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Abstract  

The present work performs comparisons 
between the Yee, Warming and Harten and the 
Hughson and Beran algorithms in the solution 
of inviscid and laminar and turbulent viscous 
flows in three-dimensions. The Euler and the 
Navier-Stokes equations, on a finite volume 
context and using a structured spatial 
discretization, are solved. The algorithms are 
flux difference splitting type and a dimensional 
splitting method is used to perform time 
integration. The physical problem of the 
supersonic flow along a ramp is studied. 
Turbulence is taking into account considering 
two turbulence models, namely: the Cebeci and 
Smith and the Baldwin and Lomax algebraic 
ones. The results have demonstrated that the 
Hughson and Beran scheme yields more severe 
pressure fields, while the Yee, Warming and 
Harten scheme presents more accurate results. 

1  Introduction 

 Conventional non-upwind algorithms have 
been used extensively to solve a wide variety of 
problems (Kutler [1] and Steger [2]). 
Conventional algorithms are somewhat 
unreliable in the sense that for every different 
problem (and sometimes, every different case in 
the same class of problems) artificial dissipation 
terms must be specially tuned and judicially 
chosen for convergence. 
 Upwind schemes are in general more robust 
but are also more involved in their derivation 

and application. Some upwind schemes that 
have been applied to the Euler equations are: 
Yee, Warming and Harten [3], and Hughson and 
Beran [4]. Some comments about these methods 
are reported below: 
 Yee, Warming and Harten [3] implemented a 
high resolution second order explicit method 
based on Harten’s ideas. The method had the 
following properties: (a) the scheme was 
developed in conservation form to ensure that 
the limit was a weak solution; (b) the scheme 
satisfied a proper entropy inequality to ensure 
that the limit solution would have only 
physically relevant discontinuities. The method 
was applied to the solution of a quasi-one-
dimensional nozzle problem and to the two-
dimensional shock reflection problem, yielding 
good results. 

Hughson and Beran [4] proposed an explicit, 
second order accurate in space, TVD (Total 
Variation Diminishing) scheme to solve the 
Euler equations in axis-symmetrical form, 
applied to the studies of the supersonic flow 
around a sphere and the hypersonic flow around 
a blunt body. The scheme was based on the 
modified flux function approximation of Harten 
[5] and its extension from the two-dimensional 
space to the axis-symmetrical treatment was 
developed. Results were of good quality. 

There is a practical necessity in the 
aeronautical industry and in other fields of the 
capability of calculating separated turbulent 
compressible flows. With the available 
numerical methods, researches seem able to 
analyze several separated flows, three-
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dimensional in general, if an appropriated 
turbulence model is employed. Simple methods, 
as the algebraic turbulence models of Cebeci 
and Smith [6] and of Baldwin and Lomax [7], 
supply satisfactory results with low 
computational cost. 

The present work performs comparisons 
between the Yee, Warming and Harten [3] and 
the Hughson and Beran [4] algorithms in the 
solution of inviscid and laminar and turbulent 
viscous flows in three-dimensions. The Euler 
and the Navier-Stokes equations, on a finite 
volume context and using a structured spatial 
discretization, are solved. The algorithms to 
perform numerical experiments are of TVD flux 
difference splitting type, second order accurate. 
A dimensional splitting method, first order 
accurate, is used to time integration. The 
physical problem of the supersonic flow along a 
ramp is studied. Turbulence is taking into 
account considering two turbulence models, 
namely: the Cebeci and Smith [6] and the 
Baldwin and Lomax [7] algebraic ones. The 
results have demonstrated that the Hughson and 
Beran [4] yields more severe pressure fields, 
while the Yee, Warming and Harten [3] scheme 
presents more accurate results. 

2  Navier-Stokes Equations 

 As the Euler equations can be obtained from 
the Navier-Stokes ones by disregarding the 
viscous vectors, only the formulation to the later 
will be presented. The Navier-Stokes equations 
in integral conservative form, employing a finite 
volume formulation and using a structured 
spatial discretization, to three-dimensional 
simulations, can be written as: 
 
                0dVPV1tQ

V
=⋅∇+∂∂ ∫

rr
,            (1) 

 
where V is the cell volume, which corresponds 
to an hexahedron in the three-dimensional 
space; Q is the vector of conserved variables; 
and ( ) ( ) ( )kGGjFFiEEP veveve

rrrr
−+−+−=  

represents the complete flux vector in Cartesian 
coordinates, with the subscript “e” related to the 
Euler contributions and “v” is related to the 

viscous contributions. These vectors are 
described below: 
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In these equations, the components of the 
viscous stress tensor are defined as: 
 

( ) ( )( )zwyvxuxu TMTMxx ∂∂+∂∂+∂∂µ+µ−∂∂µ+µ=τ 322 ;(5) 
( )( ) ( )( )xwzu,xvyu TMxzTMxy ∂∂+∂∂µ+µ=τ∂∂+∂∂µ+µ=τ ;(6) 
( ) ( )( )zwyvxu32yv2 TMTMyy ∂∂+∂∂+∂∂µ+µ−∂∂µ+µ=τ ;(7) 

             ( )( )ywzvTMyz ∂∂+∂∂µ+µ=τ  and            (8) 
( ) ( )( )zwyvxu32zw2 TMTMzz ∂∂+∂∂+∂∂µ+µ−∂∂µ+µ=τ .(9) 

 
The components of the conductive heat flux 
vector are defined as follows: 
 
      ( ) xeddq iTTMx ∂∂µ+µγ−= PrPr ;    (10) 
      ( ) yeddq iTTMy ∂∂µ+µγ−= PrPr ;   (11) 
      ( ) zeddq iTTMz ∂∂µ+µγ−= PrPr .    (12) 
 
The quantities that appear above are described 
as follows: ρ is the fluid density, u, v and w are 
the Cartesian components of the flow velocity 
vector in the x, y and z directions, respectively; e 
is the total energy; p is the fluid static pressure; 
ei is the fluid internal energy; the τ’s represent 
the components of the viscous stress tensor; Prd 
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is the laminar Prandtl number (=0.72); PrdT is 
the turbulent Prandtl number (=0.9); the q’s 
represent the components of the conductive heat 
flux; µM is the fluid molecular viscosity; µT is 
the fluid turbulent viscosity; γ is the ratio of 
specific heats at constant pressure and volume, 
respectively (=1.4); and Re is the Reynolds 
number of the simulation. The molecular 
viscosity is estimated by the Sutherland law. 
 The Navier-Stokes equations were 
nondimensionalized in relation to freestream 
properties. To allow the solution of the matrix 
system of five equations to five unknowns 
defined by Eq. (1), it is used the state equation: 
  
        [ ])wvu(.e)(p 222501 ++ρ−−γ=       (13) 

3  Yee, Warming and Harten [3] Algorithm 
 The Yee, Warming and Harten [3] algorithm, 
second order accurate in space, is specified by 
the determination of the numerical flux vector at 
(i+½,j,k) interface. The implementation of the 
other numerical flux vectors is straightforward. 
 According to a finite volume formalism, the 
right and left cell volumes, as also the interface 
volume, to coordinate change, are defined by:  
 

k,j,iR VV 1+= , k,j,iL VV =  and ( )LRint VV5.0V += .  (14) 
 
The metric terms to this generalized coordinate 
system are defined as: 
 

intint_xx VSh = , intint_yy VSh = , intint_zz VSh =  
                       and   intn VSh = ,            (15) 
 

where SnS xint_x = , SnS yint_y = , SnS zint_z =  
are the Cartesian components of the flux area 
and S is the flux area, calculated as described in 
Maciel [8-10], as also the cell volumes. 
 The properties calculated at the flux interface 
are obtained either by arithmetical average or by 
Roe [11] average. In this work, Roe [11] 
average was used. The speed of sound at the 
flux interface is given by: 
 
   ( ) ( )[ ]222501 intintintintint wvu.Ha ++−−γ= , (16) 
 
where Hint, uint, vint and wint are calculated at the 
flux interface. The eigenvalues of the Euler 
equations, in the ξ direction, are given by: 
 
  zintyintxintcont hwhvhuU ++= , nintcont1 haU −=λ , (17) 
   contU=λ=λ=λ 432 ; nintcont haU +=λ5 . (18) 
 
 The jumps of the conserved variables, 
necessary to the construction of the Yee, 
Warming and Harten [3] dissipation function, 
are given, for example, by: 
 

( )LRV ρ−ρ=ρ∆ int  and ( ) ( ) ( )[ ]LR uuVu ρ−ρ=ρ∆ int .  (19) 
 
 The α vectors at the (i+½,j,k) interface are 
calculated by the following manner: 
 
         { } [ ] { }QR k,j,/ik,j,/ik,j,/i 2121

1
21 ++

−
+ ∆=α ,   (20) 
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{ } ( ) ( ) ( ){ }T

kji ewvuQ ∆ρ∆ρ∆ρ∆ρ∆=∆ + ,,2/1 , 
defined, for example, by Eq. (19);              (22)                               
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intintint wvuq ++= ;                   (23) 
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nxx hhh =' , nyy hhh ='   and  nz
'
z hhh = .   (25) 
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     The Yee, Warming and Harten [3] 
dissipation function uses the right-eigenvector 

matrix of the normal to the flux face Jacobian 
matrix in generalized coordinates: 
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 Two options to the ψl entropy function, 
responsible to guarantee that only relevant 
physical solutions are to be considered, are 
implemented aiming an entropy satisfying 
algorithm: 
 

llk,j,il Zt =λ∆=ν    and   2502 .Zll +=ψ ;  (27) 
or: 

( )



δ<δδ+
δ≥

=ψ
flffl

fll
l Zif,Z.

Zif,Z
2250

,    (28) 

 
where “l” varies from 1 to 5 (three-dimensional 
space) and δf assuming values between 0.1 and 
0.5, being 0.2 the value recommended by Yee, 
Warming and Harten [3]. In the present studies, 
Eq. (28) was used to perform the inviscid 
numerical experiments and Eq. (27) was used to 
perform the viscous numerical experiments. 
 The g~  function at the (i+½,j,k) interface is 
defined by: 
 
                           ( ) l

ll
l Z.g~ α−ψ= 250 ,         (29) 

 
with lα  being the lth component of the alpha 
vector (Eq. 20). 
 The g numerical flux function, which is a 
limited function to avoid the formation of new 
extrema in the solution and is responsible to the 
second order accuracy of the scheme, is 
determined by: 
      

( )( )l
l

kji
l

kjil
l

kji signalggMINMAXsignalg ××= −+ ,,2/1,,2/1,,
~,~;0.0 , 

    (30) 
 
where signall is equal to 1.0 if l

k,j,/ig~ 21+  ≥ 0.0 
and -1.0 otherwise. 

 The θ term, responsible to the artificial 
compression, which enhances the resolution of 
the scheme at discontinuities, is defined in 
Maciel [10]. The β  parameter at the (i+½,j,k) 
interface, which introduces the artificial 
compression term in the algorithm, is given by 
the following expression: 
 
             ),(MAX. l

k,j,i
l

k,j,ill 101 +θθω+=β ,    (31) 
 
in which ωl assumes the following values: ω1 = 
0.25 (non-linear field), ω2 = ω3 = ω4 = 1.0 
(linear field) and ω5 = 0.25 (non-linear field). 
The numerical characteristic speed, lϕ , at the 
(i+½,j,k) interface, which is responsible to 
transport the numerical information associated 
to the g numerical flux function, is defined by: 
                                         

( )




=α
≠αα−

=ϕ +

0000
001

.if,.
.if,gg

l

lll
k,j,i

l
k,j,i

l . (32) 

 
 The entropy function is redefined considering 

lϕ  and lβ : llllZ ϕβ+ν= , and lψ  is 
recalculated according to Eq. (27) or to Eq. (28). 
The Yee, Warming and Harten [3] dissipation 
function is specified by the following product: 
 
{ } [ ] ( )( ){ }

kjikjikjikjikjikjiYWH tggRD
,,2/1,,,,1,,,,2/1,,2/1 ++++ ∆ψα−+β= . 

 (33) 
 
 The convective numerical flux vector to the 
(i+½,j,k) interface is described by: 
                                 

( ) )l(
YWHintz

)l(
inty

)l(
intx

)l(
int

)l(
k,j,/i D.VhGhFhEF 5021 +++=+ , (34) 

 
with:  
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( ))l(
L

)l(
R

)l(
int EE.E += 50 , ( ))l(

L
)l(

R
)l(

int FF.F += 50  
                and   ( ))l(

L
)l(

R
)l(

int GG.G += 50 .        (35) 
 
 The explicit version of this scheme employs 
a dimensional splitting method, first order 
accurate, which divides the temporal integration 
in three steps, each one associated with a 
different spatial direction. Details can be found 
in Maciel [9-10]. The treatment of the viscous 
gradients present in the Navier-Stokes equations 
is described in detail in Maciel [8-10]. 

4  Hughson and Beran [4] Algorithm 
 The Hughson and Beran [4] algorithm, 
second order accurate in space, follows Eqs. 
(14) to (26). The next step consists in 
determining the g numerical flux function. This 
function has different definitions to non-linear 
fields (l = 1 and 5) and linear fields (l = 2 to 4). 
Details of the definition of this function are 
found in Maciel [10]. Once the g function is 
determined, Eqs. (27), νl term, and (28) are 
employed and the σl term at the (i+½,j,k) 
interface is defined: 
 
                           ( )25.0 lll Z−ψ=σ .            (36) 
 
The lϕ  numerical characteristic speed at the 
(i+½,j,k) interface is defined by: 
 

( )




=α
≠αα−σ

=ϕ +

0000
001

.if,.
.if,gg

l

lll
k,j,i

l
k,j,il

l .  (37) 

 
 The entropy function is redefined considering 
the lϕ  term: lllZ ϕ+ν=  and lψ  is 
recalculated according to Eq. (28). The 
Hughson and Beran [4] dissipation function is 
constructed by the following product: 
              
{ } [ ] ( )( ){ }

kjikjikjikjikjikjiHB tggRD
,,2/1,,,,1,,,,2/1,,2/1 ++++ ∆ψα−+σ= . 

(38) 
 
 The convective numerical flux vector of the 
Hughson and Beran [4] scheme is defined by: 
 

( ) )l(
HBintz

)l(
inty

)l(
intx

)l(
int

)l(
k,j,/i D.VhGhFhEF 5021 +++=+ , (39) 

  
with )l(

intE , )l(
intF  and )l(

intG  determined by Eq. 
(35). The explicit version of this algorithm to 
perform the inviscid and viscous simulations 
uses dimensional splitting, described in Maciel 
[9-10]. The implementation of the viscous terms 
follows the same procedure as reported in 
section 3. 

5  Turbulence Models 

5.1 Model of Cebeci and Smith [6] 
The problem of the turbulent simulation is in 

the calculation of the Reynolds stress. 
Expressions involving velocity fluctuations, 
originating from the average process, represent 
six new unknowns. However, the number of 
equations keeps the same and the system is not 
closed. The modeling function is to develop 
approximations to these correlations. To the 
calculation of the turbulent viscosity according 
to the Cebeci and Smith [6] model, the boundary 
layer is divided in internal and external. 

Initially, the (νw) kinematic viscosity at wall 
and the (τxy,w) shear stress at wall are calculated. 
After that, the (δ) boundary layer thickness, the 
(δLM) linear momentum thickness and the (VtBL) 
boundary layer tangential velocity are 
calculated. So, the (N) normal distance from the 
wall to the studied cell is calculated. The N+ 
term is obtained from: 

 

      wwwxy NN νρτ=+
,Re ,            (40) 

 
where ρw is the wall density. The van Driest 
damping factor is calculated by: 
 

               
)( ++ µµρρ−−= AN wwe1D ,                (41) 

 
with 26A =+  and wµ  is the wall molecular 
viscosity. After that, the ( dNdVt ) normal to 
the wall gradient of the tangential velocity is 
calculated and the internal turbulent viscosity is 
given by: 
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                 dNdVtND 2
Ti )(Re κρ=µ ,         (42) 

 
where κ is the von Kárman constant, which has 
the value 0.4. The intermittent function of 
Klebanoff is defined in Maciel [9-10]. With it, 
the external turbulent viscosity is calculated by: 
                                                     
              KlebLMBLTe gVt01680 δρ=µ ).Re( .    (43) 
 
Finally, the turbulent viscosity is chosen from: 

),( TeTiT MIN µµ=µ . 

5.2 Model of Baldwin and Lomax [7] 
To the calculation of the turbulent viscosity 

according to the Baldwin and Lomax [7] model, 
the boundary layer is again divided in internal 
and external. In the internal layer, 

 

  ωρ=µ 2
mixTi l   and ( )++−−κ= 0AN

mix e1Nl .  (44) 
 
In the external layer, 
                                                  
        )/;( max KlebKlebwakecpTe CNNFFCρα=µ ,  (45) 
 
with Fwake and Fmax defined in Maciel [9-10]. 
 The constant values are: 40.=κ , 

01680.=α , 26A0 =+ , 61Ccp .= , 30CKleb .=  
and 1Cwk = . KlebF  is the intermittent function of 
Klebanoff defined by the Baldwin and Lomax 
[7] model in Maciel [9-10], ω  is the magnitude 
of the vorticity vector and difU  is the maximum 
velocity value in the boundary layer case. To 
free shear layers, 
 

( ) ( )
max

222
max

222
NNdif wvuwvuU =++−++= . (46) 

6  Initial and Boundary Conditions 
 Values of freestream flow are adopted in all 
properties as initial condition, in the whole 
calculation domain, to the ramp physical 
problem (Jameson and Mavriplis [12], and 
Maciel [8-10, 13-14]). 
 The boundary conditions are basically of 
three types: solid wall, entrance and exit. These 

conditions are implemented in special cells 
named ghost cells and details of these 
implementations are found in Maciel [8-10, 13-
14]. 

7  Results 
 Tests were performed in a microcomputer 
with processor AMD ATHLON XP 2600+, 
1.91GHz, and 512 Mbytes of RAM memory. A 
reduction of four orders of magnitude in the 
value of the maximum residue in the field, 
considering all conservation equations, was 
adopted as convergence criterion. The 
configuration upstream and the configuration 
longitudinal plane angles were set equal to 0.0°. 
The ramp problem is a supersonic flow hitting a 
ramp with 20° of inclination. It originates a 
shock wave and an expansion fan. The ramp 
configuration is described in Fig. 1, in the xy 
plane. Its spanwise length is 0.25m. 
 

Figure 1. Ramp configuration at the xy plane. 
 
 A freestream Mach number of 5.0 (high 
supersonic flow) was adopted as initial 
condition to the inviscid and viscous laminar 
and turbulent simulations. 

7.1 Inviscid Solutions 
 The mesh employed to the inviscid 
simulations has 61 points in the ξ direction, 60 
points in the η direction and 10 points in the ζ 
direction. In finite volumes, this mesh is 
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composed of 31,860 hexahedra and 36,600 
nodes. Figure 1 and 2 shows the pressure 
contours obtained by the Yee, Warming and 
Harten [3] and the Hughson and Beran [4] 
schemes, respectively. 

Figure 2. Pressure contours (YWH). 

Figure 3. Pressure contours (HB). 
 
Good symmetry and homogeneity properties are 
observed in both solutions. The pressure field 
generated by the Hughson and Beran [4] scheme 
is more severe than that generated by the Yee, 
Warming and Harten [3] scheme, characterizing 
the former as more critical, more conservative 
than the later. 
 Figure 4 presents the wall pressure 
distributions obtained bv both schemes at k = 
KMAX/2 (the middle of the ramp), where 
KMAX is the maximum number of points in the 
z direction (10 in this case). They are compared 
with the oblique shock wave and the Prandtl-

Meyer expansion wave theories. Both solutions 
present a pressure oscillation at the ramp, which 
damages the quality of the solution. The width 
of the pressure plateau is not well captured by 
both schemes. Even the pressure after the 
expansion fan is bad captured by the schemes, 
presenting an under-shoot in this region. 

Figure 4. Wall pressure distributions. 
 
7.2 Viscous Solutions 
 The mesh used in the viscous simulations has 
37,260 hexahedra and 42,700 nodes. This mesh 
is equivalent, in finite differences, of being 
composed of 61 points in the ξ direction, 70 
points in the η direction and 10 points in the ζ 
direction. An exponential stretching of 10% in 
the η direction was employed. The Reynolds 
number was estimated in 4x105, to a flight 
altitude of 20,000m and l = 0.0437m, based on 
Fox and McDonald [15]. 
 
7.2.1 Laminar Results 

Figure 5. Pressure contours (YWH-L). 
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 The laminar results presents the pressure 
contours obtained by the Yee, Warming and 
Harten [3] and the Hughson and Beran [4] 
algorithms described in Figs. 5 and 6. As can be 
observed, good symmetry characteristics and 
homogeneity properties are observed. The shock 
wave is well captured in both solutions and the 
Hughson and Beran [4] scheme again yields the 
most severe pressure field, characterizing it as 
the most conservative scheme. 

Figure 6. Pressure contours (HB-L). 
 
7.2.2 Cebeci and Smith [6] Results 
 Figures 7 and 8 exhibit the pressure contours 
obtained by the Yee, Warming and Harten [3] 
and by the Hughson and Beran [4], respectively, 
using the Cebeci and Smith [6] turbulence 
model. As can be noted the Hughson and Beran 
[4] scheme is again the most conservative, 
presenting the most severe pressure field. 

Figure 7. Pressure contours (YWH-CS). 

Figure 8. Pressure contours (HB-CS). 
 
7.2.3 Baldwin and Lomax [7] Results 

Figure 9. Pressure contours (YWH-BL). 

Figure 10. Pressure contours (HB-BL). 
 
 Figures 9 and 10 show the pressure contours 
obtained by the Yee, Warming and Harten [3] 
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and the Hughson and Beran [4] TVD schemes, 
respectively, using the Baldwin and Lomax [7] 
turbulence model. The most severe pressure 
field is again obtained by the Hughson and 
Beran [4] algorithm. 
 
7.2.4 Pressure Distributions and Shock Angle 
of the Oblique Shock Wave 
 Figure 11 exhibits the wall pressure 
distributions obtained by the Yee, Warming and 
Harten [3] algorithm in the laminar and 
turbulent cases. They are compared with the 
inviscid solution, the expected result due to 
boundary layer theory. The pressure distribution 
generated as using the Cebeci and Smith [6] 
model was the most severe. 

Figure 11. Wall pressure distributions (YWH). 

Figure 12. Wall pressure distributions (HB). 
 
 Figure 12 shows the wall pressure 
distributions obtained by the Hughson and 

Beran [4] algorithm in the laminar and turbulent 
cases. The pressure distribution generated as 
using the Baldwin and Lomax [7] model was 
the most severe. As conclusion, the pressure 
distributions generated by the Hughson and 
Beran [4] scheme are more severe. 
 One way to quantitatively verify if the 
solutions generated by each scheme are 
satisfactory consists in determining the shock 
angle of the oblique shock wave, β, measured in 
relation to the initial direction of the flow field. 
Anderson [16] (pages 352 and 353) presents a 
diagram with values of the shock angle, β, to 
oblique shock waves. The value of this angle is 
determined as function of the freestream Mach 
number and of the deflection angle of the flow 
after the shock wave, φ. To the ramp problem, φ 
= 20º (ramp inclination angle) and the 
freestream Mach number is 5.0, resulting from 
this diagram a value to β equals to 30.0º. Using 
a transfer in Figures 2, 3, 5 to 10, considering 
the xy plane, it is possible to obtain the values 
of β to each scheme, as well the respective 
errors, shown in Tab. 1, to each case. As can be 
observed, the best scheme was the Yee, 
Warming and Harten [3] one, using the Cebeci 
and Smith [6] model, with a percentage error of 
0.33%. Moreover, the minimum errors were due 
to the Yee, Warming and Harten [3] scheme. 
 

Table 1. Values of the shock angle and errors. 
 

Algorithm Case β Error (%) 
 Inviscid 28.8 4.00 

Yee, Warming  Visc./Lam. 29.6 1.33 
and Harten [3] Visc./CS 30.1 0.33 

 Visc./BL 29.0 3.33 
 Inviscid 28.5 5.00 

Hughson and  Visc./Lam. 29.1 3.00 
Beran [4] Visc./CS 29.3 2.33 

 Visc./BL 29.0 3.33 

9  Conclusions 

The present work performs comparisons 
between the Yee, Warming and Harten [3] and 
the Hughson and Beran [4] algorithms in the 
solution of inviscid and laminar and turbulent 
viscous flows in three-dimensions. The Euler 
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and the Navier-Stokes equations, on a finite 
volume context and using a structured spatial 
discretization, are solved. The algorithms to 
perform numerical experiments are of TVD flux 
difference splitting type, second order accurate 
in space. A dimensional splitting method, first 
order accurate, is used to time integration. The 
physical problem of the supersonic flow along a 
ramp is studied. Turbulence is taking into 
account considering two turbulence models, 
namely: the Cebeci and Smith [6] and the 
Baldwin and Lomax [7] algebraic ones. 

The results have demonstrated that the 
Hughson and Beran [4] scheme yields more 
severe pressure fields in all cases, characterizing 
this scheme as more conservative and indicated 
to the project phase of aerospace vehicle 
development. On the other hand, the Yee, 
Warming and Harten [3] scheme, in all cases, 
was the most accurate, being recommended to a 
more advanced project phase, where more 
accurate results are important to estimate the 
levels of security of the systems. 
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