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Abstract

This paper presents estimation of aerodynamic
derivatives in aircraft models using a sys-
tem identification technique for multi-variable
continuous-time state-space systems, called iter-
ative learning identification technique. As an ap-
plication of the iterative learning identification,
the proposed technique is applied to estimation
of the aerodynamic derivatives in a lateral linear
model of aircraft. The effectiveness of the tech-
nique is discussed in numerical simulations.

1 Introduction

In design of flight control systems for aircraft,
stability and control derivatives, also called aero-
dynamic derivatives are needed to not only ana-
lyze flight properties but also design a flight con-
troller for satisfying flight specification. They
are derived from flight dynamics and are also ob-
tained by flight and/or wind-tunnel tests. Such
tests are so hard because there are many deriva-
tives to be obtained and the measurements have
to be done in several flight conditions [1], [2].
The use of system identification [3], [4] is one of
methods to reduce the burdens. Recently, a sys-
tem identification technique using iterative learn-
ing control, called iterative learning identification
in this paper, has been developed for system iden-
tification of continuous-time systems described
by the transfer function (TF) [5] - [10]. In identi-
fication techniques that have been developed for

continuous-time systems so far, the derivatives of
the input and output signals are required for es-
timating computation [11]. Since the derivatives
of the output signal are sensitive to the measure-
ment noise, the parameters may be not accurately
estimated, especially when a large measurement
noise is included in the output signal. In iter-
ative learning identification, on the other hand,
the derivatives of the command signal rather than
the measured output are used. The measurement
noise does not directly influence the estimated
parameters. An advantage is that this method
is robust against insufficient excitation and sam-
pling because data used in the updated computa-
tion are newly obtained at each iteration. More-
over, it is possible to estimate the parameters of
unstable systems by incorporating a stabilizing
controller in the iterative learning control system.
That is, it is not very hard to estimate the param-
eters in closed-loop systems.

This paper presents estimation of the aerody-
namic derivatives in aircraft models using the it-
erative learning identification technique. Sugie
et al. [6] - [9] presented identification proce-
dures for TF models. This paper extends the it-
erative learning identification technique for state-
space (SS) systems with multi-inputs and multi-
outputs. As an application of iterative learning
identification, the technique is applied to estima-
tion of the aerodynamic derivatives in a lateral
linear model of aircraft. The effectiveness of the
technique is discussed in numerical simulations.

1



FUJIMORI & OH-OHARA

2 Preliminaries for Identification

The system to be identified in this paper is a
multi-input and multi-output SS LTI system

⎧⎨
⎩

ẋ(t) = Ap(η)x(t)+Bp(η)u(t)

y(t) = Cp(η)x(t)+Dp(η)u(t)+ v(t)
(1)

where x(t) ∈ R nx is the state, u(t) ∈ R nu the in-
put, y(t) ∈ R ny the output and v(t) ∈ R ny is the
noise included in y(t). Additionally, η ∈ R q is a
q-dimensional vector that consists of the SS pa-
rameters to be identified and is called the SS pa-
rameter vector. The transfer function from u(t) to
y(t) is represented by

P(p)
�
=

N(p)
D(p)

�
=

1
D(p)

⎡
⎢⎢⎣

N11(p) . . . N1nu(p)
...

...

Nny1(p) . . . Nnynu(p)

⎤
⎥⎥⎦ (2)

where p is the differential operator; that is,

plu(t)
�
=

dlu(t)
dtl . (3)

Letting n and mi j be the order of polynomials
D(p) and Ni j(p), respectively, they are expressed
as follows.

D(p)
�
= pn +an−1pn−1 + · · ·+a0 (4)

Ni j(p)
�
= bi j,mi j p

mi j + · · ·+bi j,0 (5)

(i = 1, · · · ,ny, j = 1, · · · ,nu)

Here, ai (i = 0, · · · ,n − 1) and bi j,l (i =
1, · · · ,ny, j = 1, · · · ,nu, l = 0, · · · ,mi j) are coef-
ficients of D(p) and Ni j(p), respectively, and are
called the TF parameters. Vectors with respect to
the coefficients of D(p) and Ni j(p) are defined as
follows.

θa
�
= [a0 · · · an−1]T ∈ R n, θa1

�
= [θT

a 1]T ∈ R n+1,

θbi j

�
= [bi j,0 · · · bi j,mi j ]

T ∈ R mi j . (6)

Collecting θbi j (i = 1, · · · ,ny, j = 1, · · · ,nu), θb is
defined as

θb
�
= [θT

b11
· · · θT

b1nu
· · · θT

bny1
· · · θT

bnynu
]T ∈ R m

(7)

where

mi
�
=

nu

∑
j=1

mi j +nu,

m
�
=

ny

∑
i=1

mi =
ny

∑
i=1

nu

∑
j=1

mi j +nynu. (8)

Then, the TF parameter vector is defined as

θ �
= [θT

b θT
a ]T ∈ R m+n. (9)

It is supposed in this paper that Eq. (1) is the
minimal realization; that is, n = nx. Moreover,
the number of SS parameters is not greater than
that of the TF parameters; that is,

q ≤ m+n (10)

In iterative learning identification, nu command
signals are needed to generate the reference for
the output and the controlled input. They are
given as the elements of the following vector

h(t)
�
= [h1(t) · · · hnu(t)]

T ∈ R nu. (11)

Here, h j(t) ( j = 1, · · · ,nu) are smooth and are
differentiable by n times. The following vector,
which consists of h j(t) and its derivatives, is de-
fined as

φ j,l(t)
�
= [h j(t)

dh j(t)
dt

· · · dlh j(t)
dtl ]T ∈ R l+1

(12)
where the range of l is given by 0 ≤ l ≤ n. Us-
ing φ j,l(t) ( j = 1, · · · ,nu) in the iterative learn-
ing control system, whose structure is given by a
tracking control system and will be shown in the
following section, y(t) is measured at a specified
time interval. The SS parameter vector is updated
so as to reduce the response error. That is, iter-
ative learning identification estimates the SS pa-
rameters by performing tracking control and up-
dating the SS parameter vector iteratively. In the
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Fig. 1 Iterative learning control system for iden-
tification.

following sections, for convenience, the iteration
number is denoted as k. The signal vectors, es-
timated parameters and polynomials of the trans-
fer functions at the k-th iteration are denoted as
(·)(k). Their true values are denoted as (·)∗.

3 Response Error and Parameter Update

3.1 Iterative learning control system for
identification

Figure 1 shows an iterative learning control sys-
tem for identification. Here, K(p) is an nu ×ny

feedback controller for stabilization (it does not
matter whether the structure of K(p) is known or

not); u(k)
b (t) ∈ R nu is the k-th iteration feedback

input; u(k)
f (t) ∈ R nu is the k-th iteration feedfor-

ward input generated by feeding the command
h(t) into the k-th iteration estimated denomina-
tor polynomial D(k)(p); r(k)(t) ∈ R ny is the k-th
iteration reference for y(k)(t) and is generated by
feeding the command h(t) into the k-th iteration
estimated numerator polynomial N(k)(p). The
response error, denoted as e(k)(t) ∈ R ny , is de-
fined as the difference between y(k)(t) and r(k)(t).
The SS parameters to be identified are updated so
as to reduce the response error at each iteration.
When P(p) to be identified is stable, K(p) may
be omitted.

The signals in Fig. 1 are written as

u(k)
b (t)

�
= K(p)(r(k)(t)− y(k)(t)), (13)

u(k)
f (t)

�
= D(k)(p)h(t) = Φa1(t)θ

(k)
a1 , (14)

r(k)(t)
�
= N(k)(p)h(t) = Φb(t)θ

(k)
b , (15)

where

Φa1(t)
�
=

⎡
⎢⎢⎣

φT
1,n(t)

...

φT
nu,n(t)

⎤
⎥⎥⎦ , Φa(t)

�
=

⎡
⎢⎢⎣

φT
1,n−1(t)

...

φT
nu,n−1(t)

⎤
⎥⎥⎦ ,

Φb(t)
�
=

⎡
⎢⎢⎣

φT
b1(t) 0

. . .

0 φT
bny

(t)

⎤
⎥⎥⎦ (16)

φT
bi(t)

�
= [φT

1,mi1
(t) · · · φT

nu,minu
(t)] (17)

(i = 1, · · · ,ny)

Then, the response error at the k-th iteration is
given by

e(k)(t)
�
= y(k)(t)− r(k)(t)

= Y (p)u(k)
f (t)−S(p)r(k)(t)+S(p)v(k)(t)

(18)

where

S(p)
�
= (Iny +P(p)K(p))−1, (19)

Y (p)
�
= (Iny +P(p)K(p))−1P(p). (20)

When v(k)(t) = 0, e(k)(t) = 0, it indicates that the
superscript (k) is changed into ∗ in Eq. (18). The
following equation holds.

y∗(t) �
= Y (p)u∗f (t) = S(p)

N∗(p)
D∗(p)

D∗(p)h(t)

= S(p)r∗(t) (21)

Using Eqs. (13)-(21), e(k)(t) is written as

e(k)(t) = Y (p)Φa(t)(θ
(k)
a −θ∗a)

−S(p)Φb(t)(θ
(k)
b −θ∗b)+S(p)v(k)(t) (22)

Equation (22) explicitly represents the depen-

dence of the TF parameters θ(k)
a and θ(k)

b to the re-
sponse error e(k)(t). That is, reducing e(k)(t) cor-

responds to approaching θ(k)
a and θ(k)

b to θ∗a and
θ∗b, respectively. To realize this, the response er-
ror is first represented by the sampled data whose
number is sufficiently greater than that of TF pa-
rameters and is then projected onto the subspace
of the parameters.

3



FUJIMORI & OH-OHARA

3.2 Vector representation by sampled data

To treat sampled data compactly, as an example,
the following vector denoted by the boldface is
defined for the output y(k)(t),

y(k) �
=

⎡
⎢⎢⎣

y(k)(0)
...

y(k)(NTs)

⎤
⎥⎥⎦ ∈ R ny(N+1) (23)

where N is the number of sampled data and Ts

is the sampling time. Vectors denoted by the
boldface are also defined for other signals. Fur-
thermore, the following matrices are defined for
Φa1(t), Φa(t) and Φb(t), respectively.

Γa1
�
=

⎡
⎢⎢⎣

Φa1(0)
...

Φa1(NTs)

⎤
⎥⎥⎦ , Γa

�
=

⎡
⎢⎢⎣

Φa(0)
...

Φa(NTs)

⎤
⎥⎥⎦ ,

Γb
�
=

⎡
⎢⎢⎣

Φb(0)
...

Φb(NTs)

⎤
⎥⎥⎦ (24)

If N is given as N � n + m, the following rank
condition almost holds.

rankΓa = n, rankΓb = m (25)

Letting gS(t) ∈ R ny×ny and gY (t) ∈ R ny×nu

be the impulse response matrices, respectively,
where S(p) and Y (p) are discretized by the 0-th
order hold with the sampling time Ts, the follow-
ing matrices are defined with respect to gS(t) and

gY (t).

GS
�
=

⎡
⎢⎢⎢⎢⎢⎣

gS(0) 0 . . . 0

gS(Ts) gS(0) . . .
...

...
...

. . . 0

gS(NTs) gS((N −1)Ts) . . . gS(0)

⎤
⎥⎥⎥⎥⎥⎦

(26)

GY
�
=

⎡
⎢⎢⎢⎢⎢⎣

gY (0) 0 . . . 0

gY (Ts) gY (0) . . .
...

...
...

. . . 0

gY (NTs) gY ((N −1)Ts) . . . gY (0)

⎤
⎥⎥⎥⎥⎥⎦

(27)

Then, Eq. (22) can be approximated in terms of
the sampled data vector.

e(k) � GY Γa(θ
(k)
a −θ∗a)−GSΓb(θ

(k)
b −θ∗b)+GSv(k)

= Λ(θ(k)−θ∗)+GSv(k) (28)

where

Λ �
= [−GSΓb GY Γa] ∈ R ny(N+1)×(m+n) (29)

3.3 SS parameter and response error

Equation (28) is the relationship between the TF
parameter vector θ and the response error. This is
extended to the relationship between the SS pa-
rameter vector η and the response error in this
section. The basic idea is that θ is regarded as
a function with respect to η. The first-order ap-
proximation of θ∗ around η(k) is given by

θ∗ � θ(k) +Ψ(k)(η∗ −η(k)) (30)

where

Ψ(k) �
=

∂θ(η(k))
∂ηT . (31)

Substituting Eq. (30) into Eq. (28), e(k) is written
as

e(k) = ΛΨ(k)(η(k)−η∗)+GSv(k). (32)

4
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Pre-multiplying both sides of Eq. (32) by
(ΛΨ(k))T , we have

ε(k) = M(k)(η(k)−η∗)+ν(k) (33)

where

ε(k) �
= (ΛΨ(k))T e(k), ν(k) �

= (ΛΨ(k))T GSv(k),

M(k) �
= (ΛΨ(k))T (ΛΨ(k)).

If the following condition holds,

rank(ΛΨ(k)) = q (∀k ≥ 0) (34)

M(k) is nonsingular. When ν(k) = 0, the following
relation holds.

ε(k) → 0 ⇔ η(k) → η∗ (35)

Thus, the SS parameter vector η(k) is identifiable
by reducing ε(k); that is, e(k) to zero. Equation
(34) indicates that the persistently exciting (PE)
condition [3], [4] is satisfied in the proposed tech-
nique.

3.4 Updated law of SS parameter

This section shows the updated law of the SS pa-
rameters in iterative learning identification. The
updated law of η(k) is given by

η(k+1) = η(k) +H(k)ε(k) (36)

where

H(k) = −α(k)M(k)−1
(37)

where α(k) is a non-decreasing gain with respect
to the iteration number k and is given by

α(k) : α → α (0 < α ≤ α < 1). (38)

Substituting Eqs. (33) and (37) into Eq. (36), we
have

η(k+1) = (1−α(k))η(k) +α(k)(η∗ −M(k)−1
ν(k)).

(39)
When ν(k) = 0, the following convergence condi-
tion is guaranteed.

k → ∞ : η(k) → η∗ (40)

Equation (38) is a technique to improve conver-
gence of the parameter [10].

3.5 Procedures of iterative learning identifi-
cation

To summarize section 3, the procedures of itera-
tive learning identification are as follows.

Step 1: The SS parameter η to be identified
is defined. Construct the iterative learn-
ing control system as shown in Fig. 1. If
the system is unstable, provide a stabiliz-
ing controller K(p). Otherwise, K(p) may
be omitted.

Step 2: Obtain the impulse response matrices
gS(t) and gY (t) (t = 0,Ts, · · · ,NTs). Con-
struct GS and GY defined as Eqs. (26) and
(27). Set k = 1

Step 3: Perform tracking control; that is, feed
the command signal h(t) in Fig. 1. Mea-
sure y(k)(t) and r(k)(t) (t = 0,Ts, · · · ,NTs).
Obtain e(k)(t).

Step 4: Update η(k) using Eq. (36).

Step 5: If iteration continues, set k + 1 → k
and go to Step 3. Otherwise, stop.

In Step 2, if the impulse response matrices
gS(t) and gY (t) is not able to obtain precisely;
that is, the initial state cannot be set to zero, they
may be estimated by the least square method.

4 Estimation of Aerodynamic Derivatives in
an Aircraft Model

The proposed identification technique is applied
to estimation of aerodynamic derivatives in a lat-
eral linear model of aircraft in this section. The
SS representation of the lateral motion of aircraft
is given in the form of Eq. (1) where the state and
input vectors x and u are given by [12]

x
�
= [β φ p r]T , u

�
= [δa δr]T . (41)

Here, x consists of the side slip angle β, the roll
angle φ, the roll rate p (not the differential opera-
tor of the transfer function here) and the yaw rate
r. In addition, u consists of the aileron deflec-
tion angle δa and the rudder deflection angle δr.
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These variables represent the deviation from the
equilibria. Ap and Bp are given as

Ap = E−1F, Bp = E−1G, (42)

where

E
�
=

⎡
⎢⎢⎢⎢⎣

Va 0 0 0

0 1 0 0

0 0 1 −Ixz/Ixx

0 0 −Ixz/Izz 1

⎤
⎥⎥⎥⎥⎦

, G
�
=

⎡
⎢⎢⎢⎢⎣

0 Yδr

0 0

Lδa
Lδr

0 Nδr

⎤
⎥⎥⎥⎥⎦

,

F
�
=

⎡
⎢⎢⎢⎢⎢⎣

Yβ gcosΘ0 Yp Yr −Va

0 0 1 tanΘ0

Lβ 0 Lp Lr

Nβ 0 Np Nr

⎤
⎥⎥⎥⎥⎥⎦

.

In matrices E and F , Va is the flight velocity and
Θ0 is the pitch angle at the equilibrium. Ixx and
Izz are the moments of inertia in the x-axis and
z-axis, respectively. Ixz is the product of iner-
tia. Yβ, Yp, etc. are the aerodynamic derivatives
to be identified. In the following subsections,
the SS parameter vector η is constructed by the
aerodynamic derivatives that are assigned in ad-
vance. The output y is defined by the following
two cases:

(O1) Two outputs:

y
�
= [β φ]T (43)

(O2) Four outputs:

y
�
= [β φ p r]T = x (44)

The aircraft considered in this study is from Ref.
[13]). The flight conditions are given by the
altitude H = 4,000 [m] and the flight velocity
Va = 100 [m/s].

4.1 Case 1

η is constructed by

η = [Lβ Lp Nβ]
T ∈ R 3. (45)

The true value of η is

η∗ = [−1.874 −0.971 1.061]T . (46)

0 10 20 30 40 50
0

2

4

6

8

10
Norm of response error

||e
(k

) ||

k

Fig. 2 Norm of response error (Case 1).
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Fig. 3 Estimated SS parameters (Case 1).
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Fig. 4 Feedforward input (Case 1).
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Fig. 5 Output (Case 1).

The output y is given by (O1). The com-
mand signal vector h(t) ∈ R 2 is given by a two-
dimensional step response

h(t) =
26

(p+2)6 I2w(t) (47)

where w(t)∈R 2 is given by the two-dimensional

unit step input w(t)
�
= [1 1]T . The measurement

noise v(k)(t) ∈ R 2 is given by the white noise
whose noise signal ratio (NSR) is 20 %, where
NSR is defined as

NSR
�
=

||v(k)(t)||
||y(k)(t)|| . (48)

Since the system with Eq. (4) is stable in the
flight conditions H = 4,000 [m] and Va = 100
[m/s], the stabilizing controller K(p) is omitted.
The sampling time is given by Ts = 0.01 [s] and
the number of the sampled data is N = 1,000.
The lower and upper bounds of α(k) in Eq. (38)
are given by α = 0.7 and α = 0.9. The initial SS
parameter vector is given by η(0) = [−1 − 1 −
1]T .

Figures 2 and 3 show the norm of the re-
sponse error e(k) and the estimated SS parameters
ηi (i = 1,2,3), respectively, for fifty iterations.
The response error is monotonously decreased
and the SS parameters asymptotically converge
for k ≥ 25. At k = 50, the SS parameter vector is
obtained as

η(50) = [−1.878 −0.967 1.060]T . (49)

0 10 20 30 40 50
0

2

4

6

8

10

12

14
Norm of response error

||e
(k

) ||

k

Fig. 6 Norm of response error (Case 2).

The error of the estimated SS parameters is less
than 0.5 % of the true values. Figures 4 and 5

show the feedforward input u(k)
f (t) and the output

y(k)(t) at k = 3,15 and 50, respectively. When in-
creasing the iteration number, the responses ap-
proach the ones whose SS parameters are true

values. The responses of u(50)
f (t) and y(50)(t) al-

most coincide with u∗f (t) and y∗(t), respectively.

4.2 Case 2

η is constructed by

η = [Nr Lδa Nδr ]
T ∈ R 3 (50)

which includes the derivatives in matrix Bp. The
output is given by (O1) and h(t) is given by the
two-dimensional step response. The lower and
upper bounds of α(k) in Eq. (38) are given by
α = 0.7 and α = 0.9. The initial SS parameter
vector is given by η(0) = [−1 1 − 1]T . The true
values of η are

η∗ = [−0.211 4.5397 −0.7199]T . (51)

Figures 6 and 7 show the norm of the response er-
ror and the SS parameters, respectively, for fifty
iterations. In addition, in this case, the response
error is monotonously decreased and the SS pa-
rameters asymptotically converge for k ≥ 25. At
k = 50, the SS parameter vector is obtained as

η(50) = [−0.210 4.554 −0.731]T . (52)
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Fig. 9 Estimated SS parameters (Case 3).

4.3 Case 3

η is constructed by

η = [Yβ Yr Lβ Lp Lr Nβ

Np Nr Yδr Lδa Nδr ]
T ∈ R 11. (53)

The true values of η is

η∗ = [−15.57 0.8346 −1.874 −0.9709 0.2640 1.061

−0.0894 −0.211 3.139 4.541 −0.7199]T . (54)

When the output is given by (O1), the updated
law of η, Eq. (36), fails because M(k) becomes
singular; that is, the rank condition of ΛΨ(k), Eq.
(34), is not satisfied. When the output is changed
to (O2), the rank condition is satisfied. Figures 8
- 9 show the norm of the response error and the
SS parameters, respectively. At k = 50, the SS
parameter vector is obtained as

η(50) = [−14.96 0.6261 −1.882 −0.9497 0.2652 1.060

−0.0916 −0.2099 2.190 4.500 −0.7172]T . (55)

The error of the estimated SS parameters is ac-
ceptable except that for η2 (=Yr) and η9 (=Yδr).

5 Concluding Remarks

This paper has presented estimation of the aero-
dynamic derivatives in aircraft models using a
system identification technique for multi-variable
continuous-time state-space systems using iter-
ative learning control, called iterative learning
identification technique. As an application of
the iterative learning identification, the technique
was applied to estimation of the aerodynamic
derivatives in a lateral linear model of aircraft.
The effectiveness of the technique was demon-
strated in numerical simulations.

When the number of parameters to be identi-
fied increased, computational problems emerged
and the accuracy of the estimated parameters de-
creased. Although these were avoided by increas-
ing the number of output in the numerical simu-
lation, more effective techniques should be con-
sidered. Furthermore, some aerodynamic deriva-
tives were not precisely estimated because they
were not sensitive to the response error. These
problems will be improved in future research.
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