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Abstract

In this paper, a procedure is presented to de-
sign aircraft flight control laws using the Vari-
able Structure Control taking into account ro-
bustness to parametric uncertainties and chat-
tering suppression, which is based in clear and
straightforward numerical computations and re-
lationships between design and performance pa-
rameters. Also, an example is presented to ilus-
trate the application and effectiveness of the pro-
cedure.

1 Introduction

In the aeronautical industry, robust control is usu-
ally adopted in the aircraft flight control law de-
sign in order to deal, for example, with the varia-
tion of aerodynamic coefficients along flight con-
ditions. Some of the used techniques are linear,
what place limitations, for example, on the enve-
lope at which a given set of gains is valid.

In this document, a procedure is presented
to design aircraft flight control laws, taking into
account robustness to parametric uncertainties,
using the non linear robust control technique
called Variable Structure Control (VSC) or Slid-
ing Mode Control (SMC). The procedure is such
that control law adjustment and computation are
performed via clear and straightforward numeri-
cal procedures and relationships between design
and performance parameters.

In order to develop the procedure in question
and, also, to ilustrate its application and effective-

ness, a particular tracking and stabilization prob-
lem is considered for the longitudinal dynamics
of an unstable hypersonic aircraft, represented by
a nonlinear model.

The remainder of this paper is organized as
follows. In section 2, a brief presentation of the
main VSC concepts is performed. In section 3,
the aircraft model and the control problem con-
sidered in the elaboration and presentation of the
design procedure in question are presented. In
section 4, the VSC controller considered in the
design procedure and some of its properties are
presented. In section 5, the design procedure
and respective numerical implementation tasks
are presented. In section 6, results of the applica-
tion of the design procedure to the control prob-
lem considered are presented. Finally, section 7
contains some concluding remarks.

2 Variable Structure Control

Consider a state space and a differential equation
that defines trajectories on it. Also, consider that
the right-hand side of this differential equation
is discontinuous in a manifold within the state
space. According, for example, the references [8]
and [9], under well defined conditions, trajecto-
ries defined by the differential equation that initi-
ate outside the manifold progress in its direction.
Once the manifold is reached, if other conditions
are satisfied, the trajectories remain constrained
to the manifold, in a kind of sliding motion along
it. Such motion is called ‘sliding mode’, while
the one outside the manifold that progresses in its
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direction is called ‘reaching mode’. Also, a con-
dition that ensures the existence of the last motion
is called a ‘reaching condition’.

As a sliding mode is a motion constrained
in a particular manifold within a state space, in
control applications, such manifold can be gen-
erated in order to ensure some desired behav-
ior to the trajectories of a plant. In this case,
the control input shall be such that the respective
closed loop differential equation has a discontin-
uous right-hand side. This can be achieved by a
discontinuous control, defined by total state feed-
back, that commutates instantly when the system
closed loop trajectories reach an intended mani-
fold, named ‘switching manifold’; which is com-
posed by surfaces named ‘switching surfaces’,
that are the sets of points at which scalar func-
tions called ‘scalar switching functions’ are equal
to zero. This discontinuous control is named
‘variable structure control’, which can be elab-
orated so that a reaching condition to the switch-
ing manifold and the conditions to the existence
of sliding modes in its switching surfaces are sat-
isfied. Also, the scalar switching functions can be
designed in order to obtain sliding modes in the
associated switching surfaces with desired prop-
erties.

As an example, in the figure 1, the trajectories
of a variable structure control system of second
order are presented. In such example, there is
only one switching surface, which is a straight
line with negative slope.

As a sliding mode is constrained to a surface
that may be defined arbitrarily, it is reasonable to
suppose that such movement is strongly depen-
dent on the parameters that define these surfaces,
regardless of the parameters that define the dy-
namic model of the plant. In fact, as discussed
formally in the literature, for example, the refer-
ences [2] and [8], under well defined conditions,
a sliding mode is ‘invariant’ with respect to ex-
ternal disturbances and model uncertainties.

From the discussion above, in the implemen-
tation of a variable structure controller, it is nec-
essary to generate a control action that can per-
form instantaneous commutations when a tra-
jectory reaches a switching surface. However,

in general control applications, this can not be
achieved. In this case, commutations may be
performed after a trajectory reaches a switching
surface; what can cause an oscillation around it
called ‘chattering’, which is, generally, an un-
desirable event. According to the reference [5],
chattering reduction or suppression is an impor-
tant research theme and a wide set of approaches
has been proposed. Some of such approaches are
feasible in general control applications and can
eliminate the chattering. However, in these cases,
the desirable property of invariance is lost and the
sliding mode does not exist, but the control sys-
tem can still possess acceptable robustness and
trajectories with desired properties.

Fig. 1 Variable structure control system state
space trajectories

3 Plant and Control Problem

In this section, the plant, a respective model and
the control problem considered in the elaboration
and ilustration of application of the procedure in
question are presented. This plant and control
problem are identical the ones treated in the ref-
erence [10] and are chosen in order to take advan-
tage of the models, problem formulation, proce-
dures and results presented in this reference.

Through the discussion, imperial units are
considered. This metric system is adopted in or-
der to allow better comparison with the reference
[10].
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3.1 Plant and Respective Model

The plant is a generic hypersonic flight vehicle
presented at the reference [6]. It represents the
longitudinal dynamics on cruise flight at the alti-
tude 110000 f t and Mach 15. In this condition,
the longitudinal dynamics is unstable and de-
scribed by the set of equations 1, which is taken
from the reference [10].

V̇ =
T cosα−D

m
− µsinγ

r2

γ̇ =
L+T sinα

mV
− (µ−V 2r)cosγ

V r2

q̇ =
Myy

Iyy

α̇ = q− γ̇

ḣ = V sinγ (1)

where V ( f t/s), γ (rad), q (rad/s), α (rad) and
h ( f t) are the state variables speed, path angle,
pitch rate, angle of attack and altitude, respec-
tively; T (lb f ), D (lb f ) and L (lb f ) are the thrust,
drag and lift forces, respectively; Myy (lb f · f t)
is the pitching moment; m (slugs) and Iyy (slug ·
f t2) are the aircraft mass and the aircraft mo-
ment of inertia in the pitch axis, respectively; µ
(1.39×1016 f t3/s2) is the gravitational constant;
and r = RE + h is the distance from the aircraft
center of mass until the center of the Earth, where
RE (20,903,500 f t) is the Earth medium radius.
D, L and Myy are given by the aerodynamic model
presented in the set of equations 2 and T is given
by the engine dynamic model presented in the set
of equations 3.

D = qdSCD, L = qdSCL Myy = qdSc̄Cm

CL(α) = 0.620α

CD(α) = 0.645α
2 +0.00434α+0.00377

Cm = Cm(α)+Cm(q)+Cm(δe)
Cm(α) = −0.035α

2 +0.0366α+5.33×10−6

Cm(q) =
1
2

c̄V (−6.80α
2 +0.302α−0.229)q

Cm(δe) = ce(δe−α) (2)

where δe (rad) is the control variable elevator an-
gle of deflection, CD, CL and Cm are the drag,

lift and pitching moment coefficients, respec-
tively; S ( f t2) and c̄ ( f t) are the aircraft reference
area and mean aerodynamic chord, respectively;
qd = 1/2ρV 2 is the dynamic pressure, where ρ

(slugs/ f t3) is the air density; and ce (rad−1) is
called ‘elevator gain’.

T = qdSCT

CT =
{

0.0258β i f β ≤ 1
0.0224+3.36×10−6β i f β > 1

β̈ = −2ζωnβ̇−ω
2
nβ+ω

2
nβc (3)

where βc is the control variable throttle setting,
CT is called ‘coefficient of thrust’, β and β̇ (s−1)
are engine state variables and ζ (0.5) and ωn
(1rad/s) are the damping ratio and the undamped
natural frequency of the engine dynamic model,
respectively.

As performed in the reference [10], m, Iyy, S,
c̄, ce and ρ are considered uncertain parameters
whose values can range in respective intervals de-
fined by the set of equations and inequations 4.

m = mn(1+∆m), |∆m| ≤ 0.03
Iyy = Iyyn(1+∆Iyy) |∆Iyy| ≤ 0.02

S = Sn(1+∆S), |∆S| ≤ 0.03
c̄ = c̄n(1+∆c̄) |∆c̄| ≤ 0.02

ce = cen(1+∆ce), |∆ce| ≤ 0.02
ρ = ρn(1+∆ρ), |∆ρ| ≤ 0.03

(4)

where mn (9375slugs), Iyyn (7×106slug · f t2), Sn
(3603 f t2), c̄n (80 f t), cen = 2.92×10−2rad−1 and
ρn (2.432×10−5slugs/ f t3) are the nominal val-
ues of m, Iyy, S, c̄, ce and ρ, respectively, and ∆m,
∆Iyy, ∆S, ∆c̄, ∆ce and ∆ρ are possible fractional
increments in m, Iyy, S, c̄, ce and ρ, respectively,
with respect to their nominal values.

Combining the equations given in 1, 2 and 3,
a differential equation in vector form for the lon-
gitudinal dynamics is obtained, as presented in 5.

ẋ = f(x)+G(x)u (5)

In the equation 5, x is the longitudinal dynam-
ics state vector, defined in 6, u is the longitudi-
nal dynamics control vector, defined in 7, f(x) is
called ‘state function’ and defined in 8 and B(x)
is called ‘control gain matrix’ and defined in 9.

x =
(

V γ q α h β β̇

)T
(6)
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u = (βc δe) (7)

f =



(CT (β)cosα−CD(α))qdS
m − µsinγ

r2(h)
(CL(α)+CT (β)sinα)qdS

mV − (µ−V 2r(h))cosγ

V r2(h)
(Cm(α)+Cm(q)−ceα)qdSc̄

Iyy

q− (CL(α)+CT (β)sinα)qdS
mV + (µ−V 2r(h))cosγ

V r2(h)
V sinγ

β̇

−2ζωnβ̇−ω2
nβ


(8)

G =



0 0
0 0
0 qdSc̄

Iyy
ce

0 0
0 0
0 0

ω2
n 0


(9)

From the equations 5 to 9, the longitudinal
dynamics is a system non-linear with respect to
the state vector and linear with respect to the con-
trol input.

3.2 Control Problem

The control problem is to elaborate a VSC con-
trol law for the longitudinal dynamics described
in the subsection 3.1, in order to satisfy, for any
combination of uncertain parameters allowed by
the equations and inequations given in 4, all the
following requirements: the closed loop longi-
tudinal dynamics shall be stable; the state vari-
ables V and h shall track desired patterns, de-
fined by steps in their respective equilibrium val-
ues, with zero or negligible overshoots and steady
state tracking errors; the chattering shall not exist
and the control inputs shall not saturate.

4 Variable Structure Controller

The control law considered in the procedure in
question is presented in the reference [7] and it
is suitable for single or multiple outputs track-
ing problems. In this section, it is presented the
scalar switching functions and the reaching con-
ditions related to such control law and discussed

their main properties; there are presented con-
ditions that ensures that the closed loop control
system is robust with respect to parametric un-
certainties, as required in the subsection 3.2; and
discussed an approach for chattering suppression.

4.1 Scalar Switching Functions

Consider a multiple output tracking problem for
a given dynamic system. If ei is the traking error
for an output yi relative to a respective desired
pattern ydi and ri is the relative degree1 of the dy-
namic system with respect to yi, it is defined the
following scalar swicthing function.

si(t) =
(

λi +
d
dt

)ri Z t

t0
ei(τ)dτ (10)

where λi is a real number that can be treated as a
design parameter.

For si(t) = 0, it is obtained an homogeneous
linear differential equation of degree ri that de-
scribes the response of ei during sliding mode,
whose solution is given by the equation 11.

ei(t) = ki1e−λit + ki2te−λit + . . .+ kiri
tri−1e−λit

(11)
where ki1,ki2, . . . are constants determined by ini-
tial conditions.

The equation 11 shows that the response of
ei during sliding mode is critically damped, with
time constant related to the parameter λi and
steady state error equal to zero. Also, the re-
sponse of ei during sliding mode is stable for
λi > 0 and depends only on λi and initial con-
ditions.

4.2 Reaching Conditions

One reaching condition for each scalar switching
function (SSF) is defined. Each one has an iden-
tical form as presented in 12 for the SSF si.

siṡi ≤−ηi|si| (12)

1Intuitively, the relative degree of a dynamic system
with respect to a given output yi is the number of times
that yi has to be differentiated with respect to time in or-
der to at least one control input to appear explicitly in the
differentiation.
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where ηi is a positive real number that can be
treated as a design parameter.

If si(t0) is the value of si at the time t0, it can
be shown that the reaching time tri of the switch-
ing surface si = 0, when the condition presented
in 12 is satisfied, is finite and given by 13.

tri ≤
|si(t0)|

ηi
(13)

The equation 13 shows that, if the order of
magnitude of si(t0) is known, the design parame-
ter ηi can be chosen in order to define an order of
magnitude for maximum value of tri .

4.3 Control Law

To present the control law, a tracking problem
with two outputs and control inputs is considered
as stated in the subsection 3.2.

The control law is defined in order to sat-
isfy the proposed reaching conditions. As can be
shown, the reaching condition for the SSF si de-
pends only in ṡi, which, from the definitions of si
and ei (ei = yi− ydi) and the concepts of relative
degree and Lie derivative 2, is given by 14.

ṡi = Lri
f yi +(Lg1Lri−1

f yi)u1 +(Lg2Lri−1
f yi)u2−

y(ri)
di

+ riλi

(
Lri−1

f yi− y(ri−1)
di

)
+

ri(ri−1)
2!

λ
2
i

(
Lri−2

f yi− y(ri−2)
di

)
+

. . .+λ
ri
i (yi− ydi) (14)

where f is the state function, gi, the i-th column
of the control gain matrix, ui, the i-th control in-
put and Lr

fy, the r-th Lie derivative of the scalar
function y with respect to the vector function f.

From ṡi given by 14, it can be shown that a
control vector that defines a closed loop system

2The definition of Lie derivative can be found in ref-
erences such as the reference [7]. Briefly, Lie deriva-
tives are defined by these recursive relations: Lr

f(x)y(x) =

Lf(x)L
r−1
f(x)y(x), L(r−1)

f(x) y(x) = Lf(x)L
r−2
f(x)y(x), . . ., L1

f(x)h(x) =
Lf(x)h(x) = ∇xy(x)T f(x). Where Lr

f(x)h(x) is read as the
Lie Derivative of order r of the scalar function h with re-
spect to the vector field f

that satisfies the reaching conditions imposed to
s1 and s2 is given by 15 and satisfies 16.

u(x) = ueq(x)+udes(x)

ueq(x) = −B(x)−1
(

v1(x)
v2(x)

)
udis(x) = −B(x)−1

(
k1sgn(s1)
k2sgn(s2)

)
(15)

ki ≥ ηi (16)

where vi(x) and B(x) are given in 17.

B(x) =

(
Lg1Lr1−1

f y1 Lg2Lr1−1
f y1

Lg1Lr2−1
f y2 Lg2Lr2−1

f y2

)
vi(x) = Lri

f yi− y(ri)
di

+ riλi

(
Lri−1

f yi− y(ri−1)
di

)
+

ri(ri−1)
2!

λ
2
i

(
Lri−2

f yi− y(ri−2)
di

)
+

. . .+λ
ri
i (yi− ydi) (17)

In 15, ueq is the ‘equivalent control’, that is
such that ṡi = 0 when si = 0, i = 1,2; udis is
the ‘discontinuous control’, that is an ‘ideal re-
lay control’; k1 and k2 are the control gains; and
sgn is the ‘signal function’, which is such that
sgn(s) = 1 if s > 0, sgn(s) =−1 if s < 0.

It can be shown that a closed loop system de-
fined by the control law in question is stable in
the sense of Lyapunov for k1 = k2, according the
concept of stability in the sence of Lyapunov for
VSC systems presented in the reference [9].

4.4 Reaching Conditions in Presence of
Parametric Uncertainties

To obtain the condition given in 16, the control
law is determined from a model that perfectly
describes the plant. If any discrepancy between
such model and the real plant behavior exists, the
condition to be satisfied may differ from the one
presented. In fact, in real applications, discrep-
ancies exist, due to, e.g., uncertain parameters,
external disturbancies or unmodeled dynamics.
In the procedure in question, only discrepancies
caused by uncertain parameters whose real val-
ues are limited as presented in the subsection 3.1
are considered.
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As shown in the reference [1], the reaching
conditions are satisfied, for any combination of
uncertain parameters allowed by limitations as
such presented in 4, if k1 is given by 18 and k2,
by an analogous expression.

k1 = max
∆pu

(
∆B22

∆B11∆B22−|∆B12| |∆B21|
(η1+

|1−∆B11| |v̂1|+ |∆B12| |v̂2|+ |∆v1|+

+
|∆B12|
∆B22

(η2 + |∆B21| |v̂1|+

|1−∆B22| |v̂2|+ |∆v2|))
)

(18)

where,
∆pu = pu− p̂u (19)

∆vi = vi(x,∆pu)− v̂i(x) (20)(
∆B11 ∆B12
∆B21 ∆B22

)
= B(x,∆pu)B̂−1(x) (21)

In 19, pu is a vector of real values of the un-
certain parameters and p̂u is a vector of their re-
spective nominal values. In 20, v̂i is the nominal
realization of the function presented in 17, de-
termined by p̂u, and vi is its real realization, de-
termined by p̂u and a set of increments ∆pu, the
same idea is valid for 21. Also, in 18, the max-
imum is constrained to the limits considered for
the elements of ∆pu.

4.5 Chattering Suppression

As discussed earlier, a control action that per-
forms instantaneous commutations is, generally,
not feasible, resulting in delays that may cause
chattering. In the scenario in question, even in
the case of an ideal control, the chattering is gen-
erated, because, in the presence of parametric un-
certainties, ṡi is not always zero when si = 0,
since the equivalent control is such that ṡi = 0
when si = 0 for the nominal plant.

In order to suppress the chattering, the con-
tinuation approach, discussed, e.g., in the refer-
ence [5], is used. In this approach, a discontinu-
ous control is substituted by a continuous approx-
imation. The result is such that the conditions for
the existence of sliding modes are not satisfied.
However, if reaching conditions are satisfied, a

region, of well defined width, surrounding both
sides of each switching surface is reached, in a
time smaller than the switching surfaces reach-
ing time. This region is called ‘boundary layer’
and is such that, after it is reached, the system
trajectories remain confined in its interior while
the reaching conditions are satisfied. Also, the
boundary layer width decreases as the continu-
ous control tends to the discontinous one, and
the trajectories inside the boundary layer tend to
the sliding mode responses as the boundary layer
width tends to zero.

To implement a continuous control, as pro-
posed in the reference [7], the ideal relay control
is changed by an ‘ideal saturation control’ given
by 22.

sat(si) =
{

sgn(si), i f |si|> φi
si/φi, otherwise (22)

where 2φi > 0 is the boundary layer width around
the switching surface si = 0.

As discussed in the reference [7], in the in-
terior of the boundary layer, for ei(0) = ėi(0) =
. . . = e(ri)

i (0) = 0, ei is limited as given in 23.

|ei(t)| ≤
φi

λ
ri−1
i

, f or t ≥ 0 (23)

5 Design Procedure and Numerical Imple-
mentation

In this section, a procedure to adjust and compute
the control law presented in the section 4 is pre-
sented. The section will cover: the computation
of relative degree and Lie derivatives; the adjust-
ment of parameters λi, ηi and φi; the computation
of closed loop responses and the maximization of
gains ki.

5.1 Relative Degree and Lie Derivatives
Computation

From section 4, the system relative degrees with
respect to the tracked variables are necessary to
compute the scalar switching functions and the
control law in question. These relative degrees
can be determined via successive computation of
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tracked variables time derivatives, what can be
done by algebraic computation of Lie derivatives,
that can be performed using a symbolic compu-
tation software like Mathematica.

From equation 17, to compute the control
law, it is necessary to evaluate the Lie deriva-
tives; which can be performed via algebraic or
numerical computation of partial derivatives. As
discussed in reference [1], depending on the plant
mathematical model, the algebraic expressions of
the partial derivatives in question can be highly
non linear and reasonably long, what may lead
to high truncation errors. In other hand, numeri-
cal computation of partial derivatives may lead to
high discretization errors.

From the results presented in the reference
[1], it is verified that at least in the control prob-
lem in question, errors introduced by numeri-
cal computation of partial derivatives are smaller
than errors introduced by truncation in the eval-
uation of Lie derivatives algebraic expressions.
Also, in this reference, in order to reduce the error
due to numerical computation of partial deriva-
tives, there are derived equations for Lie deriva-
tives using the notation of ‘systems’ 3 (which
include as special cases the tensors). In such
equations, a Lie derivative is determined by par-
tial derivatives one degree lower than the partial
derivatives required in the evaluation of the Lie
derivative from Lie derivative definition. Also,
rules for numerical computation of derivatives
are compared and differentiation steps are cho-
sen in order to reduce numerical differentiation
errors.

The numerical approach discussed above dif-
fers from an algebraic approach adopted in the
reference [10], in which Lie derivatives are com-
puted via reasonably complex algebraic expres-
sions.

5.2 Parameters Adjustment and Evaluation

To implement the control law in question, be-
sides to compute relative degrees with respect to
tracked variables and evaluate Lie derivatives, it

3Definitions of system and tensor can be found in refer-
ences such as the reference [3].

is necessary to adjust the parameters λi, ηi and φi
and maximize the gains ki.

Initial values to the parameters λi, ηi and
φi can be determined from the relationships be-
tween them and performance parameters pre-
sented in the section 4. After, their values can
be adjusted via computation and observation of
closed loop responses; which, in flight control
law design, should be done via methods for com-
putation of numerical solution of stiff differen-
tial equations, since, in this case, scalar switch-
ing functions and plant dynamics can differ by
several orders of magnitude.

Concerning the maximization of a gain ki,
this can be performed by trying to find the re-
spective global maximum, using 16, in the region
defined by the limits imposed to the increments
in the nominal values of the uncertain parame-
ters, via a combination of genetic and gradient
algorithms. This approach differs from the one
presented in the reference [10], in which a gain
ki is determined algebraically using approxima-
tions, such as linearization via Taylor Series.

5.3 Proposed Procedure

From the discussion presented in the last two sub-
sections, it is proposed that the design procedure
is defined by the following steps.

1: Computation of the plant model relative
degrees with respect to the tracked vari-
ables;

2: Definition of initial values to the param-
eters ηi and λi from expected reaching
times and transient responses during slid-
ing mode, respectively, and adjustment of
such parameters by computation and ob-
servation of closed loop responses for the
nominal plant with discontinuous control;

3: Maximization of the gains ki using suc-
cessive tentatives to find respective global
maximums via genetic algorithms and im-
provement of the results via maximiza-
tion using gradient algorithm with initial
guesses equal to the genetic algorithm re-
sults;
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4: Definition of initial values to the param-
eters φi from expected maximums track-
ing errors inside the boundary layer, and
respective adjustment via closed loop re-
sponses computation and observation, tak-
ing into account a non nominal plant.

In the procedure above, to perform the eval-
uation of the control law, it is proposed the nu-
merical computation of Lie derivatives via the
equations presented in the reference [1] derived
using the notation of systems. Also, to deter-
mine closed loop responses, the use of a numeri-
cal method for solution of stiff differential equa-
tions is suggested .

6 Results

This section covers the application of the proce-
dure presented in the last section to the control
problem defined in the section 3 and presented
numerical and graphical results.

From algebraic computation of time deriva-
tives, applying the concept of Lie derivative, per-
formed using symbolic computation via the soft-
ware Mathematica, it is found that the relative de-
grees r1 and r2 are equal to 3 and 4, respectively.

The parameters λ1 and λ2 are determined,
from time constants equal to 3s, where each time
constant is the one obtained when the sliding
mode response given by the equation 11 is the
one of a first order system. So, it is taken λ1 =
λ2 = 1/3Hz.

The parameters η1 and η2, that define the
gains k1 and k2 when the nominal plant is consid-
ered, are computed from the equation 13, taking
s1(0) = s2(0) = 1× 10−3 and tr1 = tr2 = 1s. So,
η1 = η2 = 1×10−3.

The values for λ1, λ2, η1 and η2 presented
above define sliding mode responses for the nom-
inal plant, taking k1 = k2 = η1 = η2, that safisfy
the control problem. Therefore, they are adopted
in the remaining design procedure steps.

To compute the responses refered above, and
all other closed loop responses discussed in this
section, it is used the MATLAB function for com-
putation of numerical solutions of stiff differen-
tial equations called ode15s.

To maximize the gains k1 and k2, it is used
a MATLAB genetic algorithm toolbox presented
in the reference [4] and the MATLAB function
fmincon, that implements a gradient method.
To perform the evaluation, it is considered a par-
ticular point in the longitudinal dynamics state
space, that is the equilibrium point for the flight
condition Mach 15 and 110000 f t. In spite of
this maximum is computed for a particular point,
as the control gains are continuous with respect
to the state variables, the computed maximums
are, at least, approximately constant in a region
around the point.

The set of increments that maximize a con-
trol gain is called ‘critical parametric combina-
tion’ (CPC). For both control gains, using the ap-
proach presented in the subsection 5.2, it is found
the same CPC, which is defined by the set of
fractional increments (0.03 0.02 − 0.03 −
0.02 0.02 − 0.03), where the order is that
presented at the equation 4. In the same con-
text, in the reference [10], using the algebraic
and approximated approach refered in the sub-
section 5.2, it is found the CPC (−0.03 −
0.02 0.03 0.02 0.02 0.03). This discordance
is investigated in the reference [1], where it is
verified that the former CPC determines greater
control gains with respect to the last one.

The parameters φ1 and φ2 are determined
from the equation 23 taking maximum values for
e1 and e2 equal to 1 f t/s and 20 f t. So, φ1 = 1/9
and φ2 = 20/27.

To verify the control law defined by the pa-
rameters presented above, it is computed the
closed loop response for the flight condition
Mach 15 and 110000 f t taking into account the
non nominal plant defined by the CPC presented
above. Also, it is considered references for V and
h determined by steps of amplitude 100 f t/s and
2000 f t at the respective values on the flight con-
dition.

Results obtained in the scenario in question
are presented in the figures 2 and 3.

In the figure 2, DV and Dh are the increments
in V and h with respect to the trimmed condition.
Also, in the figure 3, s1, s2, beta and deltae
are the responses of the scalar switching func-
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tions and control variables.
In the figure 3, |s1| < 1/9 and |s2| < 20/27

for every t. So, the closed loop responses are al-
ways inside the boundary layer. Also, there is no
manifestation of chattering.

Fig. 2 Tracked variables

Fig. 3 Scalar switching functions and control
variables

In the figure 2, the transient responses of DV
and Dh are close to responses of first order sys-
tems and the steady state tracking errors have
negligible amplitude, similar to the sliding mode
responses. Also, the closed loop system is, at
least, BIBO-stable. Additionally, from the fig-

ure 3, there is no saturation in the control vari-
ables. These results are very similar to the ones
presented in the reference [10].

As the CPC has the following property (refer-
ence [7]): it is the combination of parametric un-
certainties (CPU) that requires the greatest con-
trol gains in order to the reaching conditions be
satisfied; the closed loop system trajectories re-
main inside the boundary layer of any other CPU.
So, for any other CPU, the system responses are
similar to that presented above and the control
problem is satisfied.

7 Conclusion

A procedure to design aircraft flight control laws,
using VSC, taking into account robustness to
parametric uncertainties and chattering suppres-
sion is presented.

The procedure is implemented from straight-
forward numerical computations and clear rela-
tionships between performance and design pa-
rameters.

A control problem that ilustrates the applica-
tion of the procedure and defines results demon-
strates the procedure effectiveness.

Also, new approaches, with respect to the
ones presented in the reference [10], for robust
control gains evaluation and for VSC control law
computation are discussed.

Concerning future developments, the follow-
ing is considered:

• In order to perform a better evaluation of
the control solution and design procedure,
it is proposed comparisons with other non
linear and linear robust control techniques,
such as backstepping and LQG/LTR;

• Due to the complexity of the proposed con-
trol law, that makes its analogical imple-
mentation difficult, study of the respective
digital implementation is proposed;

• The application of the control solution and
procedure in question to models of civil
and militar aircrafts is also proposed.
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