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Abstract

The paper handles the problem of accuracy loss
of CFD solutions stemming from the use of com-
putational domains with a heterogeneous dis-
cretization within the sub-domains. The problem
occurs, e.g. where high-order numerical schemes
are tailored with low order schemes, or where the
same order approximations are applied to blocks
with different grid resolution. The problem is es-
pecially troublesome for high accuracy CFD so-
lutions where tailoring of heterogeneous meshes
frequently brings loss of accuracy on a global
scale.

The paper focuces on the treatment of non-
point-to-point (NPP) structured grids that is grids
in which block boundaries are not necessarily
point-matched. In the context of high accu-
racy characteristic finite-volume schemes for 3D
Navier-Stokes equations, a new approach is pro-
posed which allows to maintain numerical stabil-
ity and to minimize the accuracy loss due to vari-
able grid resolution.

In the proposed approach interboundary cell
clusters are formed which contain boundary cells
from the neighbouring blocks of different resolu-
tion. For each such cluster, the residuals of the
Navier-Stokes equations are computed (“collec-
tion” stage) and, finally, the cluster residuals are
distributed among the cells of the host cluster by
directly minimizing the flux disbalance in an ap-
propriate norm (“distribution” stage). Outside the
boundary clusters, the residuals are computed in
the regular way.

The method allows to automatically preserve
flux conservativity by placing constraints upon
the optimum, it does not change the stability
properties of the basic ENO scheme and ensures
sufficiently high level of approximation on grids
with reduced resolution. The results which in-
clude a number of numerical tests for 2D and
3D wings indicate good accuracy and robustness
of the method and its applicability to full-scale
Navier-Stokes computations.

1 Introduction

The paper considers the problem of accuracy
loss of CFD solutions on composite computa-
tional domains with a heterogeneous discretiza-
tion within the sub-domains. The problem oc-
curs, e.g. where high-order numerical schemes
are tailored with low order schemes, or where the
same order approximations are applied to blocks
with different grid partition.

The problem is especially troublesome for
implementation of high accuracy CFD solutions
since 3D tailoring of heterogeneous discretiza-
tions frequently brings loss of accuracy not only
locally but on a global scale.

Specifically we focus on the following case.
Consider a structured multi-block computational
grid around an aerodynamic configuration in-
tended for the solution of full Navier-Stokes
equations. Structured grids have important ad-
vantages which make them highly competitive
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for practical CFD. They may provide high accu-
racy solutions without need in complicated data
structures (such as linked lists or graphs) for their
implementation, which make them suitable for
high efficiency parallel computing [1]. Struc-
tured grids are also indispensable for CFD driven
aerodynamic shape design since they allow for
fast and consistent grid movement.

Structured grids are easy to compose of point-
to-point (PP) matched blocks. Unfortunately, the
use of PP grids for complex aircraft configura-
tions becomes problematic due to the following
reason. The nature of PP matching requires the
propagation of the discrete topology of a block
from aircraft surfaces to the outer boundaries of
the grid ("computational infinity"). For complex
aircraft configurations, the construction of such
grids requires considerable human resources in
terms of time and expertise. The regularity of the
grids is frequently low, and the overall number of
grid points becomes prohibitively high.

The above considerations brought a num-
ber of researchers, especially in industry, to the
idea of using non-point-to-point (NPP) struc-
tured grids that is grids in which block bound-
aries are not necessarily point-matched (Ref. [6]-
[10]). NPP grids may significantly facilitate
use of structured grids, but the approach ap-
peared somewhat flawed for the following rea-
sons. Firstly, in order to ensure the conservativity
of numerical fluxes, it is necessary to tailor neig-
bouring blocks with different cell partition. This
usually requires the exact adjustment of neigh-
bouring boundary block cells, located from both
sides of the joint boundary. The correspond-
ing grid-generating procedure becomes sophis-
ticated in the three-dimensional case. The sec-
ond class of problems is associated with the im-
plementation of high accuracy characteristic nu-
merical schemes like in [1]-[3] in the case where
the neighboring blocks possess different grid res-
olution on the both sides of the joint boundary.
To maintain a high-order discretization across the
inter-block boundary, the current flow solution is
usually interpolated which inevitably introduces
high amounts of artificial dissipation and may
severely affect the accuracy of computations.

Within the framework of a time-iterated
finite-volumes scheme of [2] in this work we pro-
pose a new approach to the problem of NPP. In
the vicinity of each NPP inter-block boundary,
we form time-independent auxiliary clusters of
minimum volume in such a way that 1) each clus-
ter contains boundary cells from the neighbour-
ing blocks of different resolution 2) the cluster
boundary is composed of cell faces which belong
to only one of the neighbouring blocks. Thus the
original inter-block boundary is "swallowed" by
the cluster. In each time step, the residual compu-
tation is done in three stages. In the first stage, the
residuals are calculated at the "non-boundary"
(regular) numerical cells, i.e. at the cells which
do not belong to any of the above described clus-
ters. Note that such cells constitute the vast ma-
jority of cells. The calculation is performed in a
regular way as if the grid was of PP type (specif-
ically, by means of the ENO flux interpolating
scheme, see [2] and Section 2 of the present pa-
per). In these cells, no information "across the
block boundary" is needed for the residual cal-
culation, so the block localized numerical proce-
dure is not affected by the distinction in grid res-
olution between the neighbouring blocks.

It is important that already in the course of the
first stage, numerical fluxes were also determined
at the outer boundary of the above clusters since
this boundary is composed of faces of the regular
cells. In the second ("collection") stage, the clus-
ter residuals are computed. This is feasible since
the numerical fluxes at the cluster boundary, are
available from the first-stage computation stage
as just explained in the previous paragraph. The
overall cluster flux balance is thus composed of
the fluxes at the cell faces which constitute the
cluster boundary.

In the last, third ("distribution") stage, the
residuals at the "irregular" cells which belong to
one of the clusters, are determined by minimizing
algebraically the flux disbalance in an appropri-
ate norm. Note that the optimization is performed
for each cluster separately, and thus the number
of optimization parameters is low. After the third
stage, the residuals are calculated at all numeri-
cal cells of the composed grid, and the solution is
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advanced "in time" by the usual time integrating
procedure.

The method allows to automatically preserve
the conservativity of the numerical scheme by
placing simple constraints upon the optimization
process. As a result, the cell tailoring procedure
usually typical of NPP schemes became redun-
dant. The hybrid calculation of residuals did not
change the stability properties of the basic ENO
numerical scheme, and ensured sufficiently high
level of accuracy on actually less resolved grids.
The time expenditure for the residual handling at
"irregular" cells (Stages 2 and 3) appeared negli-
gible and did not harm the high parallelization ef-
ficiency of the method. The results which include
a number of numerical tests for two-and three di-
mensional wings indicate accuracy and robust-
ness of the method and its applicability to full-
scale Navier-Stokes computations in engineering
environment.

2 Preliminary Considerations

2.1 Basic Numerical Approach

We start with a finite-volume numerical ENO
scheme developed in Ref.[2]- [3] for the solution
of steady-state Navier-Stokes equations on point-
to-point matched structured multiblock grids. In
Cartesian coordinates the continious equations
take the form:

∂q
∂t
�

divC � divV (1)

where the tensor C ��� f � g � h � represents the con-
vection terms, the tensor V ��� r � s � t � represents
the viscous terms, q ��� ρ � ρu � ρv � ρw � E � , ρ is the
density, � u � v � w � is the velocity vector, E is the
energy, t is the time, f � g � h are the inviscid (con-
vection) fluxes and r � s � t are the viscous fluxes
which depend in a nonlinear mode on q.

The above assumption of PP matched struc-
tured blocks means that the grid consists of
a number of blocks, where each block has
� i � j � k � structure and that interblock boundaries
are point-to-point matched (see Fig. 1 ).

Integrating over each cell separately in a

finite-volime manner, we get a system of ODE’s
which can be solved by a time-stepping proce-
dure. For particular cell � i � j � k � the following ap-
proximation is assumed:

� Ωi � j � kqi � j � k � t �	�C 
�� Sn �
� i � 0 � 5 � j � k (2)

� �C 
�� Sn ��� i � 0 � 5 � j � k ���C 
�� Sn ��� i � j � 0 � 5 � k
� �C 
�� Sn ��� i � j � 0 � 5 � k ���C 
�� Sn ��� i � j � k � 0 � 5
� �C 
�� Sn �
� i � j � k � 0 � 5 � �V 
�� Sn ��� i � 0 � 5 � j � k
� �V 
�� Sn ��� i � 0 � 5 � j � k ���V 
�� Sn ��� i � j � 0 � 5 � k
� �V 
�� Sn ��� i � j � 0 � 5 � k ���V 
�� Sn ��� i � j � k � 0 � 5

� �V 
�� Sn ��� i � j � k � 0 � 5
where Ωi � j � k is the cell volume, qi � j � k in some
mean value of q over the cell and S is the area
of a cell side surface.

Fluxes with half-indices are approximated by
a one-dimensional interpolation from the near-by
cell centers, based on the ENO concept (Ref. [4])
with a specific flux interpolation technique close
to that of Ref. [5].

Non-linear stability is maintained via approx-
imation of inviscid fluxes on a variable template
according to local characteristics and smoothness
of the fluxes; viscous fluxes are approximated
in a straightforward way. An ENO interpolation
template (typically consisting of 3 points on the
finest multigrid level) is determined separately
for each characteristic field, primarily according
to the sign of the corresponding eigenvalue, and
then according to the smoothness of fluxes.

In the framework of the method, the above
mentioned ENO procedure is applied only for
the defect correction calculation, a very limited
number of times (roughly equal to the number of
multigrid cycles), and most of the computational
work is performed using a relatively cheap up-
wind biased relaxation.

A 3 stage Runge-Kutta scheme is used in
a Total Variation Diminishing (TVD) form [5].
Specially constructed algorithms are used to di-
minish considerably the amount of computational
work associated with changeability of template.
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Note that the conservativity of the scheme
was achieved through the transparency of in-
terblock boundaries in such a way that the inter-
polation template might include the cell values
across the block boundary.

2.2 Discussion of the Problem

In this work we aim to extend the above nu-
merical scheme of [1]-[3] to non-point-to-point
matched meshes. In this case, numerous prob-
lems arise even within of low-order numerical
schemes or incompressible flows. Within a more
demanding framework of high-order characteris-
tic schemes on NPP grids, the following inter-
related numerical drawbacks must be overcome:
loss of accuracy, deterioration of stability and vi-
olation of conservativity. To illustrate this con-
sider a fragment of a model 2D NPP grid depicted
in Fig. 2 , where Block 2 possesses a twice higher
partition in y direction tnan Block 1 while keep-
ing the same as in Block 1 partition in x direction,

First, consider the Poisson equation:

∆u � 0 (3)

which models viscous terms in full Navier-Stokes
equations. Looking for the finite-volume solution
on the grid of Fig. 2, we must approximate the
term ux 
��AB � , which is the numerical flux at the
face AB, located at the boundary between Block1
and Block 2. A natural approximation for this is
the finite difference � uD

� uC ��� hx. Since Block 2
is twice finer in y direction it does not provide the
value u at point D but instead two values above
and below D: Dup and Dlow are available. The
linear interpolation based these values yields the
following approximation

ux � 0 � 5 � uup
D
�

ulow
D � � uC

hx

This means that the order of approhimation of
Poisson equation at point C is

uE
� 2uC

�
0 � 5 � uup

D
�

ulow
D �

h2
x

�
(4)

� uF
� 2uC

�
uG

h2
y

� O � h2
x
�

h2
y � � O

�
h2

y

h2
x �

It is possible to improve the order of approx-
imation in this model case by enlarging the com-
putational template in x direction or by signifi-
cantly increasing the order of interpolation in the
y direction. Note that in the both cases, the ap-
proximation to the equation is not even consistent
where hy ��� hx.

Now consider the approximation of convec-
tive terms of Eq.(1) on the grid of Fig. 2. At
the face AB which belongs in Block 1, ENO tem-
plate for the interpolation of characteristic fluxes
may include point D even in the case of a low-
order approximation. Similar to the approxima-
tion of viscous terms, the needed solution value
at this point must be interpolated using the actu-
ally existing grid points Dup and Dlow of Block 2.
Similar to relation (4), a straightforward interpo-
lation yields the order of approximation greater
or equal to O � h2

y � hx � , which is again prohibitive
where hy ��� hx.

In the approximation of inviscid terms, an ad-
ditional serious problem arises since the above
interpolation may be antidissipative leading to
numerical instability. As the order of non-
characteristic interpolation increases, prompted
by the requirement of accurate approximation,
the enhancement of stability becomes even more
conjectural.

This means that in order to ensure the stabil-
ity and accuracy of the method, a high order char-
acteristic interpolation of the solution is needed,
in the direction orthogonal to this of the flux in-
terpolation. This highly complicates the basic
numerical scheme and actually eliminates the ad-
vantages of one-dimensional flux interpolation of
Ref. [3], [5] on structured grids.

The third problem is that of preserving
the conservativity properties of the numerical
scheme. E.g., a flux at face AB calculated at cell
C must be equal to the sum of the corresponding
face fluxes calculated at cells Dup and Dlow. This
requires not only the full geometrical conformity
of the boundary faces from both sides of the in-
terblock boundary, but also the exact adjustment
of the corresponding numerical fluxes.

Remind that the numerical procedure of Ref.
[3], [5] performs flux interpolation in the charac-
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teristic fields. Thus the adjustment of numerical
fluxes implies the adjustment the corresponding
eigen values on the both sides of the boundary.
These are non trivial requirements even for a sim-
ple grid of Fig. 2. For curvilinear 3D NPP struc-
tured blocks with arbitrary partition, the solution
of the problem becomes almost infeasible.

3 New Approach

Based on the considerations of the previous sec-
tion we observe that the approximation of NPP
block boundary fluxes is troublesome in terms
of accuracy and stability. This may lead to in-
tractable problems and seriously flaw the use of
NPP structured grids.

On the other hand the problem is confined to
narrow strips in the vicinity of NPP block bound-
aries. This gives rise to the following idea. Block
boundary fluxes are only needed in order to de-
termine residuals in the bordeline cells. These
residuals may be computed through an alternative
numeric procedure different from the basic ENO
technique. The both numerical procedures must
be of course compatible in order to ensure the
conservativity of the resulting composite scheme.

Before describing the new procedure in de-
tails, the following remark may be made. In
principle, it is possible to numerically solve
boundary-value problem for a partial differen-
tial equation by directly minimizing the residu-
als of a discrete approximation in an appropriate
norm. Some attempts in this direction have been
made in the recent years in the field of CFD. So
far, these attempts were confined to low-accuracy
gas-dynamic models on relatively coarse grids.
In our opinion, the reason for this lies in the fact
that optimization methods become highly ineffi-
cient where high-dimensional search spaces are
needed, which is the case where Euler or Navier-
Stokes equations are to be solved. E.g. for a rela-
tively simple geometry of 3D aerodynamic wing,
the number of optimization parameters (flow-
field variables) may reach several hundred thou-
sands or even one million which makes existing
optimization methods practically non-applicable.

An additional dificulty related to this ap-

proach is illustrated by the following example.
Consider Burgers’ equation

∂
∂x � u2 � � 0 � u � � ∞ � � 1 � u � ∞ � � � 1 (5)

and a simple finite-volume approximation to it at
each cell i with center xi:

Resi � � u2 � i � 1 � 2 � � u2 � i � 1 � 2 � 0 �

i � 0 ��� 1 ��� 2 ��� � ��� � N � 1 � � u � N � 1 � uN � � 1

The solution is being sought at the centers of cells�
xi � while the specific numerical scheme is deter-

mined by an interpolation of fluxes fi � u2 from�
xi � to

�
xi 	 1 � 2 � .

Minimizing the L2 residuals norm

∑
i
� Resi � 2 � ∑ � fi � 1 � 2 � fi � 1 � 2 � 2 � f � N � fN � 1

we come to the trivial solution fk � 1 � 2=1 for all
k, which does not provide sufficient information
on the solution

�
ui � . For example, any consistent

flux interpolation I :
�

fi ��
 �
fi � 1 � 2 � and any so-

lution
�
ui � representing the permutation of 1 and

-1 yield
�

fi � � 1 and, consequently
�

fi � 1 � 2 � � 1.
The situation changes where direct resid-

ual minimization is restricted to a small subdo-
main of the computational grid such as interblock
strips or their subsets. In this case the number of
optimization parameters is relatively low which
makes the optimization practically feasible. On
the other hand, the compatibility of the optimiza-
tion procedure with the characteristic flux deter-
mination on the boundary of the subdomain, does
not allow for saw-tooth solutions.

The proposed algorithm for residual determi-
nation in the boundary interblock strips includes
several stages.

In the preliminary (“preprocessing stage”)
time-independent auxiliary cell clusters are
formed. Each such cluster comprises cells of the
existing grid taken from the neighbouring blocks
of different partition in such a way that the fol-
lowing two properties are fulfilled:
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� Property 1: the cluster boundary is com-
posed of cell faces which do not belong to
the interblock boundary

� Property 2: each cluster represents a “min-
imum volume” set, that is its own cell sub-
clusters do not satisfy Property 1

For example, in Fig. 2, cells C (Block 1), Dup

and Dlow (Block 2) comprise such a cluster since
A) the boundary of the cluster includes three
faces of cell C (“west”, “north” and “south”), 2
faces of cell Dup (“north” and “east”) and 2 faces
of cell Dlow (“south” and “east”), each belonging
to only one of the blocks and B) any cell deletion
from this cluster will destroy the “single citizen-
ship” Property 1.

Finally, the above cluster definitions imply
that the original interblock boundary is “swal-
lowed” by the cluster. E.g., in Fig. 2, the in-
terblock face AB became internal to the cluster�
C � Dup � Dlow � .

Thus the preprocessing stage performs the
minimal cluster covering of those grid cells
which 1) possess a cell face which belong to two
neighbouring blocks; 2) the above two blocks
possess a diferent resolution in a direction tan-
gential to the interblock boundary surface.

At each iteration, the computation of residu-
als is divided into three stages.

In the first stage of the numerical procedure,
the residuals are determined in the “regular” cells
that are cells which do not belong to the above
cluster covering. The calculation is performed
by means of a regular ENO flux interpolating
scheme described in Section 2.1.

This calculation, similar to that for point-to-
point matched grids, is feasible, since in the “reg-
ular” cells, it is possible to perform a character-
istic flux interpolation without necessaraly using
the information from other side of the interblock
boundary. For example, in terms of Fig. 2, the
flux at the “west” face of cell C has at hand not
only the solution values at cell centers to the west
of the face but also the values at C which is suffi-
cient for stability of the numerical process.

Of course, “regular” cells constitute the vast
majority of grid cells. It is important for the

following, that in the course of the first stage,
the numerical fluxes have been determined at all
boundaries of the clusters (built at the prepocess-
ing stage), since the boundaries are formed by
faces of the regular cells.

This allows to perform the second stage of
the numerical procedure - the “collection” stage,
where “cluster residuals” are determined. More
exactly, the overall flux balance of a cluster is
composed of the fluxes at the faces of the clus-
ter boundary. As just explained above, the fluxes
at the cluster boundary have been calculated at
the first (“regular”) stage since they also belong
to the regular cells.

In the third (“distribution”) stage, it is neces-
sary for each cluster to distribute the cluster resid-
uals between the cells which make it up. Remind,
that the cell flux balance represents (within a fac-
tor of volume) the residual of the steady-state
equation. Thus the minimization of cell residu-
als is equivalent to the minimization of cell flux
balances in an appropriate norm.

This is performed algebraically subject to the
following constraints: A) The overall cluster flux
balances are equal to those computed at the col-
lection stage; B) The flux conservativity of the
numerical scheme is preserved. The last property
is satisfied by placing simple constraints upon the
optimization procedure.

The optimization proceeds separately for
each cluster which keeps the number of optimiza-
tion parameters to a low level. After the third
stage, the residuals are determined in all the grid
cells which allows to advance the solution by the
usual time-stepping scheme of Section 2.1.

Going back to Poisson equation (3) a sim-
ple check shows that the new procedure ensures
(contrary to the “naive” scheme) an order of ap-
proximation of O � h2

x
�

h2
y � . First, the exact so-

lution of the Poisson equation satisfies the finite-
volume expression for the cluster residual within
an error of O � h2

x
�

h2
y � . The same is true for the

“distributed” cell residuals since they are mini-
mized subject to the preservation of the overall
cluster residual.

This illustrates that the new procedure pro-
vides a natural mechanism for accurate approxi-
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mation at non-mathched block boundaries.
Since the composite numerical procedure

fully preserves the conservativity of the scheme,
NPP block tailoring procedure which is typically
employed with this end of view, becomes redun-
dant.

It appeared that the hybrid residual calcula-
tion procedure does not have an adverse effect
on the stability of the original ENO numerical
scheme while the time expenditure for the treat-
ment of “irregular” cells is negligible, which al-
lows to retain the high parallel efficiency of the
method. The proposed procedure allowed to min-
imize loss of accuracy due to the tailoring of NPP
matched blocks and to prevent loss of accuracy
on a large scale.

4 The Resulting Numerical Scheme

4.1 Generic Model Problem

Consider the numerical scheme stemming from
the proposed approach for several simple but rep-
resentative model problems. With thid end in
view we introduce an one-dimensional grid con-
sisting of cells of length h:

xi � h 
�� 1 � 1 � 2 �
where cell centers correspond to i � 1 � 2 � 3 � � � � and
cell boundaries are set at i � 1 � 2 � 3 � 2 � 5 � 2 ��� � � .
We are interested in the steady-state solution for
a generic equation:

∂u
∂t
� ∂ f

∂x
� 0 � (6)

In the following we will consider the hyperbolic
case where f � f � u � .

The model equation is solved by a finite-
volume numerical scheme

∂ui

∂t
� fi � 1 � 2 � fi � 1 � 2

h
� 0 � (7)

starting from an initial guess

u
� � u � 0 � x � (8)

with addition of appropriate boundary condi-
tions.

To model the proposed approach we assume
that the cell boundary at i � k

�
1 � 2 represents

a non-point-to-point face, that is the flux value
at this face can not be computed by a regular
way (through the values at the neghbouring cell
centers), and, instead, is subject to the procedure
described in the previous section. Our aim is
to check the influence of the changes thus intro-
duced into numerical scheme, on the stability of
the method, and to formulate necessary consis-
tency conditions.

4.2 Linear Wave Equation

Here, f � u � � u and a simple upwind scheme

∂ui

∂t
� ui

� ui � 1

h
� 0 � (9)

which corresponds to the approximation fi � 1 � 2 �
ui is a stable TVD-type scheme on the regular
grid (where i � k

�
1 � 2 is not singled out) under

appropriate CFL conditions.
Within the present approach a non-matching

face xk � 1 � 2 and the trivial residual optimization
at the adjacent cells k and k

�
1, the scheme at

these cells becomes:

∂uk

∂t
�

R � 0 � ∂uk � 1

∂t
�

R � 0 � R � uk � 1
� uk

2h
�

(10)
while at the remaining (“regular”) cells the
scheme remains unchanged. The new compos-
ite scheme is again of TVD-type at x � xk � 1 and
at all the regular cells as well. Since the value
of the numerical solution at x � xk does not in-
fluence the solution at other points, this is quite
acceptable. In fact, since due to (10)

∂ � uk
� uk � 1 �
∂t

� 0

for each t (at all iteration steps), then

uk
� uk � 1 � u

�

k
� u

�

k � 1

irrespective of t.
This means, that in order to satisfy the ap-

proximation properties of the scheme at x � xk,
the initial guess must be chosen in a consistent
way.
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4.3 Non-linear 1-D Conservation Law

Now we consider a more challenging case of
the steady-state solution for a non-linear equation
(6), where f � f � u � depends non-linearly on u. A
good example for this is the Burgers’ equation:

f � 1
2

u2 � u � 0 � � 1 � u � 1 � � � 1 �

again solved on the generic grid of Section 4.1
with a “non-matched” grid singularity at x � xk.

Consider a simple upwind flux approximation
with entropy fix:

fi � 1 � 2 � fi � i f f
� � ui � � 0 � f

� � ui � 1 � � 0

fi � 1 � 2 � fi � 1 � i f f
� � ui � � 0 � f

� � ui � 1 � � 0
(11)

and

fi � 1 � 2 � 1
2
� f �i � 1 � 2 � f �i � 1 � 2 � � f �i � 1 � 2 � fi

� λui �

f �i � 1 � 2 � fi � 1
� λui � 1 �

λ � max
� � f � � ui � � � � f � � ui � 1 � � �

in the remaining cases.
Similar to (9)-(10), the scheme changes at

points k � k
�

1 with

R � fk � 3 � 2 � fk � 1 � 2
2h

�

where fk � 3 � 2 and fk � 3 � 2 are chosen according to
(11).

If sign of f
� � u � does not change at faces

k � 1 � 2, k
�

1 � 2 and k
�

3 � 2, the scheme retains
its TVD properties in the same way as explained
in the previous section. E.g., if f

� � u � � 0 at these
points, fk � 3 � 2 � fk � 1, fk � 1 � 2 � fk � 1, and simi-
lar to the above described, the scheme is of TVD
type at the regular points (i �� k � i �� k

�
1) and at

i � k
�

1 under appropriate CFL conditions. Sim-
ilar to the example of Section 4.1, the solution
at i � k does not influence the solution at other
points but for consistency the initial guess at i � k
and i � k

�
1 must be compatible.

Now consider two more challenging situa-
tions. First, consider the case where the non-
matching face at i � k

�
1 � 2 lies just to the right

of the current shock position, that is f
� � ui � � 0 for

i � k � 1 and f
� � ui � � 0 for i � k. Then the regu-

lar scheme changes at cell k � 1, k and k
�

1. With
λ � max

� � f � � uk � 1 � � � � f � � uk � � � � f � � uk � 1 � � � we have
the following relations.

A. For case i � k � 1, the residual is deter-
mined as follows:

R � T
2h
� T � fk � 1 � 2 � fk � 3 � 2 �

� 1
2
�
fk � 1

� λuk � 1
�

fk
� λuk � � fk � 2 �

� 1
2
�
fk
� fk � 1

�
2 � fk � 1

� fk � 2 � � λ � uk � 1
� uk ��� �

� 1
2
� � uk � 1

� uk ��� λ � f
� � u � � � �

�
2 f
� � u ��� ��� uk � 1

� uk � 2 ���
where u � � u � x � � , u ��� � u � x ��� � , x �	� � xk � 1 � xk � ,
x ��� � � xk � 2 � xk � 1 � , and thus f

� � u ��� � � 0. If, e.g.,
uk � 1 � max

�
uk � uk � 2 � , then T � 0 and, conse-

quently the value of uk � 1 will be decreased by
the iteration, and, similarly, the value of uk � 1
will be increased by the iteration where uk � 1 �
min

�
uk � uk � 2 � .

B. For case i � k, the residual is determined
as follows:

R � T
2h
� T � fk � 3 � 2 � fk � 1 � 2 �

� fk � 2
� 1

2
�
fk � 1

� λuk � 1
�

fk
� λuk � �

� 1
2
�
2 � fk � 2

� fk � � fk
� fk � 1

� λ � uk
� uk � 1 ��� �

� 1
2
�
2 f
� � u � ��� uk � 2

� uk � � � uk
� uk � 1 ��� λ � f

� � u ��� ���
where x �
� � xk � xk � 2 � , x ���	� � xk � 1 � xk � . If, uk �
max

�
uk � 1 � uk � 2 � , then both terms in T are pos-

itive which leads to the decrease in the value of
the local maximum uk, with the adverse effect in
the case of local minimum uk � min

�
uk � 1 � uk � 2 � .

Here we exclude uk � 1 from the consideration
since this value does not influence the solution at
other points. Similar to the previously described
cases, the initial value u

�

k � 1 must be compatible
with u

�

k in terms of approximation.

8
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The second situation occurs where the sign
of f

� � u � changes exactly across the non-matched
face i � k

�
1 � 2, that is f

� � uk � 
 f
� � uk � 1 � � 0.

Note, that this may be avoided by setting u
�

k � 1 �
u

�

k since then

∂uk

∂t
� ∂uk � 1

∂t

and uk � 1 � uk at any time step. This, however, re-
sults in O � h � accuracy in the vicinity of the non-
matched boundary.

With u
�

k � 1 �� u
�

k the situation is possible,
where both the values uk � 1 and uk do not influ-
ence the numerical solution at other grid points
which may disrupt the calculation on each side
of the non-matched boundary. To avoid this we
define

λ � max
� � f � � uk � 1 � � � � f � � uk � � � � f � � uk � 1 � � � � f � � uk � 2 � � �

and apply the entropy fix procedure at faces
k � 1 � 2 and k

�
3 � 2. Specifically, the value of

residual multiplied by 2h becomes at i � k and
i � k

�
1 as follows:

T � 1
2
�
fk � 1

�
fk � 2

� λ � uk � 1
� uk � 2 � �

� fk � 1
� fk

� λ � uk � 1
� uk ��� �

� 1
2
� � λ � f

� � u � ��� uk � 1
� uk � 1 � �

� � λ � f
� � u ��� ��� uk

� uk � 2 ���
where x � � � xk � 1 � xk � 1 � , x ��� � � xk � xk � 2 � . Let us
now assume, that a “true maximum” exists at the
cells of the non-matched boundary if

min
�
uk � uk � 1 � � max

�
uk � 1 � uk � 2 �

Then T is positive which means that uk and uk � 1
are decreased. In the opposite case

max
�
uk � uk � 1 � � min

�
uk � 1 � uk � 2 �

uk and uk � 1 are increased. In this sense, the
scheme retains its TVD properties.

The situation where a local minimum in k co-
exists with a local maximum in k

�
1 does not

lead to the change in the total variation due to the
condition

∂uk

∂t
� ∂uk � 1

∂t

A more sophisticated case uk
� uk � 1

� uk � 1
�

uk � 2 does not necessaraly increase the value of
uk. This is not dangerous in terms of stability
since the variation � uk � 1

� uk � 1 � � � uk � 1
� uk � 1 �

does not change, and � uk
� uk � 1 � � � u �

k
� u

�

k � 1 � .
Summing up, the modified scheme retains

TVD properties in the above described sense, and
at the expense of O � h � in accuracy, is fully TVD.

5 Results and Discussion

To verify the proposed new approach, the above
procedure was applied to the computation of the
flow over RAE2822 airfoil at transonic condi-
tions (M � 0 � 75). The original point-to-point
matched grid comprised 4 blocks: upper airfoil,
lower airfoil (with dimensions i � 128, j � 96
in the streamwise and normal directions, respec-
tively) and upper wake and lower wake (with the
corresponding dimensions i � 64, j � 96).

For the verification studies, the upper air-
foil block was subdivided into 2 subblocks along
the grid line j � J � � const. A total of 3 test
cases were considered (labeled as Case_P1 to
Case_P3) for different values of the above con-
stant. The dimensions of the first subblock (near
the airfoil) was kept to the original level (i � 128,
j � J � ), while the i-dimension of the second sub-
block was significantly reduced (from the origi-
nal 128 to 64 and 48). The location of the cut
line was varied in the wide range: from a remote
(with respect to the airfoil) Case_P1 to a rather
close Case_P3 where this line intersects the su-
personic bell in the considered flight conditions.

The grid details can be found in Fig. 3-5,
where iso-Mach contours for different test cases
are presented. As it can be seen from these fig-
ures, the flow structure is basically independent
of the location of the non-matched grid line.

As the whole the analysis of the results
shows, that the new approach yields stable results
with a negligible loss of accuracy. This conclu-
sion can be illustrated by Fig. 6-8. In Fig. 6 we

9



BORIS EPSTEIN , SERGEY PEIGIN

see the comparison between CP distributions for
the original point-to-point computations vs. the
most challenging case Case_P3. In terms of con-
vergence, the proposed NPP tailoring approach
produces results very similar to those of the orig-
inal grid (see Fig. 7). Finally, Fig. 8 demon-
strates, that the above described good accuracy
of the proposed approach is preserved in a wide
range of flight conditions.
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Fig. 1 Point-to-point matched structured grid.

Fig. 2 Non-point-to-point matched structured grid.
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Fig. 3 Case_P1, NPP ratio 128:48. Iso-Mach contours at α � 1 � 5
�
, M � 0 � 75.

Fig. 4 Case_P2, NPP ratio 128:48. Iso-Mach contours at α � 1 � 5
�
, M � 0 � 75.
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Fig. 5 Case_P3, NPP ratio 128:64. Iso-Mach contours at α � 1 � 5
�
, M � 0 � 75.

Fig. 6 Case_P3, NPP ratio 128:48. CP distribution at α � 1 � 5
�
, M � 0 � 75.
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Fig. 7 Case_P2, NPP ratio 128:64. Convergence of CD at α � 1 � 5
�
, M � 0 � 75.
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Fig. 8 Drag polar at M � 0 � 75. Case_P3, NPP ratio 128:64 vs. original point-to-point case.
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