

## TRENDS IN GLOBAL NOISE AND EMISSIONS FROM COMMERCIAL AVIATION FOR 2000 THROUGH 2025

Gregg Fleming, Andrew Malwitz, Sathya Balasubramanian, Chris Roof, DOT Volpe Center, Cambridge, MA Fabio Grandi, Brian Kim, Scott Usdrowski, Wyle Laboratories, Inc., Arlington, VA Ted Elliff, EUROCONTROL Christopher Eyers, Gareth Horton, QinetiQ David Lee, Bethan Owen, Manchester Metropolitan University

Keywords: Aviation, Environment, Noise, LAQ, GHG, Climate Change

## Abstract

In 1983, the International Civil Aviation Organization (ICAO) established the Committee on Aviation and Environmental Protection (CAEP) to assess aviation-related noise and emissions issues. CAEP has established three environmental goals: limit or reduce the number of people impacted by noise; limit or reduce the impact of aviation emissions on local air quality (LAQ); and limit or reduce the impact of aviation greenhouse gas (GHG) emissions on the global climate.

With CAEP goals in mind, this paper presents trends in aviation noise, fuel burn, and emissions based on demand growth met by currently available aircraft types. Noise trends are expressed in terms of population exposed to various day-night average sound levels (DNL). Aggregated global data are presented, as well as data on a regional level for baseline years of 2000 through 2005, as well as for the future years of 2010, 2015, 2020 and 2025.

trends presented herein were The developed to support the 7<sup>th</sup> Meeting of CAEP in February 2007 and represent an initial assessment against which future developments in technology, operational and air traffic management practice, and changes in demand, can be assessed. In support of the 8<sup>th</sup> Meeting of CAEP in February 2008, the trends will be updated and will include a number of *improvements*, including consideration of improvements in aircraft and operational technology as well as a revised traffic forecast. The result will be a more realistic set of trends for CAEP/8. The noise, LAO, and GHG results

presented herein should be considered an <u>upper</u> <u>bound</u> to future trends.

It is envisioned that these types of trends assessments have broad applicability and can be used to support a variety of national and international requirements, including policy establishment.

## **1 Introduction**

In 1983, the International Civil Aviation Organization (ICAO) established the Committee on Aviation and Environmental Protection (CAEP) to assess aviation-related noise and emissions issues (e.g., increased noise/emissions stringency, improved operational procedures, fleet forecasting, etc.). CAEP meets on a triennial basis, with the 7<sup>th</sup> and most recent meeting (CAEP/7) having taken place in February 2007, and the following meeting (CAEP/8) scheduled for February 2010.

CAEP has established three environmental goals: limit or reduce the number of people impacted by noise; limit or reduce the impact of aviation emissions on local air quality (LAQ); and limit or reduce the impact of aviation greenhouse gas (GHG) emissions on the global climate. Although these goals are somewhat qualitative, it is expected that CAEP may establish quantitative goals, against which the implications various policy/regulatory of decisions can be measured. To better inform the assessment of CAEP's environmental goals, an initial set of environmental trends were developed in support of CAEP/7.

For the purposes of the trends assessment, any emissions released in the atmosphere from 0 to 3000 feet above ground level (AGL) are categorized as LAQ emissions. LAQ is primarily a concern for the population in the vicinity of an airport. Increased emissions may lead to adverse health effects such as respiratory issues and damage to lung tissue, damage to waterways and vegetation, as well as decreased visibility, and in the case of particulate matter (PM) emissions, increased mortality [1, 2].

In developing the current environmental trends, any emissions released in the atmosphere above 3000 feet AGL are categorized as GHG emissions. As a general rule of thumb for many aircraft emissions (e.g., CO<sub>2</sub>), approximately 90% of the emissions occur above 3000 ft AGL, depending on flight distance [3]. The effects of GHG are related to climate change, in that an increase in GHG may lead to an increase in the overall global temperature [1,2].

CAEP uses the number of people within a particular sound level contour as a measure of noise impact. The sound level is usually expressed in terms of day-night average sound level (DNL)<sup>1</sup>. For LAQ and GHG, emissions are typically presented in terms of inventories.

In October 2007, CAEP sponsored a workshop on environmental impacts. The final report from that workshop is expected to be available in the second half of 2008. A major outcome of the workshop was that while inventories and population within a noise contour are helpful at characterizing impacts, they are not sufficient. The report is expected to include a number of recommendations for better characterizing noise, LAQ and GHG impacts.

This paper presents trends in aviationrelated noise, based on demand growth met by currently available aircraft types. Noise trends are expressed in terms of population exposed to various DNL values. It also presents trends in total aviation fuel burn and emissions inventories, again based on demand growth met by currently available aircraft types. In both cases, aggregated global data are presented, as well as data on a regional level for baseline years of 2000 through 2005, as well as for future years of 2010, 2015, 2020 and 2025.

The trends presented herein were developed to support the 7<sup>th</sup> Meeting of CAEP in February 2007 and represent an initial assessment against which developments in technology, operational and ATM practice, and changes in demand, can be assessed. CAEP/8 is scheduled for February 2010. In support of the 8<sup>th</sup> Meeting of CAEP, the trends will be updated and will include a number of improvements, including consideration of improvements in aircraft and operational technology as well as a revised traffic forecast. The result will be a more realistic set of trends for CAEP/8. The noise, LAQ, and GHG results presented herein should be considered an upper bound to future trends. It is envisioned that these types of trends assessments have broad applicability and can be used to support a variety of national and international requirements, including policy establishment.

## 2 Current and Future Noise Analyses

The Aviation Environmental Design Tool, Model for Assessing Global Emissions of Noise from Transport Aircraft (AEDT/MAGENTA) [4] was used to assess global trends in current and future aircraft noise exposure. Various member countries of ICAO/CAEP led the development of AEDT/MAGENTA, with the U.S. and U.K. in the lead roles.[5]

AEDT/MAGENTA computes detailed noise exposure for approximately 200 of the world's busiest airports in terms of operations [6], and provides lower fidelity noise computations for approximately 2000 additional airports. For each airport, a noise contour is combined with population data to compute the number of people within a particular sound level contour, usually expressed in terms of DNL.

The current version of AEDT/MAGENTA is compliant with the recently-approved ECAC.CEAC Doc 29, 3rd Edition, Report on Standard Method of Computing Noise Contours around Civil Airports [7]. The most substantial advance in Doc 29 is the adoption of updated guidance for computing the lateral attenuation of airplane noise, as prescribed in the Society of Engineers' Aerospace Automotive (SAE)

<sup>&</sup>lt;sup>1</sup> DNL is a sound level metric commonly used for land-use planning as well as for other purposes. It represents an aggregation of the aircraft sound within a 24-hour period, with aircraft operations occurring between 10PM and 7AM local time penalized by 10 dB.

Information Report (AIR) 5662, Method for Predicting Lateral Attenuation of Airplane Noise [8]. SAE has shown the algorithms in this AIR are more accurate than those in its predecessor document. They have also shown that the new standard will result in contours that are generally 5 to 20 % larger than those computed with the older standard, SAE AIR Method 1751. Prediction for Lateral Attenuation of Airplane Noise During Takeoff and Landing [9]. Actual increases in contour area are dependent on aircraft fleet mix, runway layout, as well as other factors.

For the CAEP/7 noise trends assessment, the 2000 through 2004 results were originally computed based on the older SAE AIR 1751 standard. They were adjusted for consistency with the newer SAE AIR 5662 and DOC 29 standards, based on a common 2005 year, so the guidance in each SAE standard could be compared. The 2005 noise results were computed and displayed in two ways: with a Doc 29 compliant AEDT/MAGENTA and with a version of the model based on the older lateral attenuation algorithms of SAE AIR 1751. This way, the effect of migrating to the new Doc 29compliant standard could be easily quantified.

For the 2005 Doc 29 – compliant AEDT/MAGENTA runs, results were computed both with and without Commonwealth of Independent States (CIS) airports, which include four airports from Russia and two from other CIS states.

The CAEP fleet and operations module (FOM) [10] was used to generate future operations data for the years 2010, 2015, 2020, and 2025. The FOM assumed unconstrained growth, such that infrastructure enhancements would keep pace with demand in capacity. Future AEDT/MAGENTA runs were performed using the Doc 29 – compliant version and included CIS airports

The FOM also needed to account for the aircraft expected to be flown (known as the fleet) in future years. The data used for populating the future aircraft fleet were developed with substantial input from the aviation industry participants within CAEP. Consideration was given to aircraft already designed and planned to be in service, not future-technology aircraft.

The process of replacing retired aircraft in the future fleet is based on historical retirement statistics and equal market replacement, e.g., when both a Boeing and an Airbus model are available for replacement a 50/50% replacement is used. Replacement for CAEP/7 was consistent for both noise and emissions, with the only difference being a slightly different group of aircraft being used to replace retired aircraft. For CAEP/8. a replacement database common to both noise and emissions will be used. This will more appropriately support the assessment of interdependencies between noise and emissions.

AEDT/MAGENTA The results are presented in terms of population within the 55, 60 and 65 dB DNL contours. Geographicallybased, regional totals are presented in Table 1, and also graphically for the 65 dB DNL contour This Figure represents all in Figure 1. operations from the specific region, whether within a region or between regions. It also clearly illustrates the sharp decrease in population exposed from 2001 to 2002 due to the events of September 11, 2001, the SARS epidemic, and the accompanying global economic downturn.

As discussed above, the 2005 noise results are presented in two ways, first using the Doc 29-compliant AEDT/MAGENTA with CIS airports and then using the older version of AEDT/MAGENTA. In Table 1, these two scenarios are labeled as 2005(A) (CAEP/6) and 2005(B) (Doc 29 W/CIS). In Figure 1, results for years 2000 through 2004 were adjusted to account for the effects of migrating to a DOC 29-compliant MAGENTA in 2005.

Table 2 summarizes the differences in computed noise when using the Doc 29compliant version of the model, as compared with the older version, including the impact of including CIS airports. As can be seen, the primary contributor to the change in 2005 results is the use of a Doc 29-compliant AEDT/MAGENTA, which includes the recently-adopted and more accurate lateral attenuation algorithms of SAE AIR 5662 [8], as previously discussed.



Fig. 1: Summary of AEDT/MAGENTA Results for 65 dB DNL

|                | 2000                  | 2001     | 2002     | 2003     | 2004     | 2005(A)<br>(CAEP / 6) | 2005(B)<br>(DOC29<br>W/CIS) | 2010     | 2015     | 2020     | 2025     |  |
|----------------|-----------------------|----------|----------|----------|----------|-----------------------|-----------------------------|----------|----------|----------|----------|--|
| Africa         | 345274                | 346371   | 432600   | 416500   | 408681   | 404635                | 339269                      | 308833   | 258711   | 235939   | 240619   |  |
| Asia           | 7587786               | 7645920  | 6286438  | 5972194  | 6098674  | 6190149               | 7682065                     | 8842866  | 9853990  | 10158369 | 10471078 |  |
| Australia      | 86935                 | 90061    | 117292   | 115760   | 118132   | 120432                | 166388                      | 193162   | 216910   | 230713   | 242984   |  |
| Eastern Europe | 253604                | 255457   | 231480   | 228142   | 228839   | 229476                | 965773                      | 1013975  | 1026514  | 1058578  | 1086811  |  |
| Middle East    | 2452210               | 2470682  | 1461794  | 1395412  | 1405478  | 1425305               | 2684665                     | 2888199  | 3142247  | 3521081  | 3981975  |  |
| North America  | 10604625              | 10499088 | 6864415  | 6471512  | 6427769  | 6396417               | 6681386                     | 7042005  | 7738542  | 8292456  | 9095908  |  |
| South America  | 1229374               | 1210471  | 1154726  | 1098394  | 1089359  | 1076901               | 1039549                     | 1111125  | 1136068  | 1180589  | 1220806  |  |
| Western Europe | Europe 1432970 143805 |          | 1274784  | 1267275  | 1279866  | 1292375               | 1802067                     | 2282325  | 2875581  | 3461975  | 3979326  |  |
| Total          | 23992776              | 23956101 | 17823529 | 16965188 | 17056798 | 17135691              | 21361161                    | 23682489 | 26248563 | 28139699 | 30319506 |  |
| 60 dB          |                       |          |          |          |          |                       |                             |          |          |          |          |  |
| Africa         | 198579                | 199421   | 234863   | 226141   | 220675   | 219429                | 104508                      | 89518    | 67448    | 58721    | 60780    |  |
| Asia           | 2781281               | 2792792  | 1927485  | 1801359  | 1829804  | 1860149               | 2379682                     | 2822976  | 3380451  | 3546543  | 3743031  |  |
| Australia      | 27780                 | 29455    | 44883    | 43803    | 44725    | 45619                 | 58143                       | 71856    | 85323    | 91668    | 97618    |  |
| Eastern Europe | 159676                | 160458   | 147523   | 145383   | 145636   | 145896                | 437317                      | 464085   | 474472   | 483513   | 490875   |  |
| Middle East    | 587277                | 592119   | 321184   | 309653   | 313785   | 318036                | 740712                      | 806883   | 888768   | 1018441  | 1177921  |  |
| North America  | 3730954               | 3692928  | 2524886  | 2367806  | 2345418  | 2334667               | 2491549                     | 2560744  | 2812067  | 2985171  | 3301683  |  |
| South America  | 527943                | 518075   | 473783   | 443849   | 439598   | 433803                | 394540                      | 423169   | 431253   | 449388   | 465380   |  |
| Western Europe | 455588                | 459007   | 421986   | 418290   | 422864   | 427797                | 601859                      | 777263   | 989390   | 1204911  | 1411475  |  |
| Total          | 8469077               | 8444256  | 6096592  | 5756284  | 5762504  | 5785394               | 7208309                     | 8016493  | 9129170  | 9838354  | 10748762 |  |
|                | -                     |          |          |          | 65       | dB                    |                             |          |          |          |          |  |
| Africa         | 61030                 | 61969    | 76658    | 70608    | 67180    | 66433                 | 21004                       | 18601    | 14458    | 12769    | 12740    |  |
| Asia           | 819958                | 822775   | 619680   | 593786   | 601511   | 609520                | 715427                      | 864369   | 994774   | 1048162  | 1113596  |  |
| Australia      | 5185                  | 5649     | 13756    | 13324    | 13661    | 13997                 | 15106                       | 20017    | 25761    | 28299    | 30751    |  |
| Eastern Europe | 63335                 | 64808    | 66872    | 65382    | 65932    | 66506                 | 176537                      | 194870   | 205129   | 215464   | 224240   |  |
| Middle East    | 137977                | 138741   | 70740    | 68787    | 69718    | 70636                 | 243795                      | 258929   | 273665   | 301597   | 336819   |  |
| North America  | 1303739               | 1294429  | 865205   | 798740   | 790488   | 785664                | 794503                      | 798562   | 868745   | 931105   | 1053662  |  |
| South America  | 206534                | 202335   | 176799   | 163170   | 161320   | 158714                | 137139                      | 148223   | 151210   | 157270   | 163238   |  |
| Western Europe | 119988                | 121617   | 129018   | 127932   | 129495   | 131070                | 165396                      | 221938   | 293235   | 370512   | 446849   |  |
| Total          | 2717745               | 2712322  | 2018727  | 1901729  | 1899305  | 1902538               | 2268907                     | 2525509  | 2826977  | 3065178  | 3381894  |  |

#### Table 1: AEDT/MAGENTA Results for 55, 60 and 65 dB DNL Population Above Contour Level 55 dB

# Table 2: Change in Population, Sensitivity Summary, Doc29 Compliance Contribution

|          | % Chang<br>2005(A) | ge in Population Relative to<br>with CAEP/6 Noise Engine |                       |  |  |  |  |  |
|----------|--------------------|----------------------------------------------------------|-----------------------|--|--|--|--|--|
|          |                    | 2005(B)                                                  | 2005(B)               |  |  |  |  |  |
| DNL (dB) | 2005(A)            | (DOC29 and<br>CIS TOTAL)                                 | (DOC29 only<br>TOTAL) |  |  |  |  |  |
| 55       | Ref                | 25%                                                      | 19%                   |  |  |  |  |  |
| 60       | Ref                | 25%                                                      | 18%                   |  |  |  |  |  |
| 65       | Ref                | 19%                                                      | 11%                   |  |  |  |  |  |

## **3 LAQ and GHG Emissions**

For the LAQ and GHG emissions trends, the results from four models were considered: (1) U.S. FAA's AEDT System for assessing Aviation's Global Emissions (AEDT/SAGE) [3,5]; (2) EUROCONTROL's Advanced Emissions Model (AEM) [11]; (3) EC/QinetiQ's AERO2K [12]; and (4) U.K.'s FAST Model [13].

A primary driver for including the results from four models is to provide a check of results between models. This was not possible for noise, since no other models are currently available for conducting a global assessment of aircraft noise. In support of CAEP/8, it is expected that airport/regional-level comparisons of noise from other models will be included to perform checks of AEDT/MAGENTA, as is being done using the four LAQ/GHG models.

A summary of the years included in the LAQ/GHG trends assessment for each of the four models is presented in Table 3.

| Year of<br>Study                | Study<br>Type | Model Notes for Quantifying<br>Fuelburn and Emissions                                                                                                                                            |  |  |  |  |  |  |
|---------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 2000                            | Baseline      | AEDT / SAGE<br>FAST                                                                                                                                                                              |  |  |  |  |  |  |
| 2001                            | Baseline      | AEDT / SAGE                                                                                                                                                                                      |  |  |  |  |  |  |
| 2002                            | Baseline      | AEDT / SAGE<br>AEM<br>AERO2K                                                                                                                                                                     |  |  |  |  |  |  |
| 2003                            | Baseline      | AEDT / SAGE<br>AEM                                                                                                                                                                               |  |  |  |  |  |  |
| 2004                            | Baseline      | AEDT / SAGE<br>AEM                                                                                                                                                                               |  |  |  |  |  |  |
| 2005                            | Baseline      | AEDT / SAGE<br>AEM<br>FAST                                                                                                                                                                       |  |  |  |  |  |  |
| 2010,<br>2015,<br>2020,<br>2025 | Future        | AEDT/SAGE, AERO2K and AEM<br>using operational deltas generated<br>from the AEDT fleet and operations<br>Module (FOM); FAST method using<br>2003 predictions and seat-based<br>category aircraft |  |  |  |  |  |  |

Table 3: Summary of Years and Models for Emissions

Since the GHG models compute emissions and fuel burn from aircraft operating gate-togate, they provide LAQ data in addition to data for the en-route portion of flight (GHG). Consequently, for the purposes of this trends assessment, the results from the four models are presented in Table 4 by flight regime, so as to preserve the output of interest for LAQ (the terminal area under 3,000 ft.) and GHG (enroute over 3,000 feet).

Table 4 presents the summary fuel burn and emissions (CO, HC,  $NO_x$ , and  $CO_2$ ) results for all LAQ/GHG models for all analysis years. CO, HC and  $NO_x$  are included in the trends assessment as they are emissions currently regulated by CAEP, while  $CO_2$  is included for climate change considerations. It is expected for CAEP/8 that the assessment will be expanded to include PM emissions.



data, and four-model-average fuel burn with 95% confidence intervals for each future year.

Figure 2 presents the base-year (2000 through 2005) actual fuel burn data from each model, as well as the four-model, average fuel burn and 95% confidence interval (CI) for each future year. Figures 3 and 4 present the base-year (2000 through 2005) actual  $NO_x$  data, as well as the four-model, average  $NO_x$  and 95% CI for each future year, for the LAQ and GHG cases, respectively.

#### TRENDS IN GLOBAL NOISE AND EMISSIONS FROM COMMERCIAL AVIATION FOR 2000 THROUGH 2025

| Table 4: Summary of LAQ and GHG Fuelburn and Emissions |              |                       |            |         |            |            |       |            |                              |       |            |            |       |                      |            |          |  |
|--------------------------------------------------------|--------------|-----------------------|------------|---------|------------|------------|-------|------------|------------------------------|-------|------------|------------|-------|----------------------|------------|----------|--|
|                                                        | Γ            | Fuelburn (Tg) CO (Tg) |            |         |            |            |       |            | HC (Tg) NO <sub>x</sub> (Tg) |       |            |            |       | CO <sub>2</sub> (Tg) |            |          |  |
|                                                        | -            | < 3000 ft.            | > 3000 ft. | Total   | < 3000 ft. | > 3000 ft. | Total | < 3000 ft. | > 3000 ft.                   | Total | < 3000 ft. | > 3000 ft. | Total | < 3000 ft.           | > 3000 ft. | Total    |  |
| AE<br>SA                                               | EDT /<br>AGE | 12.904                | 168.418    | 181.322 | 0.084      | 0.390      | 0.474 | 0.016      | 0.060                        | 0.076 | 0.197      | 2.308      | 2.505 | 40.713               | 531.358    | 572.071  |  |
| 2000 AE                                                | EM           | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| AE                                                     | ERO2K        | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| FA                                                     | AST          | 19.000                | 133.000    | 152.000 | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | 0.270      | 1.710      | 1.980 | 59.000               | 421.000    | 479.000  |  |
| AE<br>SA                                               | EDT /<br>AGE | 12.350                | 158.106    | 170.456 | 0.076      | 0.333      | 0.409 | 0.014      | 0.049                        | 0.063 | 0.192      | 2.166      | 2.358 | 38.965               | 498.824    | 537.789  |  |
| 2001 AE                                                | EM           | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| AF                                                     | ERO2K        | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| FA                                                     | AST          | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| AE<br>SA                                               | EDT /<br>AGE | 12.239                | 158.587    | 170.826 | 0.076      | 0.347      | 0.423 | 0.013      | 0.051                        | 0.064 | 0.194      | 2.219      | 2.414 | 38.615               | 500.341    | 538.956  |  |
| 2002 AF                                                | EM           | 16.768                | 157.536    | 174.303 | 0.054      | 0.424      | 0.478 | 0.007      | 0.053                        | 0.060 | 0.250      | 2.020      | 2.270 | 52.802               | 496.080    | 548.882  |  |
| AF                                                     | ERO2K        | 18.494                | 136.688    | 155.183 | 0.199      | 0.304      | 0.503 | 0.027      | 0.036                        | 0.063 | 0.248      | 1.800      | 2.047 | 58.055               | 430.911    | 488.966  |  |
| FA                                                     | AST          | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| AE<br>SA                                               | EDT /<br>AGE | 12.415                | 164.011    | 176.427 | 0.074      | 0.354      | 0.429 | 0.013      | 0.049                        | 0.062 | 0.199      | 2.294      | 2.493 | 39.171               | 517.456    | 556.627  |  |
| 2003 AF                                                | EM           | 16.768                | 161.283    | 178.052 | 0.054      | 0.426      | 0.480 | 0.007      | 0.051                        | 0.058 | 0.248      | 2.088      | 2.336 | 52.804               | 507.881    | 560.685  |  |
| AF                                                     | ERO2K        | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| FA                                                     | AST          | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| AE<br>SA                                               | EDT /<br>AGE | 12.881                | 175.473    | 188.354 | 0.076      | 0.373      | 0.450 | 0.013      | 0.050                        | 0.063 | 0.210      | 2.476      | 2.686 | 40.640               | 553.618    | 594.258  |  |
| 2004 AF                                                | EM           | 17.795                | 170.300    | 188.095 | 0.056      | 0.450      | 0.506 | 0.007      | 0.052                        | 0.059 | 0.261      | 2.179      | 2.440 | 56.036               | 536.275    | 592.310  |  |
| AF                                                     | ERO2K        | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| FA                                                     | AST          | n/a                   | n/a        | n/a     | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | n/a        | n/a        | n/a   | n/a                  | n/a        | n/a      |  |
| AE<br>SA                                               | EDT /<br>AGE | 14.980                | 178.566    | 193.546 | 0.133      | 0.341      | 0.474 | 0.016      | 0.045                        | 0.061 | 0.211      | 2.788      | 2.999 | 47.261               | 563.376    | 610.637  |  |
| 2005 <u>AE</u>                                         | EM           | 18.414                | 174.352    | 192.766 | 0.058      | 0.465      | 0.523 | 0.007      | 0.053                        | 0.060 | 0.269      | 2.224      | 2.493 | 57.987               | 549.033    | 607.020  |  |
| AF                                                     | ERO2K        | 21.837                | 162.996    | 184.833 | 0.235      | 0.363      | 0.597 | 0.031      | 0.043                        | 0.074 | 0.297      | 2.166      | 2.463 | 68.548               | 513.846    | 582.394  |  |
| FA                                                     | AST          | 18.802                | 138.198    | 157.000 | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | 0.270      | 1.800      | 2.070 | 59.281               | 435.740    | 495.021  |  |
| AE<br>SA                                               | EDT /<br>AGE | 18.560                | 227.587    | 246.146 | 0.160      | 0.425      | 0.585 | 0.018      | 0.050                        | 0.068 | 0.267      | 3.579      | 3.846 | 58.555               | 718.036    | 776.591  |  |
| 2010 <u>AF</u>                                         | EM           | 23.060                | 222.291    | 245.351 | 0.072      | 0.586      | 0.658 | 0.009      | 0.068                        | 0.077 | 0.340      | 2.859      | 3.200 | 72.616               | 699.996    | 772.612  |  |
| AF                                                     | ERO2K        | 28.075                | 212.377    | 240.452 | 0.301      | 0.468      | 0.770 | 0.040      | 0.055                        | 0.095 | 0.392      | 2.854      | 3.245 | 88.131               | 669.526    | 757.657  |  |
| FA                                                     | AST          | 22.000                | 172.000    | 192.000 | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | 0.340      | 2.310      | 2.650 | 71.000               | 534.000    | 605.000  |  |
| AE<br>SA                                               | AGE          | 22.678                | 291.458    | 314.136 | 0.192      | 0.515      | 0.707 | 0.020      | 0.056                        | 0.077 | 0.331      | 4.593      | 4.924 | 71.550               | 919.551    | 991.101  |  |
| 2015 <u>AF</u>                                         | EM           | 28.863                | 280.598    | 309.460 | 0.089      | 0.732      | 0.820 | 0.011      | 0.086                        | 0.098 | 0.435      | 3.631      | 4.067 | 90.889               | 883.602    | 974.491  |  |
| AE                                                     | ERO2K        | 35.706                | 272.519    | 308.225 | 0.383      | 0.598      | 0.981 | 0.051      | 0.069                        | 0.120 | 0.509      | 3.693      | 4.201 | 112.085              | 859.131    | 971.216  |  |
| FA                                                     | AST          | 28.000                | 214.000    | 242.000 | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | 0.410      | 2.930      | 3.340 | 88.000               | 675.000    | 763.000  |  |
| AE<br>SA                                               | AGE          | 26.398                | 318.732    | 345.130 | 0.217      | 0.575      | 0.793 | 0.023      | 0.059                        | 0.082 | 0.396      | 5.051      | 5.447 | 83.286               | 1005.600   | 1088.886 |  |
| 2020 AF                                                | EM           | 36.234                | 350.272    | 386.506 | 0.109      | 0.896      | 1.004 | 0.014      | 0.107                        | 0.121 | 0.557      | 4.605      | 5.161 | 114.100              | 1103.008   | 1217.108 |  |
| AF                                                     | ERO2K        | 44.275                | 325.388    | 369.663 | 0.477      | 0.726      | 1.203 | 0.063      | 0.085                        | 0.148 | 0.643      | 4.491      | 5.135 | 138.982              | 1025.784   | 1164.766 |  |
| FA                                                     | AST          | 36.000                | 282.000    | 318.000 | n/a        | n/a        | n/a   | n/a        | n/a                          | n/a   | 0.530      | 3.910      | 4.440 | 114.000              | 888.000    | 1003.000 |  |
| AE<br>SA                                               | AGE          | 30.556                | 358.963    | 389.520 | 0.246      | 0.655      | 0.901 | 0.025      | 0.064                        | 0.090 | 0.467      | 5.701      | 6.168 | 96.405               | 1132.530   | 1228.934 |  |
| 2025 <u>AF</u>                                         | EDOOV        | 43.972                | 428.614    | 472.586 | 0.129      | 1.080      | 1.210 | 0.017      | 0.129                        | 0.146 | 0.685      | 5.683      | 6.368 | 138.469              | 1349.706   | 1488.175 |  |
| A T                                                    | EKUZK        | 34.290                | 371.313    | 443.011 | 0.387      | 0.000      | 1.400 | 0.078      | 0.104                        | 0.182 | 0.799      | J.401      | 0.200 | 1/0.43/              | 1233.008   | 1404.043 |  |

Table 4: Summary of LAO and CHC Fuelburn and Emission



Figure 3: Summary of NOx < 3000 Ft (Local Air Quality). Represents four individual model results for actual fuel burn data, and four-model-average fuel burn with 95% confidence intervals for each future year.



Figure 4: Summary of NOx > 3000 Ft (Green House Gases). Represents four individual model results for actual fuel burn data, and four-model-average fuel burn with 95% confidence intervals for each future year.

#### **4 Summary Discussions**

It is anticipated that CAEP may establish measureable environmental goals for noise, LAQ and GHG, against which the implications of various policy/regulatory decisions can be measured. For example, a measurable goal for  $CO_2$  might be no increase in emissions relative to a specific base year.

In developing this <u>initial</u> set of environmental trends presented in this paper, a number of potential methodological enhancements were identified. The planned inclusion of these enhancements will result in a more realistic set of environmental trends.

Of particular note is the need to include assumptions related to planned improvements in aircraft/engine technology, e.g., better aerodynamics and lighter materials, which will result in fuel burn improvements. Likewise, it is critical to include anticipated operational These may result from: (1) improvements. navigational technologies such as RNAV, which enables more direct routing of aircraft, and thus lower total flight fuel burn and emissions; or (2) operational procedures such as continuous descent arrivals, which result in reductions in noise, emissions and fuel burn.

In addition, emissions inventories need to be augmented with better measures of quantifying overall improvements in fleet-level fuel burn. For example, fleet-wide traffic efficiency will better quantify the improvements in overall system efficiency. A complementary paper to this Congress discusses work currently underway to develop a fleet-level traffic efficiency metric.

The trends assessment presented herein was an <u>initial</u> step to better inform the CAEP environmental goals process. These data are underestimating what aviation might expect to be able to achieve through continued improvements in technology, operations, and air traffic management. The noise, LAQ, and GHG results presented herein should be considered an <u>upper bound</u> to future trends.

Improvements are planned for the overall approach to conducting noise and emissions trends assessments in support of CAEP's environmental goals. It is envisioned that these types of trends assessments have broad applicability and can be used to support a variety of national and international requirements, including policy establishment.

#### **5** Acknowledgements

All AEDT-related work presented herein was funded by FAA's Office of Environment and Energy, Washington, D.C., USA.

All AERO2k work was funded by the UK Department for Transport.

#### References

- Intergovernmental Panel on Climate Change (IPCC). "Aviation and the Global Atmosphere." A Special Report of IPCC Working Groups I and II. Edited by J.E. Penner, D.H. Lister, D.J. Griggs, D.J. Dokken, and M. McFarland. Cambridge University Press. 1999.
- [2] U.S.Environmental Protection Agency (EPA), "Air and Radiation: Basic Information,", EPA Office of Air and Radiation, 2006, available at http://www.epa.gov/air/index.html,.
- [3] Kim, Brian, Fleming, Gregg, Lee, Joosung, Waitz, Ian, Clarke, J-P, Balasubramanian, Sathya, Malwitz, Andrew, Klima, Kelly, Locke, Maryalice, Holsclaw, Curtis, Maurice, Lourdes, Gupta, Mohan, "System for assessing Aviation's Global Emissions (SAGE), Part 1: Model Description and Inventory Results." Transportation Research, Part D: Transport and Environment. <u>www.sciencedirect.com</u>. July 2005.
- [4] Ollerhead, J., Sharp, B., "Air and Space Europe", Volume 3, Issues 3-4, May-August 2001, Pages 247-249, available at <u>http://www.sciencedirect.com/science? ob=ArticleU</u> <u>RL&\_udi=B6VT0-43VC55H-</u> <u>2N& user=10& rdoc=1& fmt=& orig=search& sor</u> <u>t=d&view=c& acct=C000050221& version=1& url</u> <u>Version=0& userid=10&md5=343987eb52e31d5781</u> <u>ba0437b6fe7472</u>
- [5] Federal Aviation Administration (FAA), "Aviation Environmental Models", FAA Office of Environment and Energy, <u>http://www.faa.gov/about/office\_org/headquarters\_of\_fices/aep/models/</u> 2006.
- [6] Airports Council International, "Traffic Movements 2007 Preliminary", March 2008, available at <u>http://www.aci.aero/cda/aci\_common/display/main/a</u> <u>ci\_content07\_c.jsp?zn=aci&cp=1-5-54-57\_666\_2\_.</u>
- [7] European Civil Aviation Conference, "ECAC.CEAC Doc 29: Report on Standard Method of Computing Noise Contours around Civil Airports, Volume 2: Technical Guide," ECAC.CEAC, 3<sup>rd</sup> Edition, July 2005.
- [8] SAE Aerospace Information Report, "AIR 5662: Method for Predicting Lateral Attenuation of Airplane Noise", SAE International, 2006.

- [9] SAE Aerospace Information Report, "AIR 1751: Prediction Method for Lateral Attenuation of Airplane Noise During Takeoff and Landing", Society of Automotive Engineers Inc., 1981.
- [10] Grandi, Fabio. Review of the Fleet and Operations Module (FOM) Assumptions and Limitations. ICAO CAEP/8 Modelling and Database Task Force (MODTF), October 2007, available at. <u>http://www.wylelabs.com/content/global/documents/ CAEP8.PDF</u>
- [11] Jelinek, Frank. "Advanced Emission Model (AEM3) v1.5 Validation Report <u>http://www.eurocontrol.int/eec/gallery/content/public</u>/documents/EEC\_SEE\_reports/EEC\_SEE\_2004\_004. pdf, Dec 2004
- [12] Eyers, C.J, Addleton, D, Atkinson, K, Broomhead, MJ, Christou, R, Elliff, T, Falk, R, Gee, I, Lee, D.S., Marizy, C., Michot, S., Middel, J., Newton, P., Norman, P., Plohr, M., Raper, D., Stanciou, N., "AERO2k Global Aviation Emissions Inventories for 2002 and 2025", QINETIQ/04/01113, December 2004 (Rev 11 May 2005) available at http://www.cate.mmu.ac.uk/aero2k.asp.
- [13] Lee, David S, Owen, Bethan. "Study on the Allocation of Emissions from International Aviation to the U.K. Inventory", DEFRA Global Atmosphere Division,

http://www.cate.mmu.ac.uk/project\_view.asp?chg=pr ojects&chg2=2&id=2, 2006.

#### **Copyright Statement**

The authors confirm that they, and/or their company or institution, hold copyright on all of the original material included in their paper. They also confirm they have obtained permission, from the copyright holder of any third party material included in their paper, to publish it as part of their paper. The authors grant full permission for the publication and distribution of their paper as part of the ICAS2008 proceedings or as individual off-prints from the proceedings.