a problem. Instead the method puts constrains on
every time sample.

In this paper, results are given for both simula-
tions and a real flight test in the transonic en-
velop.
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1 Introduction

In the early years of motorized flight, the Wright
brothers flew their Flyer I manually. Later, anal-
ysis [5] shows that this aircraft had both unstable
and nonlinear aerodynamic pitch characteristics.
Fortunately, the time to double was long enough
for the brothers to handle. As design of aircraft
led to higher speeds it was necessary to turn to
inherently pitch stable solutions. Today’s highly
maneuverable fighter aircraft are designed to
be unstable in the pitch plane in order to gain
performance. The speed has increased so much
that supersonic flight is not uncommon. Near
transonic speed, i.e. close to the speed of sound,
nonlinearities can occur due to aerodynamic
shocks moving over the aircraft. The instability
and nonlinearity have made the modern fighter
aircraft dependent on control systems that aid the
pilot in flying the aircraft. In order to design the
control laws, high quality simulation models are
needed. A modern fighter aircraft such as JAS 39
Gripen has a very complex flight control system
which is gain scheduled and handles many
different flight modes. It is therefore desirable
to be able to use a direct identification method
on flight test data, i.e. to be able to identify the
system without any knowledge of the control
system.

Several books on the subject of aircraft identifi-
cation have been published recently [11, 16, 7].
However, most work in this field has focused
either on unstable and linear [2] or stable and
nonlinear systems [9, 1]. There are some papers
that mention both nonlinear and unstable system,
like [8] and [12], but where the methods are
different from the ones presented in this paper.

Here five different methods have been used.
These methods have been applied to both sim-
ulated data and real flight test data.

2 Methods

In this paper, the following discrete-time state-
space representation of a nonlinear output-error

model is used

xk+1 = f (xk,uk;θ), (1a)
yk = h(xk,uk;θ)+ ek, (1b)

where xk ≡ x(k Ts) is a n× 1 state vector with
sample time Ts, uk is a m×1 input vector and yk
is a p×1 output vector, θ is the unknown param-
eter vector to be identified and ek is white output
noise with zero mean and covariance matrix R.

2.1 Prediction Error Methods

The first three methods use a predictor of the out-
put in (1) that can be written as

x̂k+1(θ) = f (x̂k(θ),uk;θ)+Kk(θ)εk(θ), (2a)
ŷk(θ) = h(x̂k(θ),uk;θ), (2b)
εk(θ) = yk− ŷk(θ). (2c)

The prediction error can be used to define a scalar
cost function

VN(θ,ZN) =
1
N

N

∑
k=1

1
2

εk(θ)
T

εk(θ), (3)

where ZN represents the N input-output measure-
ments. This cost function can be minimized to
obtain an estimate of θ

θ̂ = argmin
θ

VN(θ,ZN). (4)

This is in [6] called a prediction-error method
(PEM). In order to use PEM, a stable predictor is
required. The choice of the predictor is not obvi-
ous if the system is unstable and nonlinear. Here
three approaches for calculating the observer gain
Kk(θ) in (2a) are suggested. It is assumed that all
states are measured and that there is no direct in-
fluence of the inputs on the outputs leading to that
(2b) can be rewritten as

ŷk(θ) =Cx̂k(θ), (5)

where C is the identity matrix.

Parametrized observer (PO) approach: This
is a simple approach, commonly used for linear
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cases, where the observer gain Kk(θ) is added to
the parameters to be estimated.

θ =

[
θ f
θK

]
, (6)

where θ f are the parameters that appear in f
and θK = vec(Kk(θ)) is a vector containing the
observer gain parameters. By applying this
approach the optimization process used for
solving (4) will find a time-invariant Kk(θ) that
minimizes the cost function (3).

Extended Kalman Filter (EKF) approach:
The EKF is an extension of the Kalman Filter
[10] to nonlinear systems. If the system was
linear and all noise signals Gaussian distributed
then the Kalman Filter will minimize the mean
square error of the estimated states (x̂k) giving
optimal predictions. For the nonlinear case us-
ing the EKF, the main idea is to compute Kk(θ) at
each time step using a linearized model. This lin-
earization is performed by computing the partial
derivatives of f with respect to x and u evaluated
in x̂k and uk, giving the matrices Ak(θ) and Bk(θ),
respectively. This gives the following gain

Sk(θ) = [CPxx
k|k(θ)C

T +R], (7a)

Kk(θ) = Pxx
k|k−1CT S−1

k (θ), (7b)

Pxx
k|k(θ) = (I−Kk(θ)C)Pxx

k|k−1, (7c)

Pxx
k|k−1(θ) = Ak(θ)Pxx

k−1|k−1AT
k +Q, (7d)

where the predicted covariance matrix Pxx
k|k rep-

resents the uncertainties of the state prediction.
The full theory of the EKF can be found in [14].

This approach is a nonlinear extension of the
methods described in [15] which showed that
for a linear system the parameters could be
estimated exactly for an unstable output-error
structure.

Unscented Kalman Filter (UKF) approach:
The EKF is sometimes said to have problems
with highly nonlinear functions because only the
mean is propagated through the nonlinearity. An

alternative is to use the Unscented Kalman fil-
ter [13], where both the mean and covariance
is propagated through the nonlinearity. This is
done by using a so-called unscented transforma-
tion where deterministically chosen points, sigma
points, are used to represent both the mean and
covariance. In this case the gain is

Kk(θ) = Pxy
k|k−1(θ)(P

yy
k|k−1(θ))

−1, (8a)

Pxx
k|k(θ) = Pxx

k|k−1(θ)−Kk(θ)P
yy
k|k−1(θ)K

T
k (θ),

(8b)

where Pyy
k|k−1(θ), Pxx

k|k−1(θ) and Pxy
k|k−1(θ) are

calculated using the sigma points.

Tuning parameters: Unlike the PO approach,
the two Kalman filter approaches include tuning
parameters that have to be set by the user. This
is undesirable since some prior knowledge of
how to set these parameters is required leading
to a subjective part of the identification. The
parameters are the covariance Q of the process
noise, the covariance R of the measurement noise
and the initial state covariance P0. The matrices
Q and R work in pairs so when Q is larger than
R one relies more on the measurements. For the
linear case the choice of the state variance P0 is
not critical because the convergence properties
are well understood and it is not difficult to get
the filter to converge. There is no proof of a
similar property for the nonlinear case. Here one
can only hope that the filter will converge. For
the analysis presented in this paper P0 is chosen
as the identity matrix.

Other subjective inputs that applies to all above
approaches are the initial values for the states x0
and parameters θ0. For the initial states one can
use the initial measurement which should not be
to far from the true value. This can be done since
it is assumed that all states are measured in a lin-
ear way. The initial parameter vector θ0 is an ini-
tialization of the PEM and will affect how good
the initial estimates using the different Kalman
filters as well as the parametrized observer are.
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2.2 State estimation method

Here a method that uses the unknown parameters
as states is given.

Augmented state (AUG) approach: This ap-
proach is commonly used in the navigation
community when treating uncertain parameters.
These parameters are added to the model as static
states, i.e., states that do not vary with time.

x̄k =

[
xk
θk

]
. (9)

This gives rise to the following augmented state-
space equation that should be used instead of (1a)

x̄k+1 =

[
xk+1
θk+1

]
=

[
f (xk,uk;θk)

wθk

]
, (10)

where wθk is a small zero mean artificial noise
term with a covariance matrix that can be used
to tune the estimator. Here, the same method to
estimate the observer gain Kk(θ) as in the EKF
approach is used, but for the model (10) instead
of (1a). The theory behind this approach can be
found in [4].

Tuning parameters: Since The EKF is used the
same tuning for Q and R as described earlier ap-
plies. The same goes for x0 and P0. The covari-
ance of the artificial noise term wθk can, as men-
tioned above, be used as a tuning parameter.

2.3 Parameter and state optimization
method

The fifth method differ from the previous four in
the way that it does not depend on simulation of
the system at all. Therefore the system instability
is not an issue.

Constrained Levenberg-Marquardt (CLM)
approach: This approach uses a constrained
Levenberg-Marquardt optimization procedure to
a Lagrangian function. Instead of augmenting the
states as in the AUG approach it augments the pa-
rameter vector θ with all time samples

ϑ = [xT
0 ... xT

N−1 θ
T ]T , (11)

and (1a) is reformulated as F(ϑ) = 0 where

F(ϑ) =


f (x0,u0)− x1
f (x1,u1)− x2

...
f (xN−1,uN−1)− xN

 . (12)

The CLM approach involves minimizing (3)
using (2) with Kk(θ) = 0 and the additional
constraints given by F(ϑ) = 0. The inclusion
of these constraints makes CLM related to
collocation methods. A collocation method is a
numerical method where a parametrized function
is used together with a number of points, colloca-
tion points, where a differential/integral equation
has to be satisfied. Here the state samples are
forced to satisfy (1a).

The constrained optimization problem can be for-
mulated as iteratively solving the linear system[

JT
1 J1 +λ2

LMInϑ,nϑ
JT

2
J2 0

][
δϑ

λ

]
=

[
−JT

1 ε

−F

]
,

(13)
where

J1 =
∂ε

∂ϑ
, J2 =

∂F
∂ϑ

. (14)

Here, the vector δϑ contains additive increments
to to the augmented parameter vector (11) and λ

is a vector containing the Lagrangian multipliers.

The drawback is that the Karush-Kuhn-Tucker
matrix, containing J1 and J2, in (13) to be
inverted grows with the number of time samples
used. This matrix is however sparse so efficient
inversion methods can be used. The method is
described in [3].

Tuning parameter: Also this method has a tun-
ing parameter, the regularization parameter λLM.
This is used to improve the rank properties of the
KKT matrix and it thus affects the possibility to
solve the system. This parameter has to be cho-
sen carefully.

3 Analysis

For a highly maneuverable aircraft, such as the
JAS 39 Gripen, the aerodynamic forces and mo-
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ments can become nonlinear during aggressive
maneuvering. Also, flight in the transonic re-
gion, i.e., near the speed of sound, leads to non-
linear effects that come from movements of aero-
dynamic shocks. How these shocks move depend
on the speed as well as the aircraft attitude, i.e.,
angle-of-attack. The problem to be analyzed in
this paper is aircraft system identification at tran-
sonic speed.

3.1 Physical model

The physical model used for flight simulations is
based on rigid body mechanics, originating from
Newton’s second law, treating all forces and mo-
ments acting on the aircraft. The main contri-
bution in this model come from aerodynamics,
propulsion and inertia. Focusing on a pure pitch
motion, the simplified 2-DOF equations of mo-
tion are given as

mV α̇ = NAero +NT hrust , (15a)
Jyyq̇ = MAero +MT hrust , (15b)

where the left hand sides of (15) are the total
force and moment of inertia in the pitch plane,
m, Jyy and V being the aircraft mass, moment of
inertia and velocity, respectively. These are con-
sidered constant in the test case since their vari-
ations are limited during the performed maneu-
ver. NAero and MAero are the aerodynamic force
and moment to be estimated, NT hrust and MT hrust
come from the engine thrust and are in the present
case small in the pitch plane and can therefore be
neglected. The aerodynamic components depend
on variables such as the states, angle of attack
(α) and pitch angle velocity (q), and the input in
form of control surface deflections of the eleva-
tor (δe), canard (δc) and leading edge flaps (δLE).
The definitions and signs are shown in Fig. 2.

Fig. 2 Definition of the variables.

3.2 Estimation model

To get an estimation model, the equations of mo-
tion (15) are rewritten as

α̇t =
1

mV
·NAero(αt ,qt ,δe,t ,δc,t ,δLE,t), (16a)

q̇t =
1

Jyy
·MAero(αt ,qt ,δe,t ,δc,t ,δLE,t), (16b)

yt =
[

αt qt
]T

, (16c)

and then, turning into discrete time, Euler’s
method for the derivatives are used

α̇k =
αk+1−αk

Ts
, (17a)

q̇k =
qk+1−qk

Ts
, (17b)

where Ts is the sample time and k is the sample
corresponding to the time t. This results in the
following nonlinear state-space description

xk+1 = f (xk,uk), (18a)
yk =Cxk + ek. (18b)

It is assumed that only the pitch stability, i.e, the
pitching moment as a function of the angle of at-
tack, is nonlinear and that all other relations are
linear. This gives the following simplified state-
space equation

xk+1 = a(xk)+Buk, (19a)
yk =Cxk + ek, (19b)

where the state and input vectors are xk =[
αK qk

]T , u(t) =
[
δe,k δc,k δLE,k

]T and the
system matrices are given as

a(xk) =

[
Nαα(t) Nqq(t)
f (α(t)) Mqq(t)

]
, (20a)

B =

[
Nδe Nδc NδLE

Mδe Mδc MδLE

]
, (20b)

C =

[
1 0
0 1

]
. (20c)

The Ns and Ms are scaled partial derivatives of
the aerodynamic force and moment with respect

5



R, LARSSON & M, ENQVIST

to the states and inputs, respectively. The scal-
ing includes V,m,Jyy and the dynamic pressure,
qa, reference wing area, S and reference wing
chord, c̄. f (α) is the nonlinear aerodynamic
pitch stability model function which is built up
as a piecewise affine function, similarly to the
stucture of the present aerodynamic model for
JAS 39 Gripen, with break-points positioned at
α(i) = αmin,αmin +1, ...,αmax (see Fig. 3).

f(  )α

α5 6 7 8 9 10 11

Fig. 3 Example of a piecewise affine function
with αmin = 5 and αmax = 11.

This gives the following piecewise function for
αi < α < αi+1

f (α)=
f (αi+1)− f (αi)

αi+1−αi
·(α−αi)+ f (αi). (21)

All Ns, Ms and break-points f (α(i)) are put
into the parameter vector θ. Thus, the total
parametrized model is given by:

xk+1 =

[
θ1αk θ2qk

f (αk,θ10, . . . ,θ21) θ3qk

]
+ (22a)

[
θ4 θ5 θ6
θ7 θ8 θ9

] δe,k
δc,k

δLE,k

 , (22b)

yk =

[
1 0
0 1

]
xk + ek. (22c)

3.3 Identification on simulated data

In this section, the five different methods will
be analysed based on simulated data. For this
a Simulink R© model has been developed. It
is based on the present aerodynamic model
for JAS 39 Gripen under the same conditions

used for the identification of the real flight test
data. A simplification has been made in that the
control law moves the leading edge flap in full
correlation with the angle-of-attack. Therefore
the leading edge parameters have been removed.
The input and output for a noisy simulation is
shown in Figure 4.

0 1 2 3 4 5 6
−5

0

5

δ
c
 (deg)

δ
e
 (deg)

0 1 2 3 4 5 6
−10

0

10

20

30

α (deg)
q (deg/s)

time (s)

Fig. 4 Simulated noisy input and output data

Noise-free simulation The first test of the meth-
ods is to run them on noise-free data. This is done
to see if there some deficiencies in the methods.
The true values have been used as initial guess of
the parameters. As can be seen in Figure 5 and
Table 1 and 2, all methods are close to the true
model. It should be noted that the UKF method
is the odd one out, all other methods are more or
less on top of each other.

Table 1 Aero derivatives, noise free data.
Present PO EKF UKF

Nα 0.9804 0.9813 0.9813 0.9814
Nq 0.0163 0.0159 0.0159 0.0159
Mq 0.9790 0.9769 0.9767 0.9897
Nδe -0.0051 -0.0084 -0.0085 -0.0085
Nδc 0.0005 0.0013 0.0014 0.0014
Mδe -0.5182 -0.5010 -0.5009 -0.5368
Mδc 0.1376 0.1335 0.1335 0.1423
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Fig. 5 Pitching moment for noise free data.

Table 2 Aero derivatives, noise free data cont..
Present AUG CLM Note

Nα 0.9804 0.9813 0.9813
Nq 0.0163 0.0159 0.0159
Mq 0.9790 0.9769 0.9770
Nδe -0.0051 -0.0085 -0.0084
Nδc 0.0005 0.0013 0.0013
Mδe -0.5182 -0.5013 -0.5014
Mδc 0.1376 0.1336 0.1336

Noisy simulation Here zero mean measurement
noises with a standard deviation of 0.15(deg) in
angle-of-attack and 0.15(deg/s) in pitch angular
velocity have been added to the simulated
outputs. As can be seen in Figure 6 and Table 3
and 4, all methods are affected by the noise, but
the PO, EKF and CLM methods still seem to still
give acceptable results. Both the AUG and the
UKF methods get a distorted nonlinearity. The
wiggeling of the estimated function at the end
points in Figure 6 is probably due to few samples
at those angles-of-attack.

Initial guess offset It is not probable that the ini-
tial guess of the parameters will be the exact truth
even if a lot of work has been done to get them
as good as possible before the first flight. There-
fore, it would be good if the methods could han-

0 2 4 6 8 10 12 14 16
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−0.01

0

0.01

0.02

0.03

0.04

0.05
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EKF
UKF
AUG
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Fig. 6 Pitching moment for noisy data.

Table 3 Aero derivatives, noisy data.
Present PO EKF UKF

Nα 0.9804 0.9812 0.9821 0.9842
Nq 0.0163 0.0160 0.0158 0.0148
Mq 0.9790 0.9771 0.9765 0.9720
Nδe -0.0051 -0.0073 -0.0097 -0.0180
Nδc 0.0005 0.0047 0.0159 0.0153
Mδe -0.5182 -0.4989 -0.5096 -0.6157
Mδc 0.1376 0.1311 0.1360 0.1677

Table 4 Aero derivatives, noisy data cont..
Present AUG CLM Note

Nα 0.9804 0.9814 0.9797
Nq 0.0163 0.0160 0.0166
Mq 0.9790 0.9780 0.9809
Nδe -0.0051 -0.0069 -0.0036
Nδc 0.0005 0.0192 0.0004
Mδe -0.5182 -0.5634 -0.5183
Mδc 0.1376 0.1524 0.1383

dle biased initialisation. To investigate how the
proposed methods are affected, an initial offset
of 10% of the derivatives and a linearisation of
the nonlinearity have been looked at. The result
is shown in Figure 7, Table 5 and 6. As can be
seen the result looks very similar to that of the
noisy data with the exception for the CLM ap-
proach which now has a bias on the nonlinearity,
though the slope is similar to the true curve.
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Fig. 7 Pitching moment for initial offset of θ0.

Table 5 Aero derivatives, offset data.
Present PO EKF UKF

Nα 0.9804 0.9813 0.9877 0.9843
Nq 0.0163 0.0159 0.0086 0.0146
Mq 0.9790 0.9762 0.9757 0.9712
Nδe -0.0051 -0.0077 -0.0618 -0.0196
Nδc 0.0005 0.0021 -0.2024 0.0061
Mδe -0.5182 -0.4942 -0.5111 -0.6350
Mδc 0.1376 0.1037 0.1196 0.1600

Table 6 Aero derivatives, offset data cont..
Present AUG CLM Note

Nα 0.9804 0.9918 0.9802
Nq 0.0163 0.0160 0.0165
Mq 0.9790 0.9769 0.9613
Nδe -0.0051 -0.0078 -0.0051
Nδc 0.0005 0.0256 0.0028 sign
Mδe -0.5182 -0.5567 -0.4653
Mδc 0.1376 0.1452 0.1212

3.4 Identification on flight test data

The five methods have been evaluated on data
from a flight test where a wind-up turn is per-
formed. A wind-up turn is a flight maneuver
where an initial roll of 90 degrees is performed
followed by an almost pure, high angle of at-
tack, pitching maneuver at almost constant speed.
The identification is based on data collected af-
ter the initial roll has been performed. The sam-

ple frequency is 60 Hz (Ts = 1/60(s)) and the
data set contains approximately 300 measure-
ments shown in Figure 8. The estimation result,
based on this data set, is shown in Figure 9 and
Table 7 and 8. All the parameters were initial-
ized using the values from the present model.
As can be seen, all methods capture the nonlin-
earity around α = 7(deg) and the slope of the
curve. It is interesting to se that the methods
predict that the nonlinearity should be more ag-
gressive, i.e., the curve slope should change more
abruptly, than what is in the present model. There
is some wiggeling in the curves at higher angles-
of-attack. This can be due to the fact that there
was few data for angles-of-attack between 12 to
14 degrees. Comparing the different approaches,
it is interesting to note that the PO and CLM ap-
proaches give a closer resemblance to the present
model which has been been built up from numer-
ical calculations, wind tunnel tests and flight tests
during a period of more than 30 years.
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Fig. 8 Input and output data from flight test.

4 Conclusions

Five approaches for direct system identifica-
tion of unstable nonlinear systems have been
presented. Three of the methods are variations
of the prediction error method (PEM). These
are the parametrized observer (PO) approach
and two approaches based on the Kalman fil-
ter, the extended kalman filter (EKF) and the
uncented Kalman filter (UKF). One approach
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Fig. 9 Pitching moment as a function of α.

Table 7 Aerodynamic derivatives.
Present PO EKF UKF

Nα 0.9804 0.9975 0.9984 0.9930
Nq 0.0163 0.0125 0.0116 0.0135
Mq 0.9790 0.8948 0.9095 0.8867
Nδe -0.0051 -0.0011 -0.0063 -0.0087
Nδc 0.0005 0.0072 0.0048 0.0013
NδLE 0.0001 -0.0068 -0.0078 -0.0058
Mδe -0.5182 -0.5512 -0.4837 -0.4528
Mδc 0.1376 0.1730 0.1617 0.2279
MδLE -0.0031 -0.0305 -0.0488 -0.0467

Table 8 Aerodynamic derivatives cont..
Present AUG CLM Note

Nα 0.9804 0.9930 0.9962
Nq 0.0163 0.0134 0.0131
Mq 0.9790 0.9040 0.9370
Nδe -0.0051 -0.0090 -0.0030
Nδc 0.0005 0.0017 0.0013
NδLE 0.0001 -0.0057 -0.0071 sign
Mδe -0.5182 -0.4828 -0.4968
Mδc 0.1376 0.1851 0.1242
MδLE -0.0031 -0.0454 -0.0334

is a state estimation method, the augmented
system approach (AUG) using the extended
Kalman filter. The fifth method is a parameter
and state estimation method, the constrained
Levenberg-Marquardt (CLM) approach.

These methods have been validated on simulated
data from an unstable nonlinear system and
tested for noise sensitivity and initial value
offsets. From these tests one can conclude that
the PO and EKF approaches seem most robust.

The approaches have also been tested on real
data from a flight test near the speed of sound.
Here, the PO and CLM approaches show promis-
ing results since a good resemblance to the
present aerodynamic model was found. The
other methods show some biases in the results
compared to the present aerodynamic model for
the JAS 39 Gripen.

All in all, the PO approach seems to do the best
job for the studied cases.
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