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Abstract 
 
A simple and efficient dynamic grid deformation 
technique is proposed for computing unsteady flow 
problems with geometrical deformation, relative 
body movement or shape changes due to 
aerodynamic optimisation and fluid-structure 
interaction. A Delaunay graph of the solution 
domain is first generated, which can be moved 
easily during the geometric dynamic deformation, 
even for very large distortion. A one to one 
mapping between the Delaunay graph and the 
computational grid is maintained during the 
movement. Therefore the new computational grid 
after the dynamic movement can be generated 
efficiently through the mapping while maintaining 
the primary qualities of the grid. While most 
dynamic grid deformation techniques are iterative 
based on the spring analogy, the present method is 
non-iterative and much more efficient. On the 
other hand, in comparison with dynamic grid 
techniques based on transfinite interpolation for 
structured grids, it offers both geometric and cell 
topology flexibility, which is crucial for many 
unsteady flow problems involving geometric 
deformation and relative motions. The unsteady 
aerodynamics for the flying wing was computed 
during deforming it’s wing and body, which is 
demonstrated regarding their efficiency and grid 
quality.   
 

1. Introduction 

 
With the development for CFD in recent years, 

it has been used to investigate complex flowfields 
and aid to solve the difficult engineering problems. 
At the same time it is also being involving the 

multidisciplinary applications for design 
optimization, aeroelastics, control surface analysis 
and aeroservoelastics, etc. The combination of 
CFD with other disciplines frequently involves 
deforming geometries due to design modifications, 
surface movement, or structural loads. For CFD, 
with the deforming geometries, it will cause the 
mesh in the flow field will also be changed. These 
changes not only include surfaces mesh but also 
include the volume mesh in the flow field. All 
these change will cause the mesh deformation. The 
coupled mechanics for CFD and other mechanics 
such as computational structured mechanics(CSM) 
will need a robust and efficient mesh deformation 
tools. The mesh deformation becomes very 
important for CFD to deal with unsteady 
computation depending on time and 
multidisciplinary applications fordesign 
optimization, aeroelastics, control surface analysis 
and aeroservoelastics, and thermal analyses. For 
example, for unsteady flow computation of the 
pitching of aerofoil, the oscillation of the aerofoil 
will change the coordinates for aerofoil, which we 
can call it boundary perturbation. How to 
propagate this boundary perturbation into the field 
mesh is the aim of the mesh deformation. There 
are two methods to propagate the boundary 
perturbations into flowfield[ 1 ]: (1) mesh 
regeneration (2) mesh deformation. Around these 
two methods many ideas are developed in recent 
years.  

Trans-Finite interpolation (TFI) is a general 
three-dimensional method that is widely used 
[2],[3],[4],[5]for cases involving multiple deforming 
boundary faces, especially for the structured grid 
regeneration and deformation. Most structured 
grid regeneration and deformation techniques are 
based on transfinite interpolation (TFI). Gaitonde 
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and Fiddes have provided a mesh regenerating 
technique based on TFI with exponential blending 
functions[6]. The choice of blending functions has 
a considerable influence on the quality and 
robustness of the field mesh. Soni has proposed a 
set of blending functions based on arclength[7]; 
such a set is extremely effective and robust for 
mesh regeneration and deformation. Jones and 
Samareh have presented an algorithm for general 
multiblock mesh regeneration and deformation 
based on Soni's blending functions [8]. Hartwich 
and Agrawal have used a variation of the TFI 
method [9]. They have introduced two new 
techniques: the use of the ì slave-masterî concept 
to semiautomate the process, and the use of a 
Gaussian distribution function to preserve the 
integrity of meshes in the presence of multiple 
body surfaces. Wong et al. have used Algebraic 
and Iterative Mesh 3D (AIM3D), which is based 
on a combination of algebraic and iterative 
methods [10]. Leatham and Chappell have used a 
Laplacian technique more commonly used for 
unstructured mesh deformation [11]. Based on the 
algebraic method, the quaternion algebra[12],[13],[14] 
scheme was one of successful method to treat 
more complex mesh. TFI combines the speed and 
efficiency of an algebraic method with the ability 
to handle fully 3D perturbations. Modifications are 
being made in this method in recent years and is 
being used complex perturbation. But the 
efficiency and robustness of this method is based 
on the single mesh type, for hybrid grids or 
unstructured grids the special treatment must be 
added, which loss this method’s efficiency and 
robustness. 

The spring analogy scheme, first developed 
by Batina[15], which model the mesh as a network 
of lineal springs and solve the static equilibrium 
equations for this network to determine the new 
locations of the grid points. Farhat[16] proposed a 
modified spring analogy by adding additional 
nonlinear torsion springs to avoid the non-positive 
cell volume problem associated with the lineal 
spring network. Murayama, M., Nakahashi, K., 
and Matsushima K.[17] proposed a method to treat 
the spring stiffness with the angle between faces, 

which made this method can deal with the 
problems with large movement and large 
deformation of surfaces. D. G. Martineau and J M 
Georgala[18] proposed the dual mesh to treat the 
arbitrary shape of mesh, and then used the 
modified spring analogy to the dual mesh. The 
movement of the mesh first was operated on dual 
mesh using the modified spring analogy, then 
backed to the original mesh. This method was 
successfully used in different arbitrary type 
meshes and hybrid mesh. Chen[19] developed an 
"Exterior BEM Solver" that has a unified feature 
for the deforming flowfield grid generation of all 
grid systems. Assuming that the CFD mesh is to 
be embedded in an infinite linear elastic medium 
where the CFD surface grid is treated as a 
deformable hollow slit, a pseudo elastostatic 
problem with semi-infinite elastic domain can be 
formulated. This is a perfect boundary element 
problem since BEM only requires modeling the 
surface of the body and, therefore, is ideally 
suitable for dealing with the infinite elastic domain. 
Because of the spring analogy scheme for moving 
the mesh need solving the static equilibrium 
equations for this network to determine the new 
locations of the grid points, so the iteration steps 
can’t avoid and this will spend much computation 
time, especially for three-dimensional computation. 
At the same time, for viscous mesh, the special 
treatment must be given to obtain the viscous 
stretched mesh. For three-dimensional viscous 
complex computation, the time for interpolating 
the perturbation of boundaries to volume grids 
using the spring analogy is unbeatable. 

  Petri Fast and William D. Henshaw[ 20 ] 
proposed overset grid mesh to simulation the 
movement of bodies. The key idea of this method 
is to use the overset grid method with a thin, 
body-fitted grid near the deforming boundary, 
while using fixed Cartesian grids to cover most of 
the computational domain. But for the unsteady 
calculation it had to interpolate the flow properties 
between meshes at different time steps, which cost 
large mount of time, especially for unstructured 
grids. The work of Lohner, Yang and Baum[21] 
was the separation of a flexible store using 
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unstructured grids. Their grid generator was 
optimized to limit regridding to the neighbourhood 
of the deforming object. However, they were 
forced to regrid the whole computational domain 
periodically to obtain a high-quality finite element 
mesh. The same disadvantage of this method 
existed as the overset grids, also needed the 
interpolation between meshed at different time 
steps for unsteady calculation. 
    From the above discussion, it is concluded 
that neither the TFI technique nor the spring 
analogy scheme can be generalized to deal with 
any given mesh systems with less time and less 
special treatment. In this paper, we are developing 
an innovative method to deform the mesh with 
arbitrary shapes, called “map” method. So called 
this name because defining a place in a map 
usually using some coefficients such as longitude 
and latitude, whatever we move the map, we still 
can using the coefficients belongs to the place to 
find the place, and will never crossover each other. 
When we put the “map” idea into the mesh 
movement we can get a very new method to move 
the mesh. The authors developed this method as 
the following steps: 1) First generating the map, 
this map should cover the whole flowfield ; 2) 
secondly defining the coefficients for the points of 
the flowfield; 3) then moving the map according to 
the demand by design; 4) Finally relocating the 
flowfield points in the moved “map”, such we can 
get the moved mesh and can guarantee the mesh 
quality after moving and at the same time the 
computing time is very small comparing the whole 
computing time because of no needing the 
smoothing iteration by other method such as 
spring analogy scheme. The following are the 
details for this new method. Different cases, 
involving in-viscous mesh for arbitrary grid 
elements and viscous mesh such as hybrid grid for 
two and three-dimensional cases, are used to 
demonstrate this new method. At the same time we 
also demonstrate this new method can move the 
mesh for large displacement. 
 
2. Method 

As describing the above, this new method is 
separated into four steps: a) The generation of the 
‘map’; b)locating the mesh points in the map; 
c)moving the map; d) relocating the mesh points in 
the map. In order to show the procedures of this 
method directly, the hybrid 2-d grid for aerofoil is 
adopted to give the details of this method, as 
shown in figure 1. 

 

 
Figure 1 The hybrid grid of the aerofoil  

 
2.1 The generation of map 

The map should cover the whole domain, and 
should have a clear structure. In our approach, we 
use the triangles(for two dimensional cases) or 
tetrahedrals(for three dimensional cases) as the 
map because triangles or tetrahedrals can fill 
arbitrary region so as to guarantee to extend this 
method to any complex configures. These “map” 
elements can be constructed using the body points 
and the boundary points or selected points which 
can represent the solid face. The Delaunay 
method[22] is employed to connect these points to 
form triangles or tetrahedrals. The connected 
triangles or tetrahedrals can be assured that the 
maximum of the minimum angle of a triangle or 
tetrahedral using this method, and any of arbitrary 
points can be constructed to triangles or 
tetrahedrals without special treating for special 
points. This is the base for that we can use 
“mapping” method for any arbitrary geometry’s 
mesh movement.  

The points which are selected to form the 
“mapping” are very important to succeed the 
“mapping” method to move or deform mesh. 
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Commonly, we first must know which solid face 
will move and which solid surface will not move. 
The points lying on these solid surfaces are often 
cheesed to form the “mapping” elements. But, 
because the time for forming the “mapping” 
elements and searching the location of a point of 
the flowfield will a little big if we deal the very 
complex geometry which the solid surfaces have a 
large number of points, so we often selecting 
points which can represent the solid surface. The 
farfield boundary points are often selected to form 
the “mapping” elements, and if the boundary are 
very uniform, such as the quadrilateral, we only 
select the very representing points, the four points 
which form the quadrilateral.  

The Delauney method which is adopted to 
connect these points to form triangles or 
tetrahedrals is followed by three steps[22]: (a) First 
forming the background mesh which covers the 
whole domain; (b)Using Delauney criterion(the 
circum-circle or circum-sphere of a triangle or 
tetrahedral will not include other points except the 
points which construct the triangle or tetrahedral 
by itself) to insert the flowfield and boundary 
points; (c) Delete the unwanted grids and we can 
get the mesh using given points by Delauney 
method. The details of this method can be got from 
the reference [22]. Here we only use the points 
which can represent the solid faces or boundaries 
to form the triangles and tetrahedrals with 
Delauney method, so the number of triangles and 
tetrahedrals are not large. The time of forming 
these elements will very small. Because we only 
use these elements as “map”, and the “map” 
should cover the whole mesh which will be moved 
or deformed, so we don’t need to delete the 
unwanted grids which lie in the solid faces, which 
is the most complex and important techniques of 
generating mesh using Delauney method. Figure 2 
(b) is the mesh which using Delauney method, the 
whole grid can be used as a map to cover the 
whole mesh which need moving or deforming.  

    
(a) The boundaries and solid surface 

  
    (b) The constructed “mapping” elements by 

Delauney method 
Fig.2 The boundaries and solid surface of plate 

hybrid grid and the constructed mapping elements 
using them by Delauney method 

 

2.2 Locating the mesh points in the map 
We can choose any rules to locate the mesh 

points in the “mapping”. But these rules must 
satisfy that the positions of the mesh points in the 
“mapping” is unified and accordingly can 
accurately find these points using these rules. Such 
as, in a map, usually using longitude and latitude 
to define the position of a place and accordingly 
we can use the longitude and latitude belongs to 
the place to find this place. Another example is 
that we use Cartesian coordinates (x,y,z) to define 
a point in Cartesian system, and accordingly we 
can use these coordinates (x,y,z) to find out the 
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exact point accurately. In this paper, the triangles 
or tetrahedrals form the “mapping”, so we must 
find a criterion to define the points of flowfield in 
the “mapping” using some coefficients, and can 
find any points using their coefficients. In this 
paper we use the area coefficients to define points 
for 2D and the volume coefficients to define points 
for 3D. These coefficients have three parts for 
2-dimensional case and have four parts for 
3-dimensional case. Figure 3(a) demonstrates the 
construction of the coefficients of a point in a 
“mapping” element for 2-dimensional case, if a 
mesh point P is found in the “mapping” element 
ABC, then using the area method, we can get three 
coefficients: 1 2 3, ,e e e , which relative to the points 
A,B,C, respectively. and figure 3(b) for 
3-dimensional case. The formulation (1) is the 
expression of these coefficients for 2-dimensional 
case and (2) for 3 dimensional case  
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Figure 3 The display of the coefficients 
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In this paper, we define the above coefficients 
for mesh points which lie in the same “mapping” 
element. So the first step we must find out the 
mesh points belong to which mapping elements. 
This step can be done by distinguishing the sign of 
the above coefficients: for a mesh point, if the sign 
of any of these coefficients for a certain 
“mapping” element is negative, we can decide that 
this mesh point lies outside of the certain 
“mapping” element. On the contrast, if the signs of 
all the coefficients for a certain “mapping” 
element are positive or zero, we can say this mesh 
point lies in the certain “mapping” element. All the 
mesh points can be divided into different 
“mapping” elements, and every “mapping” 
element will contain a certain number of mesh 
points. These mesh points’ coefficients are 
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obtained using the above expressions in the 
“mapping” element which cover these mesh points. 
Every coefficient is positive. So we can get the 
position in “mapping” elements with 
corresponding coefficients. The following steps 
are used to get the corresponding coefficients of 
the mesh points in “mapping” elements: 
1) Divide the mesh points into groups, and a 

group of mesh points should be in a mapping 
element; 

2) Using the expression (1) or (2) to compute the 
coefficients of mesh points. Note that the 
coefficients of mesh points should be equal or 
greater than zero; 

3) Endow the coefficients to mesh points, and 
these coefficients will keep constant during the 
movement of the mesh. 

These coefficients can also be used to get the mesh 
points’ characteristic using the “mapping” element 
points’ characteristic by linear interpolation. For 
example, for a point P, if U denotes the 
characteristic, and P1, P2, P3 are points of the 
“mapping” element which contain the point P, so 
the characteristic of P is can be obtain using the 
above coefficients:      

1 2 31 2 3
1 2 3P

e U e U e UU
e e e

⋅ + ⋅ + ⋅=
+ +

        (3) 

Here U can be any of the characteristics, such as 
coordinates.  
 
2.3 Moving the “mapping” elements 

As discussed before, the “mapping” elements 
are constructed using the outer points and solid 
points which are representing the solid. The 
mapping elements should cover the whole mesh 
points. Generally the outer points stay still, and the 
solid points move according the movement of the 
solid faces and reflect the exactly movement of the 
solid faces. The movement of solid surfaces 
include the pitching of aerofoil, the relative 
movement between solid surfaces, the distortion of 
solid, and so on. The points which are chosen to 
construct the “mapping” elements must represent 
the real geometry of solid, and still can reflect the 
exactly real geometry during the movement of the 

solid surface. The most simple is to select all the 
solid surface mesh points to be the “mapping” 
element points. The outer points which are chosen 
to construct the “mapping” elements generally are 
easier to be selected, generally the points 
representing the boundaries which can cover the 
whole mesh.  

During the movement of the solid surface 
points, there maybe encounter an error which 
makes one of the mapping elements’ area become 
negative. This error will happen when the 
“mapping” element points crossover, as showed by 
the following figure 4(a). This error can be 
overcome by swapping the edges of the “mapping” 
elements. After swapping we must track back the 
last two steps. At this time we have to repeat the 
step 2.2: we have to divide the mesh points in 
groups again, calculate their coefficients using the 
expression (1) or (2), and store the coefficients for 
each mesh point. After doing the above steps then 
we can move the mesh elements again. If there 
still is error encountered, the divided smaller 
movement is used till no error encountered. When 
we finish the above checking and no error is 
encountered, then we can continue the movement 
of mapping elements. Figure 5 shows the result of 
the movement of the “mapping” elements. 

A

B

C

D  
(a) The intersection of “mapping”elements 

D

C

A

B  
   (b) The corrected “mapping” elements 

Figure 4 The intersection of “mapping” elements 
and correction 
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(a) Before movement 

(b)  

 
(b) After movement 

Figure 5 The result of the movement of mapping 
elements 

 
This is the most important step for moving 

the mesh points using this new method. It is the 
base that no mesh grids crossover and can get high 
quality of mesh elements after movement. 
 
2.4 Relocating the mesh points in the 
“mapping” elements  

This step is to get the new position of the 
mesh points. When the movement is achieved, the 
final step using this method is to relocate the mesh 
points in the map. Using the above calculated 
coefficients and the moved “mapping” elements 

we can get the new position of the mesh points. 
For each group mesh points which lie in the same 
“mapping” we can use the following expressions 
to relocate their coordinates by linear 
interpolation.  
For 2-dimensional case, the expression is: 

1 2 3

1 2 3

A B C
P

e x e x e xx
e e e

′ ′ ′⋅ + ⋅ + ⋅′ =
+ +

        (4) 

1 2 3

1 2 3

A B C
P

e y e y e yy
e e e

′ ′ ′⋅ + ⋅ + ⋅′ =
+ +

       (5) 

For 3-dimensional cases, the expressions are: 
1 2 3 4

1 2 3 4

A B C D
P

e x e x e x e xx
e e e e

′ ′ ′ ′⋅ + ⋅ + ⋅ + ⋅′ =
+ + +

 (6) 

1 2 3 4

1 2 3 4

A B C D
P

e y e y e y e yy
e e e e

′ ′ ′ ′⋅ + ⋅ + ⋅ + ⋅′ =
+ + +

 (7) 

1 2 3 4

1 2 3 4

A B C D
P

e z e z e z e zz
e e e e

′ ′ ′ ′⋅ + ⋅ + ⋅ + ⋅′ =
+ + +

 (8) 

here ( , )x y′ ′  or ( , , )x y z′ ′ ′  are the new 
coordinates of the mesh points, i.e., the deformed 
mesh’s coordinates. , , , ,( , )A B C A B Cx y′ ′  or 

, , , , , , , , ,( , , )A B C D A B C D A B C Dx y z′ ′ ′  are the moved 
“mapping” element’s point coordinates. For 
2-dimensional cases, the “mapping” element is 
triangle which has 3 points(A,B and C); For 
3-dimensional cases, the “mapping” element is 
tetrahedral which has 4 points(A,B,C and D). 

1 2 3 4, , ,e e e e  are the coefficients of a mesh point 
which lies in a certain mapping element, and are 
computed using the formula (1) or (2). If we use 
the unmoved mapping elements’ coordinates, we 
can get the original coordinates of the mesh points. 
During the movement, these coefficients retain 
constant since they are computed using (1) or (2), 
and can directly be used in the relocating mesh 
point procedure using the above expressions 
(4)-(8). The figures 6 showed this procedure for 
2-dimensional case, and also similar to 
3-dimensional case.  
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(a) Before movement               (b) After movement 

Figure 6. The relocation of mesh points during the mesh movement 
 

This step is the final step for this method. The 
deformed mesh can be got from this step. In this 
step we will encounter the cases: the points of a 
grid element maybe not lie in the same mapping 
element (showed in the figure 7, triangles ABC 
and ACD are “mapping” elements, while 1 2 3PP P  
is one of the grid element), it seems that the moved 
mesh maybe crossover each other which will lead 

the failure of this method. Fortunately, if we use 
above coefficients computed by the formula (1) or 
(2), this error will not happen if the moved 
“mapping” elements have no intersection. This 
coefficients guarantee the success of the mesh 
movement without intersecting each other.  
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P
P
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P

P

P

1
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(a) Before movement                              (b) After movement 

Figure 7 The demonstration of the possible intersection for mesh elements 

 

Due to the mapping elements’ coordinates 
had moved, the mesh points also were moved 
smoothly using the formula (4)-(8). The following 
figure 8 showed the results of the mesh for hybrid 

grid. Good quality of the moved mesh can be 
obtained and the moved mesh can be obtained by 
one step without any iterations.  
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(a) Solid surfaces deformation  

      
(b) The movement of “mapping” elements  

   
 (c) The final moved mesh(Relocating the mesh points in “mapping” elements)  

Figure 8 The procedure of the deformation of mesh with different deformation for solid surface 
 

For a conclusion of this method, the 
procedure of this method can be summarized as 
following: 

[1] Using the boundary points and selected 
solid surface points(it seems that no much more 
additional time will be spend if we choose all the 
solid surface points) and Delauney method to 
construct the mapping elements; 

[2] Grouping the mesh points to make sure 
that the mesh points in a group lie in a “mapping” 
elements, then computing the coefficients of mesh 
points using the formula (1) or (2), and storing 
these coefficients; 

[3] According the deformation of the solid 
surfaces or the relative movements between 
different bodies, moving the mapping elements. In 
fact, this movement is very simple, and we only 

change the coordinates of the “mapping” elements’ 
points into the coordinates of the moved solid 
surfaces or new coordinates of the bodies after the 
relative movements; 

[4] Checking the intersection between the 
mapping elements, and if the intersection happens 
we split the movement into small movements and 
go to step [1], and if no intersection, continue the 
following the step. Generally, this intersection 
seldom is encountered; 

[5] Relocating the mesh points using the 
expression (4)-(8) using the coefficients computed 
in step [2] and the coordinates of new moved 
mapping elements, then the deformed mesh can be 
obtained; 

[6] Repeating [1]—[5] till we finish the 
movement. 
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From the above steps we can see we need no 
iterations, which made this method cost much less 
time for mesh movement. And, during the 
movement we have no special treatment for 
different types of mesh, i.e. viscous mesh, 
non-viscous mesh or hybrid mesh, so this method 
can be widely used in different types of mesh. For 
validating this method, different types of mesh are 
used in the following section. 
 

3 Test Cases 
 

 (1) The relative movement between the elements 
of multi-element aerofoil for in-viscous and 
viscous meshes 

In this case, the four-element aerofoil is used 
as the relative movement test case. In this case, the 
flaps had relative movement for the main aerofoil. 
Figure 9(a) demonstrates the view of the total 
mesh.  Figure9(b),(c),(d),(e),(f) demonstrated the 
mesh after relative movement at different positions. 
The high quality of mesh still was obtained after 
the final movement(figure9(f))

 

   
(a)                             (b)                         (c) 

   
(d)                           (e)                         (f) 

Figure 9. The relative movement between main foil and flaps (non-viscous mesh) 
 

(2) Three-dimensional flying-wing deformation 
with hybrid grids 

In this case, the model is used as the 
flying-wing with hybrid grids. The computational 
parameters  chosen as follows : the Mach number 
is 0.85, the Reynolds number is 2×10

6 ,and the 
attack angle α=3°. The flying-wing deformation is 

the relative movement at the different wings 
positions with variable sweep and the folding wing. 
The time is used the 30s when the wings folded  
from  -300 

to 30
0. When the variable sweep 

wings is from  00 
to 90

0,the time sames. 
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（a）model                      （b）hybrid grids 

Figure 10 Three-dimensional flying-wing deformation with hybrid grids 

     
Figure 11 The display of Aerodynamicas coefficient during the wings- folding 

 

 
Figure 12 The display of Pressure coefficient and Grids during the wings- folding  

     
Figure 13. The display of aerodynamic coefficients during wing -variable sweep  
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Figure 14. The display of  Pressure coefficient and Grids during wing -variable sweep  

 

4 Conclusion 
 

This paper provided a new method for fast 
deformation or movement of the mesh with arbitrary 
shapes. Using this method can save much time during the 
deformation or movement of the mesh compared with the 
spring analysis or other methods. This method also makes 
the computation of unsteady flow with hybrid grids easy 
because it needs no additional treatment for different 
types of mesh. The only difficult of this method is that the 
mesh generator for constructing the “mapping” elements 
has to be coupled into the procedure of the deformation or 
movement of the mesh. Anyway, it provides a new 
method for fast deformation or movement of mesh, and 
can save much time for deformation or movement of 
mesh. Additionally, it can stand large displace of 
movement or deformation without special treatment, 
which make it more easy to compute complex unsteady 
flow calculation with complex configures. 
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