THE RUSSIAN AVIATION: Challenges & New Opportunities for International Cooperation

Dr. Sergey CHERNYSHEV
Executive Director
TsAGI

TsAGI: CENTRAL AEROHYDRODYNAMIC INSTITUTE

- Russia’s Leading Aerospace R&D Center
- Over 90 Years of Technology Excellence
- World Largest Testing Facility
- Mother Organization for Many Russian R&D Institutes and Design Bureaus
- Training facility for top Russian Technical Universities
- Russia’s ICAS Member since 1960

Prof. Nikolay Zhukovsky
(1847 – 1921)
The Founder
ZHUKOVSKY: HOME TOWN FOR THE RUSSIAN AERONAUTICS

19–24 September ICAS 2010 • Nice, France 3

T-101 SUBSONIC WIND TUNNEL

Technical specs:
Flow velocity 5–52 m/s
Re number per 1 m up to 3.3 \times 10^6
Test section dimensions:
 Nozzle section 24×14 m
 Test section length 24 m
Angles of attack range -20°…+20°
Sideslip angle range -180°…+180°
T-104 SUBSONIC WIND TUNNEL

- Aircraft – Engine integration
- Propeller Aerodynamics
- Various engine failures simulation

Technical specs:
Flow velocity 10–120 m/s
Re number per 1 m up to 8·10^6

Test section dimensions:
Nozzle diameter 7 m
Test section length 13 m

19–24 September
ICAS 2010 • Nice, France

T-105 VERTICAL WIND TUNNEL

- Free spin testing
- Rotary balance testing

19–24 September
ICAS 2010 • Nice, France
T-128 TRANSONIC WIND TUNNEL

- Test section size: 2.75 x 2.75 m
- Adaptive wall perforation
- Advanced technique of wall correction
- Real flight Re numbers

T-109 SUPERSONIC WIND TUNNEL

- **T-109 test section:**
 - 2.25 x 2.25 m
 - $M = 0.4 \div 4.0$
 - Variable nozzle

- **Type of Testing:**
 - Simultaneous measurement of 3-D forces, moments, & pressure distribution (up to 400 points)
 - Simulation of cold & hot engine jets
 - Measurement of aircraft pressure pulsation
 - Aeroelasticity testing: flatter, buffeting, reverse
 - Aircraft - body separation study
FULL SCALE STATIC TEST LABORATORY

- Area: 3600 m²
- Multi-channel automatic loading systems (up to 120 channels)
- Automatic measurement system (up to 18000 sensors for measuring strain, deformation etc.)

THE TPVK-1 THERMOSTRENGTH VACUUM CHAMBER

- Diameter: 13.5 m
- Length: 30 m
- Min pressure: 5×10^{-8} bar
- Temperature range: 120÷1700 K
- Max effort when strength testing: up to 500 t
- Acquisition: 4250 channels
WATER TANK WITH TOWING TROLLEY

Length – 220 m
Trolley Velocity – up to 15 m/s

TECHNOLOGY CHALLENGES:

- SAFETY
- GREENING TECHNOLOGIES
- ECONOMIC EFFICIENCY
- ROTORCRAFT AND AIRFIELD-FREE TRANSPORT
SAFETY

SMART INTEGRATED CONTROL SYSTEM FOR SAFETY IMPROVEMENT

TsAGI’s contribution:
Approach Router: to assess flight situation, to generate and analyze set of possible approach trajectories
VORTEX SAFETY

TsAGI' contribution:
- On-board Wake Vortex Predictor and Indicator to provide warnings and recommendations to pilots.

Experimental Verification

Upset and Stall Recovery

TsAGI' contribution:
- Software for estimation stability and control characteristics at early design stage
- WT tests of unsteady aerodynamic characteristics for Transonic Cruiser
- Software for flight control system synthesis
- The extended mathematical model of jet airliner at high angles of attack and other critical flight regimes
- The simulator specifications for the modeling of aircraft upset recovery
SPECIAL RIG WIND TUNNELS
FOR UNSTEADY AERODYNAMICS RESEARCH

TESTING TYPES:

- OVP-102B
 Aerodynamic damping derivatives, forces and moments at small and large amplitudes
- UV-103
 Oscillatory conning rig (steady rotation about axis inclined with respect to free stream velocity)
- SCAD
 Estimation of the flow separation characteristic time lag
- SKM
 Compressibility effects investigation in transonic and supersonic range (up to $M = 1.5$)

19–24 September ICAS 2010 • Nice, France

ENGINEERING FLIGHT SIMULATORS

FS-102
Engineering simulator applications

- Engineering assistance for aircraft design:
 - investigation of flight dynamics and control systems
 - optimization of the control system algorithms, feel system and aircraft visual system
 - recommendations for aircraft piloting
- The tool for flight testing:
 - flight task and flight regimes analysis
 - test pilots training
 - certification testing

19–24 September ICAS 2010 • Nice, France
MATHEMATICAL MODELLING OF AERODYNAMIC CHARACTERISTICS AT HIGH ANGLES OF ATTACK

\[C_N(t) = C_N(x, x(t)) + \left(C_{xN} + C_{xN_0} \right) \frac{dx}{dt}, \quad \frac{dx}{dt} + x = x_0(t) \]

Pugachov's cobra

GROUND VORTEX AERODYNAMICS OF TURBOFAN INTAKE

- Safety
- Long service life

CFD visualization
WT tests
THRUST REVERSER (TR) AERODYNAMICS

- TR efficiency
- TR jet reinjection
- Stable operation of engine
- Effect on aircraft aerodynamics

CFD visualization

WT tests

GREENING TECHNOLOGIES
DREAM – validation of Radical Engine Architecture systems

Aero-acoustic test in TsAGI’s WT

DREAM objectives:

- CO₂ – 7% better than ACARE goals or 27% better than Year 2000 engine
- Noise – 9 dB cumulated on 3 cert points versus the Year 2000 engine
- NOₓ – will be reduced accordingly with engine specific fuel burn reduction

LOW-NOISE NOZZLE CONFIGURATIONS

The set of various nozzle configurations has been tested at TSAGI quiet acoustical chambers in order to define the optimum.
NOISE CONTROL BY PLASMA ACTUATORS

New concept based on direct control of noise radiation mechanisms by plasma actuators (DBD)

Noise level improvement – 1.3 dB

INSTABILITY WAVE CONTROL BY PLASMA ACTUATORS

Instability wave noise control: from strategy formulation to search of best plasma actuators
LAMINAR FLOW CONTROL BY PLASMA ACTUATORS

Basic Principle:
Volumetric force impact of DBD-actuators directed along a wing leading edge for attenuation of cross-flow-type instabilities

Result:
Reduction of spatial growth of cross-flow-type instabilities increments by 25–30%
TsAGI’s contribution:

- sonic boom criteria
- sonic boom and aerodynamic modeling
- design of low-boom a/c configuration; aerodynamic, noise and sonic boom assessments
- analyses of sensitiveness for MDO processes

Pressure Signatures and Sonic Boom Loudness

<table>
<thead>
<tr>
<th>TsAGI Contribution:</th>
<th>Low-Sonic Boom Supersonic Business Jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>19–24 September ICAS 2010</td>
<td>Nice, France 29</td>
</tr>
</tbody>
</table>

Efficiency
RESEARCH ON NEW RUSSIAN REGIONAL AIRCRAFT SSJ-100

Research of cruise, take off and landing characteristics

T-128 transonic wind tunnel testing

Computational and experimental research of static strength, aeroelasticity and fatigue

SSJ-100: LOCAL AERODYNAMICS OPTIMIZATION

Curvilinear pylon design

M = 0.81, \(\alpha = 1.5^\circ \)

Original pylon configuration

Curvilinear pylon configuration

Wing + fuselage modification

M = 0.81, \(\alpha = 1.5^\circ \)

Original wheel fairing

New enlarged wheel fairing
MC-21: THE NEW GENERATION OF SHORT-MEDIUM RANGE AIRCRAFT

FUEL EFFICIENCY

TECHNOLOGY INNOVATIONS FOR THE MC-21
- Composite wing with a very high aspect ratio
- Load reducing active system
- New generation engines
- New generation airborne equipment
- Satisfaction of perspective ecological requirements
- Innovative technological production processes
- Advanced system of the MC-21 post-sail operational maintenance

RESEARCH OF COMPOSITE STRUCTURES IN FPs PROJECTS

- Development of algorithm for calculation of strength and weight parameters of the composite fuselage taking into consideration nonlinear skin behaviour
- Studies of the post buckling behaviour of stiffened composite structures
ACTIVE AEROELASTICITY CONCEPT DEVELOPMENT

Research directions:
- Structural deformation optimization and control
- Adaptive control surfaces for composite / metal wing
- Integrated active control system for loads alleviation
- Aeroelastic safety under minimum weight penalty

Smart Trailing Edge – (SDS-structure with elastomeric filler).

Typical stress-distribution of STE one chordwise row of SDS-structure.
SMART ACTIVE LEADING EDGE BASED ON SDS
WITH ELASTOMERIC FILLER

Use of aerelasticity concept. Adaptive differentially deflected smart leading edge
(forward aileron – foraileron) – SDS-structure with elastomeric filler.
Typical stress-distribution of SLE one chordwise row of SDS-structure for deflection up.

LATTICE TECHNOLOGY FOR CIVIL FUSELAGE STRUCTURE

ADVANTAGES OF LATTICE TECHNOLOGY:
- Real weight saving for rocket airframe – 25–40%
- Expected weight saving for fuselage structure – 15–20%
- Expected cost reduction of fuselage structure – 30–35%

STRUCTURE OF THE PROTOTYPE NEW PRO-COMPPOSITE AIRCRAFT CONCEPT
TsAGI’s contribution to:

- Numerical investigation of control surfaces, handling qualities, concepts of design of a family of Flying Wing aircraft, structural concepts of Flying Wing and its pressurized section.
- Numerical and experimental investigation of engine burst protection.

Manufacturing of external contour parts of an 1:5 scale full-span powered wind tunnel model. Final assembly by NLR.

** ROTORCRAFT AND AIRFIELD-FREE TRANSPORT **
MAIN DIRECTIONS OF ROTORCRAFT DEVELOPMENT

- speed increase (up to ~ 400 – 500 km/h);
- range increase (up to ~ 1000 – 1400 km);
- reduction of community noise;
- comfort improvement (reduction of noise and vibration in cabin);
- service life increase;
- reduction of operating costs;
- increase in stability, controllability and maneuverability.

High-speed helicopter Mi-X1

High-speed helicopter Ka-92

Tilt rotor aircraft

AIRFIELD-FREE TRANSPORT AIRCRAFT

AMPHIBIAN AIRCRAFT

WING-IN-GROUND VEHICLES
INTERNATIONAL COOPERATION

Beginning in the 90s
NASA - TSAGI COOPERATION IN AERONAUTICS

Dr. Wesley Harris (left)
NASA Associate Administrator
TsAGI, 1993

Mr. Richard Christiansen
NASA Associate Administrator
TsAGI, 1999

RUSSIA – US STUDENT EXCHANGE

19-24 September
ICAS 2010 • Nice, France
MERGING THE EFFORTS: RUSSIA IN EUROPEAN AERONAUTICS RESEARCH PROGRAMMES

The Conference was supported by EC as a specific support action for ILA-2004 exhibit
The event was supported by ISTC as well

19–24 September ICAS 2010 • Nice, France

ANNUAL TsAGI–ONERA SCIENTIFIC SEMINAR

2001, Zhukovsky (Russia)
2002, Chatillon (France)
2003, Zhukovsky (Russia)
2004, Madan (France)
2005, Moscow (Russia)
2006, Paris (France)
2008, Zhukovsky (Russia)
2009, Lille (France)
2010, Gelendzik (Russia)

19–24 September ICAS 2010 • Nice, France
“EU-RUSSIA CO-OPERATION IN AERONAUTICS RESEARCH”
2006 Workshop-Brussels

Seminar programme

I. Analysis of the current participation of the Russian partners in FP6, applying for calls and further development of cooperation under FP6 and FP7.

II. Determination of the main lines of the EC-Russian Aerospace Industry cooperation.

III. Discussion of the prospective joint projects

- Air traffic management
- Flight simulators and pilot training
- Harmonization of standards and regulations
- Scientific exchange, including scientific workshops, conferences, exchange of scientists / students
The main topic is participation of Rosprom enterprises in cooperative research projects of the 7th Framework programme

Rosprom acts as the main organizer while support is granted by TsAGI, GosNIIAS, VIAM, CIAM and Sukhoi Civil Aircraft

October 15–16, 2010, Moscow, Russia supported by Minpromtorg and EC:
The Main Tasks:

- Improvement EU–Russia cooperation in aeronautics research
- Support of the Russian participants involvement in FP7
- Support of the Coordinated Call EU–Russia in frame of the 3rd Call of FP7
IX International Scientific-Technical Symposium
“AVIATION TECHNOLOGIES OF THE XXI CENTURY”

During MAKS’2009 Air & Space Salon
Number of participants: 497 including 107 foreign participants

Symposium topics

- Aircraft aerodynamics
- Flight dynamics
- Modern materials and technologies
- Aircraft structures and strength
- Flight tests and safety
- Challenges of power plant engineering
- Avionics
- Rotorcrafts
- Future aircraft projects

19-24 September
ICAS 2010 • Nice, France

SAINT-PETERSBURG & TsAGI ARE EAGER TO WELCOME ICAS!

ICAS-2014

19-24 September
ICAS 2010 • Nice, France
Thank you!