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Abstract

Design rules for the prediction of critical
buckling stresses in aircraft wing spars are
extended to cover loading cases which include
uniform transverse compression. Curve fitting
for pure loading cases enables numerical
predictions to be made of the diffener
dimensions required to provide effective smple
support to the skin, and of the critical buckling
stress for panels of arbitrary dimensions. A
proposed extension of the method to combined
loading cases is outlined.

1 Introduction

Spars in aircraft wing boxes are long integrally
machined channel sections consisting of panels
separated by vertical stiffeners, as shown in Fig.
1(a). The purpose of the spar is to provide one
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of the main load paths for vertical shear loading.
Therefore critical  buckling is a maor
consideration in the design of spar panels, either
as a primary design criterion or to indicate the
onset of postbuckling.

For the simplified infinitely long spar
models of Fig. 1(b), theory has long been
avallable [1] to predict the critica shear
buckling stress for a range of skin and stiffener
dimensions. Corresponding  results  for
longitudinal compressive loading and in-plane
bending have recently been presented [2].
Combined loading cases are often handled using
empirical  design rules, or “interaction
eguations’, representing (usually quadratic)
interaction surfaces relating two (or more) of the
component stresses at critical buckling [3-6]. A
previous study [2] verified the interaction
eguation
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Fig. 1 (a) Diagrammatic representation of awing spar. (b) Simplified model showing simply supported and
clamped edge conditions on the longitudinal edges. (c) Loading Cases.
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Roc * Ric+ RS =1 @

for a ssimply supported isotropic plate with a
wide range of aspect ratios, and hence for spar
panels, such as those of Fig.1(a), whose
stiffeners effectively provide simple support to
the skin. Here

ch =SCX/S_CX_[,J (2)
be:be/S_bx.{,/
R =s¢/55 b

where s, s, ads, are the longitudinal

compressive, bending and shear stresses at
critical buckling in a combined loading case, as
shown in Fig. 1(c), while §°,, 5, andS are
the critical buckling stresses for the respective
single loading cases.

This paper extends the analysis to spar
panels loaded in  uniform  transverse
compression s .. After studying the effect of

stiffener size on the critica buckling stress §°,

critical buckling stresses are determined for
simply supported plates under combined loading
cases which include transverse compression,
providing a generalisation of Eq. (1). Finaly,
for the single loading cases, an attempt is made
to quantify the stiffener sizes needed to provide
effective ssimple support and the reduction in
critical buckling stress when smaller stiffeners
are used. This enables reliable critical buckling
predictions to be made using simple calculations
based on the spar geometry.

The results in this paper were obtained
using the software VICONOPT [7], which
covers prismatic assemblies of rectangular
plates, each of which can carry any combination
of thein-planestresses s ,, s s and s ,, of Fig.

1(c), which are assumed to be invariant in the
longitudinal (x) direction. A longitudina
bending stress s, is modelled by dividing the

plate into n, longitudina strips carrying

longitudinal compressive stresses
sul(@i-1/n,)-1], i=12...n,. Accuracy

was guaranteed by using n, =70, although in

most cases adequate results are obtained with
n, =20. Transverse bending stresses s |, were

not considered.

The analysis is based on the exact solution
of the governing differential equations of the
plates, yielding exact stiffness natrices whose
elements are transcendental functions of the
load factor. In the simplest form of the analysis
[8], the buckling mode is assumed to vary
snusoidally in the x direction with half-
wavelength | . Shear loaded panels are more
accurately modelled by combining such
responses [9] for an infinitely long panel whose
end supports repeat at intervals of the panel
length |. This approach, which has been
adopted in the present paper, aso permits the
stiffeners to be modelled as transverse beam
supports with no torsional stiffness.

2 PurelLoading Cases

2.1 Review of Previous Results

Critical buckling results for spar panels have
previously been obtained [2] for the three load
cases of uniform longitudinal compression s ,

longitudinal bending s,, and in-plane shear

s, for the two longitudinal edge support
conditions shown in Fig. 1(b). For each case,
the VICONOPT results were verified by
comparison with published results [1] or by
finite element anaysis.

Design curves for isotropic spar panels are
obtained as non-dimensional plots of the critical
buckling parameter K against the stiffener
parameter 1, defined by

K =5 b?/Et?i 3

|

/t b3 vy

m= s™s J
3a%t3 l)

where S~ (. =cx,bx,s) is the critical buckling
stress, E is Young's modulus, the pand has
width a and diffener spacing b, while the
stiffeners are modelled as blades with depth b,
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Fig. 2. Critical buckling parameter K against stiffener parameter mfor a spar panel with simply supported
longitudinal edges, loaded in longitudinal compression. The faint line connects the transition pointsmem, beyond
which the stiffeners effectively provide simple support.

and thickness t.. The torsional stiffness of the
diffeners is neglected.  Typical plots for
longitudinal compression and shear loading are
shown in Figs. 2 and 3, respectively, for arange
of aspect ratios b/a. Each plot shows a
trangition between the limiting cases of an
infinitely long ungtiffened plate (at m=0) and a
panel with transverse ssmple supports repesting
a intervals of b. During this transition there
are changes in the buckling mode shape. In the

case of longitudinal compression, the points
m=m, a which the stiffeners effectively
provide simple support are well defined (and
plotted in Fig. 2), denoting an abrupt change in
mode shape. If m>m,, K matches analytica
predictions [10] and shows no further increase.

In contrast, there is a gradual transition of the
shear buckling modes associated with Fig. 3 so

that m, is less well defined and the limiting
valueof K must be found asymptotically.
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Fig. 3 Critical buckling parameter K against stiffener parameter mfor a spar panel with simply supported
longitudinal edges, loaded in shear.
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Fig. 4. Critical buckling parameter K against stiffener parameter mfor a spar panel with simply supported
longitudinal edges, loaded in transverse compression.

2.2 Uniform Transver se Compression

Using VICONOPT analysis, critical buckling
stresses have been found for spar panels loaded

in uniform transverse compression s, for a

range of aspect ratios b/a and stiffener sizes.
The results, represented by the parameters K
andm of Eq. (3) with §° =§, are shown in
Fig. 4.

When =0, the critical buckling stress
matches that of an infinitely long unstiffened
plate of width a under uniform transverse
compression, which is equivaent to column
buckling for a plate of length a with free
longitudinal edges under uniform longitudinal
compression

For large values of n, the diffeners
effectively provide simple support and K
matches analytical predictions for a simply
supported plate [10]. This condition is reached
at a well defined point m=m,, which (unlike
the loading cases of Figs. 2 and J) is reatively
insengitive to the panel aspect ratio. The
dramatic change in slope at m=m, for each of
the plots of Fig. 4 indicates a change in the
shape of the critical buckling mode.

Non-uniform transverse loading cannot be
modelled easily by VICONOPT and so the

transverse bending case s, has not been

considered in the present work. However for
m>m,, some analogies with the longitudinal

bending case s ,, can be drawn by considering a
smply supported plate with the x and y axes
interchanged.

3 Combined Loading Cases

3.1 Review of Previous Results

Figures 2-4 show that a spar panel with vertica
stiffeners of stiffness m3 m, can be adequately
modelled by a simply supported plate of width

a and length b, representing the portion of skin
between adjacent stiffeners. Such plates of

varying aspect ratio b/a have previously been
anaysed [2] for combined loading cases
including uniform longitudinal compression
S «» longitudina bending s, and in-plane
shear s .. Typicd interaction curves are shown
in Fig. 5. The results show that, except for
some extreme aspect ratios, the predictions
given by Eq. (1) are accurate to within a few
percent and are amost always conservative, i.e.
underestimating the stresses at critical buckling.
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Fig. 5. Critical buckling criteriafor a simply supported plate with b/a=1, loaded in longitudinal compression S,
longitudinal bending sy« and in-plane shear ss. Each solid curve showsVICONOPT results for the compression-
bending interaction at a particular value of the shear stress parameter R, while the corresponding dashed curve shows
the criteria predicted by Eq. (1).

3.2 Inclusion of Transverse Compression

The critical buckling criterion for a smply
supported plate of width a and length b,
loaded in uniform longitudinal and transverse
compression, has been derived [10] as

b? . 4)
cy

Ztg-n B %m n b_z

where the buckling mode has m and n half-
waves in the longitudinal and transverse
directions, respectively, and n is Poisson’'s
ratio. The linear relationship of Eq. (4) means
that the interaction diagram between s, and

S o isaseries of intersecting straight lines. For

2 2
m?s o, +n°—
a

QIIO

example, if b/a=1land s and s, are both
compressive (i.e. positive), then critica
buckling aways occurs with m=n=1.
However the critical buckling mode can have a
higher value of m or n if one of the stresses is

tensile (i.e. negative). Results obtained using
VICONOPT match this analytical prediction.

It is therefore suggested that, for combined
loading cases including transverse compression,
theratio

Ry =S¢ /Se ©®)

plays a smilar role to that of R, in the

interaction equation. This has been confirmed
by gudies of the interaction between transverse
compression and shear loading for aspect ratios

in the range 0.25 £ b/a £1, giving the revised,
usually conservative, critical buckling criterion
Roc*+ Ri, +RE + Ry =1 ©)

More evidence is needed to confirm that the
critical buckling criterion can be further
extended to give

Ry tRo +RE+ R, +RS =1

where

(7)

Roy =S (8)

by/s_by
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and S, is the critical buckling stress under
transverse bending.

4. Prediction of Critical Buckling Stress

4.1 Parameter Estimation

The effects of stiffener size on the critical
buckling stress of a wing spar have been shown
in Figs. 2-4 for pure loading cases. This section
illustrates, for a panel of arbitrary aspect ratio,

the estimation of the stiffness parameter m,

beyond which the stiffeners effectively provide
simple support. Estimates are also given of the

critical buckling parameter K when m<m,.

The analysis is presented for panels loaded in
uniform longitudinal compression, using the
results of Fig. 2, and can readily be applied to
other pure loading cases.

The faint line in Fig. 2 connects the points
where m=m, for different aspect ratios b/a.

Least sguares fitting of a cubic polynomia to
this data gives the relationship

m =1.5676- 4.3287(b/a) )
+4.7511(b/a)” - 1.9840(b/a)’

with correlation coefficient r?=0.9972. The
asymptote m, = 0.02 is assumed when b/a >1.
Attempts were made to fit polynomia curves to
the K against m curves of Fig. 2, but this
proved unreliable due to the changes in gradient
a m=m,.

In general a better fit was obtained by
using the Boltzmann curve

« = Kle(”b/a) + Kze("}’a) (20)
e(m/a) 4 (a)

illustrated in Fig. 6. Here K varies

monotonically between a lower limit K; and an

upper limit K, taking the value 0.5(K; +K,)

a m=m,. The parameter a controls the rate

of increase from K, to K,. Least squares curve
fitting gave the parameters

0.8

0.6 - /
‘o /

0.2 - /

m

Fig. 6. Boltzmann curve of Eq. (10), with K;=0, K,=1,
m=0.5 and a=0.1

K, =0.1510 K, =1.0498( (11)
m, =0.3156 a =0.1389,

with correlation coefficient r? = 0.9978 for the
aspect ratio b/a=0.25 (which is not shown in
Fig. 2). As expected, the fitted values of K;
and K, are closeto the valuesof K a m=0
and m=m, respectively, and m, @0.5m,.
However considering only the points in the
range m< m, gave an even better fit

K, =0.0529 K, =1.1208j (12)
m,=03061 a =0.18107,

with correlation coefficient r?=0.9995.
Although this refinement tends to overestimate
the upper limit of K, it has been adopted
hereafter in a hybrid form which predicts K
from the Boltzmann curve when m<m, and
from analytical results for simply supported
plates [10] when m3 m,. The hybrid approach
correctly predicts the changes in gradient in the
K against m curvesat m=m,.

Repeating the Boltzmann curve fitting for
different aspect ratios b/a gives families of
values for the parameters K;, K,, m, and a .
Next, these parameters are each fitted by cubic
polynomialsin b/a, with correlation coefficient

r?>0.999 in each case, to give
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K, = - 0.5694 + 2.3092(b/a) u (13

+0.2874(b/a)’ +1.7450(b/a)*;

K, =1.0115+0.0563(b/a)
+1.1838(b/a)* +1.3317(b/a)°.

oS

m, = 0.5317 - 1.2319(b/a)
+1.5107(b/a)” - 0.8392(b/a)*

a =0.5161- 1.9973(b/a)
+3.0072(b/a)” - 1.5956(b/a)’

4.2 Numerical Predictions

Using the parameters established in section 4.1,
it is now possible to predict the critical buckling
parameter K for wing spars of arbitrary skin
and stiffener dimensions. A simple Visua
Basic computer program has been written to the
specificationof Table 1.

Fig. 7 gives some illustrative results for a
spar panel loaded in uniform longitudinal
compression, for three different aspect ratios
b/a. The results show that the values of K
predicted by the program are conservative and
accurate to within a few percent.

2

Table 1. Prediction of critical buckling parameter K
for apure loading case.

Step  Task

1 Input skin dimensions a, b, t and stiffener
dimensions by, t.

2 Calculate musing Eq. (3).

3 Calculate m using Eq. (9).

4(a) If m< m, calculate K using Boltzmann curve of
Eq. (10) with parameters K;, K, my, a given by
Eq. (13).

4(b) If m3 m, calculate K using analytical results for a
simply supported plate [10].

In order to extend the predictions to
combined loading cases, it is convenient to
define a stress vector

S =15 1S xS 615 oy S by (14

It is required to find the critical buckling factor
F , such that buckling occurs when

S = F{S x0S bx015 5055 ¢y0 1S byO} (195)

where s , (. =cx,bx, s cy,by) represents a set
of base stress values. Steps 3 and 4 of Table 1
must be carried out for each component of stress
S ., giving a family of parameters K., from
which the critical buckling stresses S~ for each
of the pure loading cases can be calculated

1.5
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* e T | —bla=0.50

bla=0.67 (predicted)

\

« Dbl/a=0.5(predicted)

0.5

——hl/a=0.33 (actual)
» b/a=0.33 (predicted)

/
/
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Fig. 7. Actual and predicted critical buckling parametersK for a spar panel with simply supported
longitudinal edges, loaded in longitudinal compression.



DAVID KENNEDY, DHARMESH C. PATEL, CAROL A. FEATHERSTON

using Eqg. (3). Then using base values of the
stress ratios

Ry =S.0/5. (16)

in Egs. (7) and (15), the critica buckling
criterion F isobtained from the equation

F 2(szxo + RSZO + szxo) (17)
+ F(cho + Rayo)' 1=0

which always has one positive root.

5 Concluding Remarks

Parametric studies have previously been carried
out, using an exact strip method, on the effect of
stiffener dimensions on the critical buckling of
aircraft wing spars subjected separately to
longitudinal compression, in-plane shear and
bending stresses. In each case, increasing the
stiffener second moment of area increases the
critical buckling stress from its theoretical value
for an unstiffened plate of infinite length to a
higher value matching that of an unstiffened
plate with simply supported ends and length
equal to the stiffener spacing. Results for
combined loading cases can be predicted using a
simple interaction equation.

The present work has extended the analysis
to wing spars loaded in pure transverse
compression, and has aso established
interaction relationships for combined load
cases which include transverse compression.

Numerical predictions have been made of
the dtiffener dimensions required to provide
effective ssmple support to the skin, for a range
of panel aspect ratios. For pure loading cases,
the relationship between critical buckling stress
and stiffener dimensions has been fitted to a
non-dimensional Boltzmann curve, so that the
critical buckling stress can be estimated simply
and accurately for panels of arbitrary
dimensions. A proposed extension of the
numerical predictions to combined loading
cases has been outlined.

The proposed methods for predicting
critical buckling stress are expected to be of
value in the aerospace industry, where design

curves and other simple heuristic methods
continue to be used in the initial design stage
because they provide quick solutions without
the need for extensive data preparation.
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