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Abstract  

Cooperative teams of Unmanned Aerial 
Vehicles (UAVs) have applications for a number 
of civil and military missions. One active 
research area involves multiple UAV control 
strategy development and its application to self-
organized systems. Compared with a centralized 
control system, self-organized systems 
demonstrate robustness, scalability, and better 
adaptation to environmental changes. This 
paper aims to report on a control strategy for a 
swarm of UAVs carrying out a mission that 
requires high level cooperation. Information 
measures are used to formulate information 
gain for sensing actions taken by each 
individual UAV. A simulation study has been 
carried out to evaluate the performance of a 
self-organizing UAV swarm against a 
centralized controlled swarm.. 

1   Introduction  

The use of Unmanned Aerial Systems (UAS) 
for various civil and military missions has 
received significant attention in the last decade. 
The applications of UAS can be found in Search 
and Rescue (SAR), Intelligence, Surveillance 
and Reconnaissance (ISR) and ground target 
engagement missions. With recent technological 
advances in autonomous control and 
communication, multi-robotic systems are 
receiving a great deal of attention due to their 
increased ability to carry out complex tasks in a 
superior manner when compared to single-
robotic systems. With effective cooperative 
control algorithms, multiple autonomous agents 

working in groups can be shown to exceed the 
sum of the performance of the individual UAVs. 

The cooperative control of UAVs is a 
complex problem that is dominated by 
uncertainty, limited information, and task 
constraints. Centralized, hierarchical and 
decentralized, decision and control algorithms 
have been developed to address this complexity. 
In a centralized control system, the command 
and control centre receives information from 
each agent and generates task plans and 
decisions for individual agents based on global 
information. This approach optimises timing 
and task constraints but requires intensive 
computation, robust communication and must 
not be vulnerable to any degradation or 
destruction of the central infrastructure. The 
hierarchical controller decomposes the mission, 
and then assigns sub-teams to carry elements of 
the mission. The sub-team members have 
limited global information and receive 
assignments either from a sub-team leader or 
directly from the central control.  

Decentralized control means a strategy in 
which agent independently receives local 
information and makes decisions. A Self-
Organized (SO) system or swarm, is typically a 
decentralized control system made up of 
autonomous agents that are distributed in the 
environment and follow stimulus response 
behaviours [1]. Examples from social insects, 
such as foraging and the division of labour show 
that SO systems can generate useful emergent 
complex behaviours at the system level. 

In this paper, we proposed a decentralized 
control strategy in which we use information 
theory to determine the control actions of 
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multiple UAVs in a SO group. The scenario 
considered in this study is a group of UAVs 
tracking and attacking several ground based 
moving targets. Kingston & Schumacher in their 
paper solved this problem with a mixed integer 
linear program that addressed task timing 
constraints and agent dynamic constraints to 
generate a flyable path [2]. The assumption in 
their study was that each target is stationary 
with constant heading. In our study, we address 
this problem without this inbuilt assumption. 
Compared to centralized approaches, the SO 
based system has the potential to reduce 
communication cost and the amount of 
intelligence required in the control systems 
design. Moreover, SO based systems are usually 
much more adaptive, scalable and robust than 
those based on a single sophisticated agent or a 
number of agents under central control. 

The remainder of this paper is structured as 
follows. The related work is reviewed in section 
2. In section 3, the algorithm used for swarm 
control is described in detail. Simulation results 
are presented in section 4 and section 5 
summarizes the study. 

2    Related work  

The study of information theory applied to 
sensor management is very active. Mutambara 
& Durrant-Whyte proposed a decentralized data 
fusion algorithm using information theoretic 
measures [3]. They later considered sensor 
management and control essentially as a means 
of maximising the information gain of the 
network as a whole [4] [5]. Their algorithms 
enabled information to be communicated and 
assimilated in a decentralized network, while a 
centralized objective function was computed 
redundantly by each of the vehicles to ensure 
coordination. Sinha, et al. applied this approach 
to generate a path for a group of UAVs tracking 
ground targets [6] [7]. The difference between 
their work and previous work is that they 
incorporated both target detection and UAV 
survival due to hostile action by potential targets 
and impacts with other vehicles and terrain 
probabilities into an objective function. They 
later solved this objective function with a 

combination of randomized and non-
randomized search techniques. 

Significant research effort has been 
invested in recent years into the design of UAV 
cooperative control strategies. Schumacher, et 
al. developed a centralized task assignment 
algorithm, using a mixed integer linear program 
formulation. This algorithm can be used to 
assign multiple tasks, which involves applying 
timing and task order constrains, to the vehicles 
in an optimal manner [8-10]. Only for small 
sized scenarios with a few vehicles and targets 
can a solution be found in sufficient time using 
such methods. For large sized scenarios, Shima 
proposed a method using a generic algorithm to 
solve this task assignment problem [11]. A 
hierarchical controller was also investigated. Li, 
et al. in their paper presented a hierarchical 
control strategy that enabled multiple UAVs to 
carry out a Suppression of Enemy Air Defense 
(SEAD) mission [12]. This control strategy 
included a multi-layer path planner to generate 
feasible flight paths through enemy territory for 
the team leader. The position and input of the 
leader are passed to the formation control code 
of the followers to allow them to compute the 
control input to maintain formation.  

Applying these concepts to a self-organised 
UAV swarm was first explored by Frelinger, et 
al [13]. They examined whether modern 
communication, sensors and technologies in 
robotic architecture would permit the 
development of decentralized control to 
command a swarm of low cost munitions. 
Gaudiano, et al. extended the work of Frelinger. 
In their paper, they adopted random, repulsion, 
pheromone and global decentralized control 
strategies. In Price’s research, ten self-
organization rules were implemented whose 
weight factors were collected into a single 
fitness function. This function was further 
refined using a genetic algorithm within the 
simulation [14]. A similar technique was also 
adopted by de Vries & Subbarao [15] who used 
a potential function to generate steering 
commands to control a swarm of quadrotors. 
Another widely adopted mechanism is digital 
pheromone maps that imitate the foraging 
behaviour of ants. Digital pheromones are 
modelled on the pheromone fields of the 
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individual vehicles. By synchronizing these 
maps the UAVs avoid redundant searches [16]. 

3   Swarm Control Strategy  

The mission scenario considered in this study is 
the cooperative moving target engagement 
scenario. This mission requires that two or more 
UAVs track a moving (ground) target with 
Ground Moving Target Indicator (GMTI) radar 
while an additional UAV launches a guided 
weapon. The information from the tracking 
vehicles is fused to form a precise target 
location for the weapon to follow. The GMTI 
sensors footprint is a sector-shape with 
minimum and maximum ranges. Moreover, the 
GMTI sensors are Doppler based. Thus a 
moving ground target can only be detected and 
tracked if the range rate relative to the vehicle is 
above some minimum detection velocity. Thus 
the trackers have to stay within some offset 
angle from the heading of the moving target. 
The estimation error in the position of the 
moving target can be reduced by multiple 
sensors with separated line-of-sight angles to 
the target. The detailed description of this 
mission scenario can be found in [17].  

3.1   Information Measures Applied to 
Swarm Control 

This moving target engagement scenario 
requires high level cooperation between team 
members. It is critical for the tracking vehicles 
to track the target simultaneously while 
maintain appropriate separation angles to reduce 
target position estimation error. We propose to 
use a decentralized extended information filter 
[18] [5] and information measures [19] to tackle 
this problem.   

In this study, the UAVs are assumed to be 
equipped with GMTI sensors [20]. The 
measurement equation is given by: 
 ���� � ������, �� 	 
��� (1) 
 
The target state vector � � ��, �, �, � �. �  and � 
are the distances of the target in the �  and � 
directions from the origin point. The 

corresponding velocities are thus �  and � . The 
discrete white noise acceleration model is used 
for the target kinematic model [21]. The 
measurement vector ���� comprises positions in 
the � and � directions and range rate �  where: 
 ���� � ���� cos ������, ������ 	               � ��� sin ������, ������  

 
(2) 

 
and where ������, ������ is the bearing angle 
of the target measured by the vehicle at time �. 
The sensor measurement matrix is given by:  
 ������, �� �
� 1 00 0 0 01 00 cos ������, ������ 0 sin ������, ������!  

(3) 
���  in equation (27) is the Gaussian 
measurement noise vector is denoted by 
���~#�0, $����, where: 
 

$��� � % &'(��� &'()���&')(��� &')��� 000             0 &'*
+ 

 
 
(4) 

 
The error statics for sensor measurements are 
given in terms of the range standard deviation &*, the range rate standard deviation &*  and the 
bearing angle standard deviation  &,, which are 
known.  In this exercise, they are set to 
correspond to 15 feet, 3 feet per second and 
0.001 radians. With these and the position 
variances, the covariance can be calculated as: 
 &'(��� � ������, ������'&,' sin ������, ������' 

	&*' cos ������, ������' (5) 
 &')��� � ������, ������'&,' cos ������, ������' 

	&*' sin ������, ������' (6) 
 &')(��� � -&*' . ������, ������'&,'/ 

· sin ������, ������ cos ������, ������ (7) 
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where range of the target ������, ������ 
measured from each vehicle is evaluated at ���� � �1�� | � . 1�. 

Since the measurement of equation (2) is a 
nonlinear function of the target states, the 
extended information filter is employed to 
estimate the states. 

The information filter is derived from the 
Kalman filter in terms of the information states 
vector 31�4 | 5�  and the information matrix 6�4 | 5� . The information state vector and 
information matrix are defined as: 
 31�4 | 5� � 789�4 | 5��1�4 | 5� (8) 

  6�4 | 5� � 789�4 | 5� (9) 
 
The prediction step of the extended information 
filter is written as: 
 31�� | � . 1� � 6�� | � . 1�  · :��, ��� . 1�, 
�� . 1�� (10) 

  6�� | � . 1� � ;<:=���6�� . 1 | �. 1�<:=89���	 >���?89 

 
 
(11) 

 
where > is the process noise covariance matrix 
of the target dynamic kinematic and the 
estimation step is: 
 31�� | �� � 31�� | � . 1� 	 @��� (12) 

 6�� | �� � 6�� | � . 1� 	 A��� (13) 
 
The information state contribution @��� and its 
associated information matrix A���  are given, 
respectively, as: 
 @��� � <B=���C���$89��������. B��1�� | � . 1�, ��	 <B=����1�� | � . 1�� 

 
 
(14) 

  A��� � <B=���C���$89���<B=��� (15) 
  

where the Jacobian <:=���  is evaluated at ��� . 1� � �1�� . 1 | � . 1�  and <B=���  is 
evaluated at ���� � �1�� | � . 1�. For # sensor 

information sources, the posterior information 
state and information matrix are obtained from: 
 

31 �� | �� � 31 �� | � . 1� 	 D @E���F
EG9  

 
(16) 

6�� | �� � 6�� | � . 1� 	 D AE���F
EG9  

 
(17) 

 
where @E���  and AE���  are the information 
matrix and information state contributions of the 
sensors 4 � 1, … , #, 

The mutual information gain IC*JKLE,M ��� for 
vehicle 4 tracking target 5 is calculated from: 
 IC*JKLE,M ���

� 12 log Q|6E,M�� | � . 1� 	 AE,M���||6E,M�� | � . 1�| R 

 
 
(18) 

 
Mutual information in information theory is 
considered as an a priori measure of the 
information about state S to be gained through 
an observation T. The expectation is taken over T  and S , so the mutual information gives an 
average measure of the information gain to be 
expected before making the observation [22]. 
By calculating mutual information for the 
potential observation, the tracking vehicles 
could steer toward the location where the 
observation yields the highest mutual 
information gain. This technique causes the 
tracking vehicles to maintain a separation angle 
to the targets without negotiation or centralized 
control command. 

3.2   Swarm Behaviours 

A self-organizing swarm can be described as a 
decentralized system made of autonomous 
agents that are distributed throughout the 
environment following stimulus response 
behaviors [1]. The social insects show that 
complex collective behavior may emerge from 
interactions among individuals that exhibit 
simple individual behavior. In this study, three 
behavioral states are developed; they being 
search, loiter, track, and attack. In each state, the 
behavior of the UAVs is governed by local 
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rules. In order to compare swarm control with 
centralized control strategy, we make the 
targets’ original position available to the UAVs 
at the beginning of the mission, which is needed 
for the centralized controller to plan tasks for 
each vehicle. The actual strength of the swarm 
lies in its ability to operate in an unknown and 
dynamic environment.  

Loitering 
UAV loiters above the target with a predefined 
safe standoff distance and broadcast a request 
for tracking support before attempting to engage 
the target. The communication is constrained by 
maximum range, i.e., line of sight. This UAV 
will then receive targeting information from the 
tracking UAVs maintaining a global track on 
the target.  

Tracking 
UAV tracks the targets with onboard GMTI 
radar and sends local track information to the 
attacking UAV. Once the UAV is in tracking 
state, the most basic rule for the trackers to 
follow is to place the target within the sensor 
footprint while remaining within the detectable 
line-of-sight angle to the target heading. To 
enhance the track accuracy, individual trackers 
will request local track information (i.e. 
information states �1 �� | �� and the information 
matrix U�� | ��) from the another tracker and 
then calculate the mutual information gain given 
by equation (39) for the potential observations. 
The rule then forces it to fly toward the location 
where the observation could yield the highest 
mutual information gain. This rule guaranties 
that the trackers maintain a sufficient separation 
angle while providing tracking support. 

Attacking 
Once the target track is defined accurately 
enough for the guided weapon, the UAV that 
made the original contact switches to attack 
state. This accuracy is measured by the entropic 
information on the target. The attack state is 
simply modeled as the UAV heading toward the 
target and launching the weapon at a fixed 
distance from the target. The UAVs tracking the 

target must continue to track the target for the 
duration of the weapon flight. 

4   Simulation Study  

In this section, we present both the simulation 
environment and results. In order to implement 
and evaluate swarm control strategy, we have 
developed a MATLAB/SIMULINK based tool 
that is capable of simulating multiple UAVs 
which cooperate to accomplish a predefined 
mission. This simulation tool includes a six-
degree-of-freedom dynamic vehicle model, an 
autopilot and a flight management system from 
a simulator named MultiUAV. MultiUAV was 
originally developed by U.S. Air Force 
Research Laboratory (AFRL) [23]. 

A Monte Carlo study, consisting of 100 
runs for each scenario, was used to evaluate the 
proposed methodology compared with 
centralized control strategy used in [2]. In [2], 
this problem of assigning multiple agents to 
cooperative tasks was formulated with mixed 
integer linear programming and solved by using 
an open-source linear programming package, 
GLPK. The following assumptions were made 
in their study to reduce the complexity: 1. 
Targets have constant heading for targets 
travelling along known roads. 2. Targets were 
stationary since the sensor footprint is much 
larger than the distance travelled by the targets. 
In our study, we do not include these 
restrictions. The kinematics of the targets is 
modeled using the discrete white noise 
acceleration model which results in more time 
spent on target engagement.   

The simulation study included six 
scenarios with different problem sizes. Each 
scenario involved three targets and a varying 
number of UAVs. Initially, the UAVs and 
targets were randomly distributed over a 100 km 
square mission area. At the end of the 
simulation we recorded the time for eliminating 
all targets. The progression of the simulated 
scenario is shown in Appendix A. The results in 
Figure 1 are the average of the final task 
completion time for each simulated scenario in 
100 runs. From the simulation results, it can be 
seen that the advantages of the centralized 
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Figure 1: Comparison of swarm control and centralized control. 
 

controller was becoming less significant with 
the number of UAVs increase. For a small size 
group of agents, the self-organised swarm is less 
efficient as centralized controller especially for 
mission scenarios with strong timing and 
coupling constrains. As the size of the group 
increase, the collective behaviour of the swarm 
emerges. As we can see, the curve representing 
the self-organised swarm descends faster than 
the centralized controlled swarm. As obtaining a 
solution to the mixed integer linear 
programming requires an extreme amounts of 
computation, this method would soon become 
non-solvable for a real time large problem sizes.  

5   Conclusion 

In this study, a swarm control strategy using an 
information theoretic approach is examined. 
This decentralized control strategy is applicable 
to missions requiring high level cooperation 
between team members. Different to a 
centralized task assignment algorithm, the 
cooperation of the agents is entirely implicit. 
The behaviour of the UAVs is governed by 
simple local rules which ultimately lead to 
cooperation at a system level and complex 
behaviour. 

The simulation study evaluates the 
performance of the local control strategy against 
the centralized control strategy quantitatively. 
The results show that the size of the swarm has 
a significant impact on the viability of local 

against central control. Future work involves the 
investigation of the adaptive ability of swarms 
under uncertainties such as communication 
delay, maneuvering targets and threats.  
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Appendix A 

Figures 1(a), 1(b) and 1(c) display stages of the 
simulated scenario (3 targets and 7 UAVs) at 3 
points in time. Local swarm control strategy 
was applied to this example run. The coloured 
area displayed the sensor footprint of the 
tracking UAVs. The UAVs’ sensor footprints 
have the same colour as themselves. 

 
Figure 1(a): Simulated scenario at time 102 
seconds. UAV 3 (blue) was tracking target 3 in 
cooperation with UAV 5 (purple). The fused 
track on target 3 was accurate enough for UAV 
6 (cyan) to carry out attack. UAV 2 (green) was 
tracking target 1 and waiting for assistance from 
UAV 1 (red) and 7 (orange). 

 
Figure 1(b): Simulated scenario at time 249 
seconds. After destroyed target 3, UAV 5 
(purple) and 6 (cyan) started tracking target 2 
while UAV 4 (yellow) began to attack. 
 

 
Figure 1(c): Simulated scenario at time 279 
seconds. Target 1 was attacked by UAV 1 (red) 
with tracking support from UAV 2 (green) and 
UAV 7 (yellow). 
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