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Abstract 
Hierarchical structures are of interest due to 
several advantages that they can offer 
specifically the low mass which is of great 
interest by the aerospace industry. Hierarchical 
solids contain structural elements which 
themselves own a kind of structure. For a 
hierarchical structure the number of levels of 
scale with recognized structure is defined as the 
hierarchy order “HO”. The fractals are 
normally the interesting type of hierarchical 
structures Many natural structures have fractal 
geometry. The self-similar fractal is a special 
case of fractals which is widely used in trade 
studies of hierarchical structures. One of the 
main advantages of hierarchical structures, 
which has been widely investigated and 
reported, is the buckling response (i.e. both 
local and global buckling). However, what is of 
great importance when dealing with space 
structures is the natural frequency and 
capability of the design in damping or 
transmitting the vibration energy. These are the 
things which are less investigated about the 
hierarchical structures. In the present study the 
effects of hierarchy order “HO” on this aspect 
of hierarchical structures will be studied using a 
simple model. 

 

1  Introduction 
Hierarchical solids contain structural elements 
which themselves are made up of a structure. 
The Hierarchical Order (HO) of a structure or a 
material may be defined as the number of levels 
of scale with a recognized structure. For 
example, HO = 0 corresponds to a material 
viewed as a continuum which is used for the 

purpose of analysis of physical properties; HO = 
1 (first order) could represent a latticework of 
continuous ribs or the atomic lattice of a crystal. 
The improved strength and toughness or higher 
natural frequencies, or unusual physical 
properties such as a negative Poisson's ratio can 
be considered as the benefits of hierarchical 
structures. There are evidences that suggest the 
continuous increase in levels of hierarchy could 
lead to lighter and more efficient performing 
structures [1]. For example, because of more 
distant distributed mass and therefore more 
effective distribution of mass, a tube is stronger 
than a solid rod of the same mass subjected to 
bending and torsion loadings. As a result, a 
structure constructed of tubes is stronger than a 
structure of solid rods of equal mass. In this 
way, topology optimization procedures often 
predict highly latticed solutions under different 
loading constraints and can predict hierarchical 
structures. But, more constraint equations or 
filtering techniques could be employed to 
enforce limits on minimum element size and 
therefore reduce the latticework level [2]. 

The Eiffel tower is a popular example of a 
hierarchical structure. In the Eiffel tower, the 
lowest hierarchy order building elements (0th 
order) are rectangular or L-shaped cross-section 
bars. Where, the trusses with 1st order hierarchy 
are formed from the mentioned elements to 
build up the columns. These columns are then 
tied together to build the legs of the tower which 
are of the 2nd hierarchy order. Finally, the four 
legs are tied together to form a tower with 3rd 
order hierarchy. The resulting structure 
possesses an unprecedented level of low 
effective density where the effective density is 
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defined as 0/ ρρ . Note, ρ  is the mass per unit 
volume of the structure and 0ρ  is the density of 
the material of which the tower is made of it. 
Here, 0/ ρρ  is just 1.2 x 10-3 times that of iron 
[3], which is weaker than the structural steel. 
The rationale for the use of small girders in such 
a large structure was attributed to ease of the 
construction [4], though it has also been 
suggested by Mandelbrot [5] that Eiffel 
perceives some other structural advantages. For 
comparison, we remark that the Pompidou 
Center (Paris), a first order hierarchy (i.e. 
HO=1) contains a volume fraction of structural 
steel [6] with 0/ ρρ  = 5.7 x 10-3. A more recent 
example is a proposal by Dyson [7] to construct 
hierarchical frameworks in outer space. Dyson 
presented scaling arguments to the effect that 
very large structures could be constructed with 
low mass; however no stress analysis was 
performed. 
In deployable beam-like space structures, 1st 
order hierarchy is most common and is seen in 
structures built by AEC-Able Engineering [8]. 
Structures with 2nd order hierarchy are also 
common in the form of trusses built from tubes 
[8]. Mikulas et al. in their paper [9] considered 
2nd order hierarchy structures for large scale 
telescope mirrors and offered a simple 
numerical procedure that illustrates the 
important trades involving areal density. In 
these structures, the 1st order hierarchy is a shell 
structure and the 2nd is a truss. As they have 
discussed, no existing space structures with 2nd 
order hierarchy and latticing at all levels are 
known [9]. 
From a structural performance perspective, it is 
important to consider how great the advantages 
of using hierarchical structures are; however, 
there are few studies that compare the 
performance of space structures with hierarchy. 
Mikulas compared the mass efficiency of 
several column configurations in his paper on 
the efficiency of long lightly loaded columns, 
but he was not specifically looking at hierarchy 
[10]. In reference [2], Lakes provides a review 
of the work in this area and cites 57 records. In 
reference [1], Murphy considered stiffness, 
bending strength, mass and dimensions of 

latticed hierarchical structures with respect to 
order of hierarchy (HO). 
In the present study the effects of HO and 
number of cells at specified hierarchy level are 
considered over the natural frequencies of the 
resulting structures constrained to the equal 
mass. 
 
2  Geometric Modeling 
In limit, self-similar hierarchical geometry is led 
to fractal which is the geometry of nature [5]. In 
usual engineering, a few order of hierarchy can 
be possible and also would be useful. There are 
some methods for generating hierarchical (or 
fractal) shapes. One of these methods is the 
iteration process [11] as shown in Fig. 1. 
 

 
Fig.1. Iteration Process Diagram 

 
Output from previous iteration will be used as 
an input for the next iteration. Therefore, this 
process consists of an initial object and a 
generation function or a set of functions. Fig. 2 
shows how the Koch curve is generated with 
this process. In this example, in each iteration, 
an edge of current object (initial object is the 
squire) is replaced by a set of 7 edges called 
generator. Therefore, a combination of 
transformations (i.e. scaling, rotation, and 
translation) is done on a generator to build up 
the next hierarchy 

 
Fig.2. Iteration process example 1; a-initiator, b-

generator, c-Koch curve 
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Fig. 3 shows another example. In this example 
current object roles as a generator. There is a 
governing pattern constructed from a set of 
transformations. In each iteration, governing 
pattern acts on the last hierarchy. In this 
example, the pattern role is to scale and 
reproduce objects of three times of the last 
hierarchy and place them at appropriate 
position. 
 

 
Fig.3. Iteration process example 2 

 
 

 
Fig.4. Example of not desirable hierarchical truss 

 

 

 
Fig.5. Example of unacceptable hierarchical truss 

 
Figs. 4 and 5 show two undesirable and 
unacceptable hierarchies. These results appear 
because line object in the base pattern is 

replaced with a geometric object which has a 
thickness. Therefore, the hierarchical truss can 
not be build up from any pattern and an 
appropriate modification must be performed in 
generating a new hierarchy.  
 

 

 

 

 
Fig.6. Samples of the intended model of this paper with 

increasing hierarchy (HO = 0 to 3) 
 
The intended model of this research work is 
illustrated in Fig.6 with its boundary condition. 
An iterative process designed for this model is 
as follows: 

1- Back-up base model as 'BM' (base 
model is the initial model or the result of 
previous iteration) 

2-  Reproduce 'BM' with the transformation 
vector (0, b-d), where 'b' is equal to the 
length of base model, and 'd' is its 
thickness. It will generate the upper link. 

3- Reproduce 'BM' with mirror and rotate it 
90 degree to generate vertical link and 
Backup the result as 'BackWall'. 

4- Reproduce 'BackWall' with transforming 
it with the vector (b-d, 0). 

5- Draw diagonal line between points (b-d, 
d) and (d, b-d). 

6- Select all lines except 'BackWall', then 
Reproduce selected lines 'n-1' times with 
the transformation step of (a-d,0), where 
n is the number of cells in the truss 
pattern. 

7- Select all lines and merge overlapped 
points and lines. 
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8- Scale the result with the scaling factor of 

ddbn
bs

+−
=

)(
. Overall length of the 

new hierarchy will be the same as the 
previous one, but its thickness will be 
's.b'. 

By iterating this process the models of all 
hierarchies with the intended number of cells 
can be generated. 
 
3  FEM Analysis 
For FEM analysis of the model it is necessary to 
assign appropriate material, element type, and 
cross section to the lines. In this paper it is 
assumed that the material is linear isotropic with 
the given properties of: 

3.0,/1000,10 311 === νρ mKgpaE . 
From the classical vibrations theory it can be 
shown that the natural frequency is proportional 
to ρ/E , see Eqs. (1) and (2);  

}0{}]){[][( 2 =+− XKMω  (1)
Can be rewritten as: 

}0{}]){[][)
/

(( 2 =+− XKM
E ρ
ω  (2)

Where K  and M  are independent of E and ρ. 
Since the Poisson’s ratio of engineering 
materials has a little variation, so it has a minor 
effect on the results. Therefore, what is 
concluded here for a sample material; would be 
extended to other linear isotropic materials.  
     What is important here is that by fixing the 
material properties, just the material volume can 
affect the results. Now by fixing the material 
volume in all hierarchies, just the effects of the 
hierarchies' geometry will be seen in the results. 
In this paper the effect of hierarchical geometry 
will be investigated for various orders of 
material volume and the natural frequencies are 
calculated for the volumes of: 0.0001, 0.001, 
0.01, 0.1, and 1 cubic meter. Also it's assumed 
that the length of all models is equal to 1m, and 
all cells are square. 
Regarding the selected FEM element type, some 
further information about cross section of the 
elements is required. Candidate element types 
here are: 2D link (truss) element and 2D beam 
element. The link element represents an ideal 
truss with ideal hinges. However, it can not 

model the lateral vibration of the truss members. 
Fig. 7 shows that with this element the obtained 
results are independent of the amount of 
material. However, the beam element seems to 
be more close to what physically happen and 
therefore this element is selected for the 
analysis. Here, it is assumed that the elements 
are of solid rod type. 
 
4  Analysis and Results 
The analysis performed here for zero order to 
fourth order of hierarchies, for the cells 1 to 10 
(1 to 6 cells for last hierarchy). Results are 
given in Table 1. Fig.8 shows the effect of 
number of cells on natural frequency for HO=1. 
Also, Fig.9 shows the effect of material volume 
for HO=1. Figs. 10 and 11 graph the best of 
each hierarchy in various material volumes in 
log-log and semi-log scale. Fig. 12 shows 
optimum number of cell versus material volume 
for HO=1. 
 

Natural Frequencis Using Link Element
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Fig.7. Results of analysis using link element 

 
5  Conclusion 
From the results it is seen that at HO=0, there is 
a linear relationship between the natural 
frequency and the amount of material volume in 
log-log scale (Fig. 10). But, for higher hierarchy 
orders, this relationship remains linear in semi 
log scale, as well (see Fig. 11). Therefore, there 
is a point in which superiority switches between 
zero-order and high-order hierarchies. As 
material volume decreases, the effect of higher 
order hierarchies shows itself. In moving from 
HO=0 to HO=1 in low volumes, a great increase 
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in natural frequency occurs. However, with 
more increase in the hierarchy orders i.e. 
HO=2&3, a little improvement is seen. In HO=4 
the frequencies begin to decrease. 
In each hierarchy (e.g. Fig. 9) with increasing 
the material volume, natural frequency increases 
linearly in log-log scale (similar to what 
happens in HO=0), until a saturation region is 
reached. After that, the natural frequency 
exhibits a little sensitivity to it. Finally, for the 
investigated model, HO=1 would be a good 
design for volumes less then 0.01 cubic meter. 
In low volumes, the optimum number of cells 
decreases almost linearly with respect to the 
logarithm of material volume (Fig. 12). 
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Fig.8- Effect of number of cell on natural frequency for 

HO=1 
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Fig.9- Effect of material volume on natural frequency for 

HO=1 
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Fig.10- Best of each hierarchy versus material volumes 

(log-log graph). 
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Fig.11- Best of each hierarchy versus material volumes 

(semi-log graph). 
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Fig.12- Optimum number of cell versus material volume 

for HO=1 
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Table 1 – Results of analysis 
  Volume 

nc
el

l 

1E-5 1E-4 0.001 0.01 0.1 1 

H
O

=0
 

1 4.99 15.79 49.91 157.6 490.2 1345 

1 5.19 16.42 51.88 162.3 413.6 556.1 

2 21.63 68.37 214.5 425.7 481 666.7 
3 49.69 156.8 366.7 400.6 449.8 642 

4 89.41 267.9 342.2 353.7 403.5 605.8 

5 140.5 288.1 302.1 310.9 360.3 581.3 

6 197.4 262.2 266.7 275.1 325.2 566.1 

7 217.5 235.2 237.4 245.8 297.9 556.7 

8 205.6 211.7 213.2 221.9 276.8 550.7 

9 189.3 191.9 193.2 202.1 260.4 547 

H
O

=1
 

10 173.9 175.2 176.4 185.7 247.5 544.6 

1 5.19 16.42 51.88 162.3 413.6 556.1 

2 36.94 116.8 356 436.3 476.5 651.5 
3 171.8 351.9 365.8 375.3 430 589.9 

4 173.4 295 298.3 311.2 367.6 522.8 

5 198.1 245.9 248.8 264.9 322.3 473.7 

6 204.7 210.7 214.3 232.5 293.1 434.7 

7 182.8 184.7 189.2 209.2 271.7 404 

8 163.4 164.6 170.2 192.2 253.5 380.4 

9 147.5 148.8 155.3 179.5 237 362.1 

H
O

=2
 

10 134.4 135.9 143.4 169.6 222 348 

1 5.19 16.42 51.88 162.3 413.6 556.1 

2 55.28 174.8 398.3 424.1 464.1 638.2 
3 316.6 325 327.3 341.2 412.1 570.8 

4 172.4 250.2 254.5 280.1 357 495.2 

5 154.6 201.2 209.1 241.1 320.3 429.2 

6 162.4 170.5 182 219.9 289.3 380.2 

7 145.8 150.1 165.1 206.2 263 343 

8 130.2 135.8 154.8 193.4 241.8 313.9 

9 118.2 125.4 148 181 224.2 290.6 

H
O

=3
 

10 108.7 117.8 142.2 169.7 209.1 271.4 

1 5.19 16.42 51.88 162.3 413.6 556.1 

2 76.13 240.7 397.1 410.4 452.3 626 
3 292 292.8 295.7 318.1 404.6 560.6 

4 130.4 214.4 224.6 266.9 360 471.6 

5 101.6 168.2 186.3 236.6 310.3 395.8 

H
O

=4
 

6 106.7 143.7 168.6 213.3 270.7 344.5 
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