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Abstract  
This paper focuses upon the efficient surrogate 
model algorithm for expensive simulation-based 
design optimization problems. Co-kriging 
method is used to develop a multi-fidelity 
surrogate model using two independent datasets. 
To achieve this objective, wing-body problem is 
taken as an example of application for high-
dimensional complex design problem. In 
addition, a simple sampling analysis is used to 
demonstrate the characteristics of co-kriging 
multi-fidelity surrogate model based on the 
defined criteria. A drag reduction optimization 
is carried on using genetic algorithm based on 
the co-kriging surrogate model. The results are 
compared with kriging model based 
optimization. It is shown that the integration of 
multi-fidelity surrogate model into evolution 
algorithm provides an efficient framework for 
design and analysis of expensive simulation-
based design optimization problems. 

1    Introduction 
The use of long running expensive computer 
simulations in design leads to a fundamental 
problem when trying to compare and contrast 
various competing options: there are never 
sufficient resources to analyze all of the 
combinations of variables that one would wish. 
This problem is particularly acute when using 
optimization schemes. Many studies have 
carried out on the surrogate model approach to 
resolve this problem[1-3]. Surrogate model, so 
called "model of models", can express the 
relationship between design variables and 

performances more clearly with simple structure 
and high computational efficiency, and have 
been widely used in design space exploration 
and optimization design[4]. Surrogate model’s 
approximation accuracy is directly related to the 
number of samples and the complexity of the 
real function. For multi-dimensional problems, a 
large number of samples are needed to obtain 
reasonable approximation accuracy. The 
computation of current surrogate models, such 
as polynomial response surface[5], radial basis 
functions[6], neural networks[7] and Kriging[8-
10], etc, are still too huge. Thus, there is a great 
need of high precision surrogate models with 
much less computation cost.  
Recent surrogate model researches mainly focus 
on using additional design information to 
enhance the prediction accuracy of surrogate 
model, such as gradient information, 
information of other surrogate models and low-
fidelity information, etc. Gradient information 
can effectively improve the predictive power of 
surrogate model. W. Liu [11] effectively 
enhanced the predictability of Kriging model 
using gradient information; Van Keulen and 
Vervenne [12] have presented promising results 
for a gradient enhanced weighted least squares 
(WLS) method. Using information of other 
surrogate models is called integration model, 
also known as multilayer model. To combine 
variety of surrogate models, methods of 
optimizing the weight coefficients of the 
model[13] or using the mean sum of each 
surrogate model[14] are commonly used. 
Surrogate model correction methods use a 
correction formulation to reduce the prediction 
error, and correction methods are divided into 
zero; first; second and higher-order correction 
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method according to the use of correction 
functions. Zhang Dehu’s studies have shown 
that second-order correction method has good 
applicability[15]. Use of low-fidelity 
information is known as variable-fidelity model, 
also known as multi-fidelity model or variable-
complexity model, it usually build a relation 
model between low and high fidelity model to 
enhance the prediction ability of surrogate 
model. The applied research of multi-fidelity 
models has recently attracted wide attention 
because of its engineering 
applicability[16,17,18].  
The main objective of the present study is the 
development of an efficient multi-fidelity 
surrogate model for wing-body shape 
optimization design that overcomes the 
deficiencies of the traditional surrogate method. 
Based on two independent high, low fidelity 
samples (the high fidelity samples is much 
smaller), a surrogate of wing-body aerodynamic 
characteristics is constructed using co-kriging 
method[19]. The new multi-fidelity surrogate 
model is applied to the drag reduction shape 
optimization design of an wing-body at 
transonic flow conditions using a Genetic 
Algorithm as optimizer. The efficiency and 
characteristics of the optimum shape are 
compared with those obtained from kriging 
surrogate model.  

2    Multi-fidelity surrogate model 

2.1  Correction method 
In multi-fidelity surrogate-based methods, the 
accuracy of a surrogate building for high-
fidelity model can be enhanced by a greater 
quantity of low-fidelity data. To make use of the 
low-fidelity data, we must formulate some form 
of correction process which models the ratios or 
differences between the low-fidelity model and 
high-fidelity model. Since computer codes are 
deterministic, and therefore not subject to 
measurement error, the usual measures of 
uncertainty derived from least-square residuals 
have no obvious meaning. 
Assuming our high-fidelity model has values ey  
at points eX , and the low-fidelity model has 
values cy  at points cX . The formulation of a 

correction process is simplified if the high-
fidelity sample locations coincide with a subset 
of the low-fidelity sample locations ( ce XX ⊂ ). 
The correction process will usually take the 
form 

 dce ZyZy += ρ  （2.1） 

With 0=dZ , ρZ  can take the form of any 
approximation model fitted to )(/ ece Xyy . 
Likewise, with 1=ρZ , dZ  can take the form of 
an approximation fitted to )( ece Xyy − . These 
processes are then used to correct cy  when 
making predictions of the high-fidelity function

ey . These processes need the ratios or 
difference between multi-fidelity datasets, 
which means that the using of information 
included in low-fidelity model is limited by the 
high-fidelity model. 

2.2  Co-kriging method 
The Co-kriging method used in this paper is 
considered as a natural extension to the popular 
method of Kriging. Kriging method is a 
statistical prediction of a function at untried 
inputs. It requires fitting the correlation 
parameters of the model to each sample 
distribution by solving an optimization problem 
using maximum likelihood estimation. Co-
kriging approximate the high-fidelity model 
using the formula as follows 

 )()()( xZxZxZ dce += ρ  （2.2） 

Where )(xZc  denotes a kriging model of the 
low-fidelity function and )(xZd  a kriging 
model of the difference between low-fidelity 
function and high-fidelity function. Using two 
independent sets of multi-fidelity data, where 
the high-fidelity model has en  samples, and 
low-fidelity model has cn  samples.  
The co-variance between sample points can be 
described as 

 ij
ji RZZ 2)()( )](),(cov[ σ=xx  （2.3） 



 

3  

WING-BODY OPTIMIZATION BASED ON MULTI-FIDELITY SURROGATE MODEL 
  

Where ijR is the matrix of correlation between 
samples, which is determined by a Spatial 
Correlation Function ( SCF ). 
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The order of the correlation matrix depends only 
on the number of samples en and cn  and not on 
the number of variables. And the matrix is dense 
symmetric positive definite with ones along 
diagonal and become ill-conditioned when 
samples are too close. The SCF can be any 
function reflecting the characteristics of the 
output function. Here the exponential function is 
adopted. 
As with kriging, the value at a point in the 
whole design space is treated as if it were the 
realization of a stochastic process, and the 
complete covariance matrix is thus 

 
The notation ),( ecc XXR  denotes a matrix of 
correlations between the data cX and eX . And 
there have more correlation parameters 
( dcdc pp ,,,θθ  and the scaling parameter ρ ) 
need to be fitte. As the low-fidelity dataset is 
independent of the high-fidelity dataset, we can 
find the approximate of cc p,θ  using the same 
way as kriging does. In order to estimate dd p,θ  
and ρ , we first define 

 )( ece Xyyd ρ−=  （2.5） 

Where )( ec Xy  are the values of cy  at locations 
common to those of eX ，then we can estimate 

dd p,θ  and ρ using the kriging way. And the 
cokriging prediction of the high-fidelity 
function is given by 

 )ˆ(ˆ)(ˆ βy T
e fyCcx −+= µ  （2.6） 

Where yCffCf 111 )(ˆ −−−= TTµ , f is a column 
vector of ones with dimension sn , and 
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The estimated MSE in this prediction is 
calculated as 

fCf
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2.3   Characteristics of co-kriging multi-
fidelity surrogate model 
A surrogate model only needs a sample 
distribution to approximate a function, thus it 
must concentrate as much information as 
possible, more sample data usually means better 
approximate accuracy. A typical, traditional 
design of a large modern transport aircraft wing-
body example is used to demonstrate the 
characteristics of the co-kriging multi-fidelity 
surrogate model. Design parameters are a 
combination of 12 variables Class-Shape-
Transformation (CST) method of three wing 
sections, root, kink and wingtip respectively. 
The aerodynamic coefficients of the wing-body 
at 785.0=∞M , 

4.2=α , 61025Re ×=  are 
surrogated using kriging method and co-kriging 
method respectively. 
Aerodynamic analysis of wing-body is carried 
out using RANS equation numerical method as 
high-fidelity model and of full potential 
equation coupled with boundary layer numerical 
method as low-fidelity model. The number of 
multi-block structure grid for high-fidelity 
simulation is about 1.7 million, and it takes 
forty minutes to run a high-fidelity evaluation 
on a computer with Intel i7 970 in parallel mode. 
Meanwhile, the low-fidelity model takes only 
four seconds to run an aerodynamic evaluation. 
The most concerned characteristic of surrogate 
model is the prediction ability of true functions 
at off-sample locations. The root mean square 
error (RMSE) and max relative error (MRE) of 
a separate validation dataset is chosen as criteria 
of surrogate model's accuracy. 
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Both the high-fidelity and low-fidelity 
sample sets were done using Latin Hypercube 
method and the same high-fidelity data set was 
used for the kriging surrogate modeling 
techniques. An array of different sized sample 
sets was used to compare the robustness and 
efficiency of the surrogate models for sparse to 
dense data sets. Figure 2 shows the comparison 
of approximate error between the co-kriging 
multi-fidelity surrogate model and kriging 
model. The co-kriging multi-fidelity surrogate 
model used in this paper which is enhanced by 
400 low-fidelity data can get much better 
approximation than kriging model with much 
less high-fidelity data, and it can get a much 
faster sample convergence.  
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(a) Lift coefficient 
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(b) Drag coefficient 

Fig. 1. The approximate error comparison 

3    Wing-body aerodynamic optimization 

3.1   Gennetic algorithms 
Among optimization algorithms, gradient-based 
methods are well-known techniques that seek to 
find the optimum by calculating local gradient 
information. Although gradient-based methods 
are superior to non-gradient-based techniques in 
a local search, the optimum obtained from these 
methods may not be the global one, especially 
for aerodynamic designs[20]. Alternatively, 
Genetic Algorithms (GAs) are more likely to 
find a global optimum and are therefore 
attractive for aerodynamic design 
optimization[21]. In the present study a real 
coded Genetic Algorithm is applied to the 
optimization of wing-body configuration 
described in section 2.3. 
The setup of objective function is minimizing 
the drag coefficient and expecting lift 
coefficient remain 0.54 as much as possible. A 
penalty function is used to limit the airfoil 
thickness in order to avoid impractical shapes 
and design parameters are bounded to create 
reasonable shapes. The mathematical model of 
the optimization design problem is illustrated as 
follows: 

2)54.0(
0.1
−+ ClCd

Max ， 

s.t.  0.15max ≥rootc  
     0.11max ≥midc  
   0.10max ≥tipc  

Cd and Cl are the wing-body's drag coefficient 
and lift coefficient, rootcmax , midcmax  and tipcmax  
are the maximum thickness of the wing root, 
kink and tip airfoils. The population of genetic 
algorithm is 30 and total evolution generation is 
100. 

3.2   Surrogate based optimization 
Using surrogate models in optimization design 
can greatly improve the computational 
efficiency. The kriging model and cokriging 
model are used as aerodynamic analysis tools to 
carry on surrogate based drag reduction 
optimization design respectively. The surrogate 
based optimization process used in our work is 
shown in Figure 1. Surrogate model is updated 
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after each genetic generation, best points are 
chosen to validate surrogate model's accuracy 
until predictive error 3%RMSE ≤ . For 
efficiency consideration, genetic algorithm is 
used to optimize the correlation parameters of 
co-kriging multi-fidelity surrogate model at the 
constructing step; at the updating step, the 
validated points are added to sample datasets 
and pattern search method is used to improve 
the constructed co-kriging multi-fidelity 
surrogate model's accuracy. 
 

 
Fig. 2. Main steps of the multi-fidelity surrogate model 

based optimization process 

3.3   Results 
To show the effect of different surrogate 
methods in the optimum shape design and its 
influence on the convergence behavior of 
surrogate based optimization, kriging and co-
kriging based optimization design are carried 
out respectively. The aerodynamic coefficient of 
initial and optimum wing-bodies using different 
surrogate models is shown in Table 1. Because 
co-kriging surrogate model has more accurate 
prediction, the optimum wing-body's lift 
coefficient using co-kriging surrogate model is 
closest to the expectation. The drag coefficient 
is reduced by 9 counts using kriging based GA 
optimization design ，  and co-kriging based 
optimization got 18 counts drag reduction. 
According to computational cost, kriging model 
requires more number of high-fidelity samples 
for its prediction is less accuracy; co-kriging 
model based optimization calls nhe=203 high-

fidelity evaluations (including initial 160 
samples), and kriging model based optimization 
calls nhe=325 high-fidelity evaluations 
(including initial 200 samples). Fig.3 shows the 
chord-wise pressure distributions of initial and 
optimum wing-bodies using kriging and co-
kriging surrogate model. It can be seen that the 
performance of co-kriging model is 
comprehensively superior to kriging model. It 
indicates that co-kriging surrogate model 
building with little high-fidelity data and large 
low-fidelity data is more suitable for multi-
dimensional complex engineering design 
optimization problems. 
Table. 1. Aerodynamic coefficient of initial and optimum 

wing-bodies using different surrogate models 

 initial Kriging  %Diff Co-kriging  %Diff 

nhe  325 203 

Cl 

Cm 

0.5400 

-0.111 

0.5390    -0.19% 

-0.108      -2.7% 

0.5394    -0.11% 

-0.101     -6.31% 

Cd 0.0280 0.0271     -3.2% 0.0262     -6.43% 
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(b) y/b = 0.252 

 
(c) y/b = 0.371 

 
(d) y/b = 0.546 

 
(e) y/b = 0.720 

 
(f) y/b = 0.894 

Fig. 3. Chord-wise pressure distributions of initial and 
optimum wing-bodies using kriging and co-kriging 

surrogate model 

4    Conclusion  
An efficient co-kriging multi-fidelity surrogate 
model were introduced based upon the flow 
characteristics of transonic viscous flow. The 
effect of sample size in surrogate model 
building and its convergence rate were 
investigated. A Genetic Algorithm was used as 
the surrogate based optimization method and the 
shape of a typical, traditional design of a large 
modern transport aircraft wing-body was 
optimized to achieve the minimum Cd with 
minimum change of Cl at specified flow 
conditions. The optimization results of co-
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kriging multi-fidelity surrogate model were 
compared with that of kriging model. The co-
kriging multi-fidelity surrogate model provides 
more accurate in predicting the aerodynamic 
coefficienct of wing-body with smaller high-
fidelity sample size, thereby reducing the 
computational cost of optimization for long 
running expensive simulation-based design 
problems. In addition, it was shown that a better 
surrogate model can improve the convergence 
rate of the surrogate based optimization 
algorithm. 
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