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Abstract

This study is aimed at assessing the application of
the latest unstationary CFD method, Detached-
Eddy Simulation (DES), to simulate the flow-
field around blunt leading edge delta wings.
For this purpose, the Second International Vor-
tex Flow Experiment (VFE-2) 65° sweep delta
wing model was used to perform numerical in-
vestigations at a Reynolds number of 6 million,
Mach number of 0.4 and angles of attack of
18.5° and 23°. As the nature of this study is
mainly exploratory, various numerical grids have
been used. The results confirm the maturity of
Reynolds averaged Navier-Stokes (RANS) meth-
ods but also the problems of DES to predict free
separation and the grid sensitivity of this model.

1 Introduction

To study the behavior of high-performance air-
crafts featuring delta wing planforms, in the past
the selected simplified geometry was the sharp
leading edge, slender delta wing. This geome-
try does not resemble one main feature of real-
application delta wing planforms, the finite ra-
dius of the leading edge. The sudden shear layer
separation present in sharp leading edge delta
wings, generates distinct separated vortex flow
starting from the delta wing apex. As this distinct
separation onset is not given in case of a blunt
leading edge delta wing, computational fluid dy-
namic (CFD) methods necessitate to resolve the
boundary layer development prior to separation
onset to accurately predict the overall flow-field
characteristics. At high angles of attack, this can

be coupled to unstationary phenomena such as
vortex breakdown.

The deployment of initial hybrid RANS/LES
methods, of which probably the most widely
used is DES by Spalart et al. [12], might be
ill-posed for flow separation from blunt leading
edge delta wings. This is due to Reynolds num-
ber dependence of initial shear layer separation
and vortex location/strength for blunt leading
edge delta wings.[2, 11] Here the underlying
RANS model of DES (Spalart-Allmaras) may
not be appropriate to predict curvature-induced,
free separation. Whereas on sharp leading edge
delta wings, the separation line is fixed at the
leading edge. The comparison of DES with
newly developed turbulence models for RANS
closure is thus needed to evaluate advantages and
deficiencies of each approach.

This need has been recognized by the NATO
Research and Technology Organization (RTO)
panel, which in September 2002 approved the
formation of a task group with the notation AVT-
113. One of the two facets of this task group
is denominated VFE-2 following the (first) In-
ternational Vortex Flow Experiment, which was
focussed on Euler code validation [4]. Objec-
tives and initial results of the VFE-2 facet are al-
ready available [6]. The initial wind tunnel cam-
paign on which this evaluation is based on, has
been performed by Chu and Luckring [1], NASA
Langley Research Center (LaRC) in the National
Transonic Facility (NTF).



2 Model Description

The geometry proposed by Hummel and Re-
deker [7] for the VFE-2 project is that of a delta
wing with a 65° leading edge sweep angle (A).
This configuration is the same as in the NTF wind
tunnel campaign [1] and a sketch of the delta
wing is shown in figure 1. A remarkable feature
of the wind tunnel model is the possibility to in-
terchange the leading edge sections, representing
four leading edge radii (r7g), which are attached
to the flat-plate central section.

The half-body, numerical geometric defini-
tion of the model is available through a Virtual
Laboratory [9] set up and maintained by NASA
LaRC. The origin of the right-handed, Carte-
sian coordinate system is at the apex of the delta
wing with the x-coordinate pointing downstream
(towards the sting), the z-coordinate being per-
pendicular to the flat plate section and the y-
coordinate pointing in span-wise direction. The
numerical geometry features a root chord (c,) of
Im resulting in a mean aerodynamic chord (¢) of
2/3m = 0.667m .
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Fig. 1 NASA’s wind tunnel model, geometry de-
scription. [8]

For the VFE-2 project, the sharp (r g /¢ = 0)
(sLE) and medium radius (r.g /¢ = 0.0015) lead-
ing edge (mLE) geometries were selected for nu-
merical and further wind tunnel evaluations.

2.1 Test Cases

The VFE-2 task group selected a matrix of com-
putational cases based on realistic application
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problems and CFD development and evaluation
needs. Each of the two main geometry configu-
rations (SLE and mLE) is mainly used to study
distinct effects. The conditions for the blunt
leading edge geometry were chosen for study-
ing primarily the transition from attached flow to
semi-separated vortical flow up to fully-separated
dead-water flow. The sharp leading edge free-
stream conditions were chosen for studying un-
steady phenomena such as vortex breakdown and
transonic vortex-shock interactions.

For this study the subsonic Mach number (M)
of 0.4, Reg=6-106 cases were selected, where
the reference length for the Reynolds number
(Rez) 1s the mean aerodynamic chord. The main
cases for this study were initially the o=23.3°
cases (case 13 and 17), to explore the initial
vortex breakdown conditions. Then the compu-
tational matrix was expanded to include also a
lower angle of attack (at Rez=6-10° and M=0.4)
of a=18.5°, due to the increased separation onset
dependence on leading edge geometry.

To ease future comparison, the results shown
here retain the VFE-2 test matrix nomenclature,
of which the relevant sections for this study are
listed in table 1.

Table 1 Test cases (M=0.4, Re;=6-10°)
Case Geometry AOA

01 sLE 18.5°
13 sLE 23.0°
05 mLE 18.5°
17 mLE 23.0°

The free-stream conditions from the experi-
mental campaign differ slightly from the VFE-
2 computational matrix. The cases used for this
comparison are summarized in table 2.

Table 2 Experimental cases selected for compari-
son from Chu and Luckring [1] (Rez =6- 109)
Run No. Point No. Geom. AOA M

84 1834 sLE  18.4° 0.400
84 1838 sLE  22.5° 0.401
3 54 mLE 18.4° 0.400
3 56 mLE 22.4° 0.400
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2.2 Computational Method

The flow solver EDGE [3] was used throughout
this study. EDGE is an unstructured, edge-based,
finite volume CFD code developed and main-
tained by the Swedish Defence Research Agency
(FOI). KTH is one among several academic con-
tributors to the development of the code. All
computations run during this study were per-
formed with the latest development version of
EDGE, 3.3.2-r506, fully parallelized using the
Scali MPI libraries.

For the steady-state calculations, the turbu-
lence model used for the closure of the RANS
equations is the two-equation k — ® model by
Hellsten [5] coupled to the explicit algebraic
Reynolds stress model (EARSM) by Wallin and
Johansson [17]. For selected cases, the Spalart-
Allmaras (SA) model [14] has also been used.

All calculations have been performed with
the assumption of fully turbulent flow, with a
free-stream turbulence intensity of 0.1%.

Time integration to steady state of the dis-
cretized RANS equations was achieved with an
explicit, three-stage Runge-Kutta scheme. For
the spatial discretization, a second order accu-
rate, central scheme with 4" order artificial dis-
sipation set to 0.03 was used for all cases. To
speed up convergence, implicit residual smooth-
ing and four level FAS agglomeration multigrid
were used.

The original DES formulation by Spalart
et al. [12] is implemented in EDGE, whereby
time integration is achieved through “dual time
stepping”, an implicit time marching technique
with explicit sub-iterations.

Solution based adaptive grid refinement [16]
is also available in EDGE and has been used to
refine the initial computational grid of the steady,
blunt leading edge cases. This option was not
available for the sharp leading edge cases, as the
imported computational grid was not compatible
to the adaptation program. The adaptation al-
gorithm features three different vortex-capturing
sensors [10] based on total pressure ratio, entropy
loss and an eigenvalue analysis of the velocity
gradient tensor. Using a flow solution mapped

on the corresponding numerical grid and a user-
defined value for the selected sensor, the adapta-
tion algorithm selects the cell edges to be subdi-
vided.

2.3 Numerical Grid and Boundary Condi-
tions

Two similar numerical grid topologies have been
employed within this study. Both grids feature a
half-span representation of the delta wing model
with a symmetric boundary condition applied on
the symmetry plane. Furthermore, the boundary
for the solid walls is of adiabatic, no-slip type
and on the far-field boundary a weak formulation
characteristic condition was set.

The computational grid for the sharp lead-
ing edge geometry has been made available to
the parters of the VFE-2 group by the U. S. Air
Force Academy (USAFA). A common unstruc-
tured grid is not available for the blunt leading
edge geometry, thus it was generated using either
the commercially available ICEM CFD meshing
package or the FOI-internal advancing-front grid
generator TRITET [15]. The latter is the tool of
choice for generating hybrid grids for EDGE, as it
is transparently interfaced to the adaptation pro-
gram available within the EDGE distribution.

2.4 Sharp Leading Edge

The common sharp leading edge grid features
approx. 7.89 million tetrahedral and 0.8 million
prismatic cells. The surface of the half-span
delta wing and the sting fitting is discretized with
67,489 triangular elements, resulting in 19 full
prismatic layers to resolve the boundary layer.
The surface mesh of the delta wing, the sting
fitting and the sting-closure as well as the sym-
metry mesh are visible in figure 2(a). Note that
the sting-closure does not feature a prismatic
layer discretization and is extended to the far-
field outflow boundary, see figure 2(b). The ex-
tents of the far-field boundary-box are located
at approx. 10 root chord lengths from the delta
wing surface. In y-direction (wingspan direction)
the far-field boundary is located at approx. 5 root
chord lengths.



(a) Delta wing surface grid (b) Sting surface grid and
and near-field symmetry symmetry plane up to far-
plane, isometric view field boundary

(c) Surface grid of delta wing
apex and symmetry plane,
side view (up to x/c, =~ 0.05).

Fig. 2 Common computational grid for the sharp
leading edge cases.

2.5 Medium Leading Edge

In contrast to the VFE-2 common sharp leading
edge grid, the sting closure for the blunt leading
edge cases has been chosen not to extend down-
stream to the far-field boundary. The sting is rep-
resented exactly as in the wind tunnel model up
to the position x/c, = 1.758, as recommended by
Chu and Luckring [1]. After this position, the
sting is closed out using an elliptical revolution
surface, which is continuous through the curva-
ture at the cut-off station. The total length (in x-
direction) of the closure surface is five times the
diameter of the sting at the cut-off position.

The far-field boundary is located at ap-
prox. 11 root chord lengths from any wall, in
all directions, resulting in a half-sphere far-field
boundary with a radius of 12.5m.

RANS grids. The basic meshing strategy for
the steady-state medium leading edge cases was
to first generate a volume grid with a coarse
tetrahedral discretization to yield first results,
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with which solution based adaptation was subse-
quently possible. Based on initial results, the first
cell height needed to achieve y* values smaller
than 1, was identified to be 1-10~%mn. The 32
prismatic element layers were used to resolve the
viscous layer up to a normal distance to the wall
of 0.015m, resulting in an exponential expansion
ratio normal to the wall of 1.30. The initial sur-
face grid is visible in figure 3.

(a) Delta wing surface grid (b) Symmetry grid up to
and near-field symmetry far-field boundary.
plane, isometric view.

e

(c) Surface grid of delta wing
apex and symmetry plane,
side view (up to x/c, = 0.15).

Fig. 3 Computational grid for case 17, EARSM
(initial) and DES.

As visible in figure 3(c), the meshing ap-
proach used in TRITET automatically generates
varying numbers of prismatic elements normal
to the wall, thus ensuring a smooth volumet-
ric transition between cell elements at the pris-
matic/tetrahedral interface.

After evaluating all available adaptation sen-
sors, the sensor based on the total pressure ratio
(po/ po.,) was selected to refine the initial numer-
ical grid. The threshold value for pg/po., used for
selecting the cell edges to be split was set to 0.95.
Surface projection for new nodes on the surfaces
was disabled and for limiting the amount of se-
lected edges, the minimal edge size to be adapted



Initial Steady/Unsteady CFD Analysis of Vortex Flow over the VFE-2 Delta Wing

was set to 0.001m.

The adaptation was mostly constrained to the
tetrahedral elements thanks to the definition of
adaptation bounding boxes. Grid elements out-
side of these boxes would not be considered for
adaptation. The coordinates of the adaptation
boxes are summarized in table 3.

Table 3 Coordinates of adaptation boxes for cases
05 and 17 (EARSM)

Xopin ~ X (M Vi = VoM 2,5, — 2, [M]
-11.5-0.63 00-11.5 0.038-11.5
-11.5-0.63 00-11.5 -11.5--0.038
0.63-1.017 0.08-11.5 0.038-11.5
0.63-1.017 0.08-11.5 -11.5--0.038
0.63-1.017 0.0-0.08 0.07-11.5
0.63-1.017 0.0-0.08 -11.5--0.07
1.017-11.5 0.11-11.5 -11.5-11.5
1.017-11.5 0.0-0.11 0.11-11.5
1.017-11.5 0.0-0.11 -11.5--0.11
26-11.5 0.0-0.11 -0.11 -0.11

The resulting additional tetrahedral cells for
the adaptation of case 17, as well as the outlines
of the adaptation boxes near the solid walls are
visible in figure 4.
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(a) Side and top view (b) Front view

Fig. 4 Additional tetrahedral elements after
adaptation; case 17.

DES grids. For the DES runs, a priori adapta-
tion based on EARSM results was not considered
in this study as h-adaptation leads to a high num-
ber of anisotropic tetrahedral cells. This was rec-
ognized to be undesirable for DES [13], thus for
case 05 a globally finer grid was generated with
ICEM CFD. The use of density regions above

the suction side of the delta wing ensures an ho-
mogeneous tetrahedral distribution. See figure 5.
The first cell height was set to 2.7 - 10~ 7m at the

(a) Isometric view of delta (b) Surface grid of delta wing
wing surface grid and near- apex and symmetry plane, side
field symmetry plane view (up to x/c, = 0.22).

Fig. 5 Computational grid for case 05, DES.

leading edge and 5-10~%m on the flat-plate in-
ner delta wing portion as well as on the sting. 32
prismatic layers discretize the boundary layer re-
gion with a total extent normal to the walls os
approx. 0.02m.

For the grid of case 17 on the other hand,
the same initial computational grid as for the
EARSM case was selected. This was mainly due
to computational and time constrains.

The sizes for the grids employed in this study
are summarized in table 4.

3 Results and Discussion

For the comparison between RANS, DES and ex-
perimental data, the unstationary data from the
DES cases was averaged over at least one full pe-
riod of the monitored force coefficients.

3.1 Time-Step

An initial evaluation of the required outer time-
step for the DES cases was performed for case
13. Two DES calculations were performed with
an initial smaller model (¢, = 0.3048m) with both
a small time-step (At =5 - 107%) and a larger
time-step (At =5 - 1072s) to assess the tradeoff
between accuracy and computational effort. The
non-dimensional time-steps (At* = [Us - At]/c,)
are 2.252-1073 and 2.252- 102, respectively for
the small and large time-step.
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Table 4 Computational grid size for the cases analyzed in this study (pyramidal elements are included in

the total volume cells counts)

Grid “solid wall” Prismatic Tetrahedral  Total vol. cells (nodes)
tri. elem. vol. cells vol. cells
Case 01/13, RANS/DES 72,122 820,273 7,025,184 7,886,068 (1,643,487)
Case 05/17, RANS; Initial 171,596 5,246,330 2,364,969 7,657,846 (3,093,054)
Case 05, RANS; adapted 182,454 5,593,765 3,160,627 8,800,958 (3,405,554)
Case 17, RANS; adapted 178,244 5,459,039 2,848,078 8,353,689 (3,283,478)
Case 05, DES 235,015 7,520,480 5,234,624 12,755,104 (4,721,858)
Case 17, DES 171,596 5,246,330 2,364,969 7,657,846 (3,093,054)
Comparing e.g., the vortex burst location be- 3.2.2 Case I3

tween the three calculations, revealed an ex-
pected increase of accuracy from the less com-
putational intensive EARSM (approx. 138 CPU-
hours) to the larger time-step DES run (ap-
prox. 357 CPU-hours) and to the small time-step
DES run (approx. 3360 CPU-hours).

These initial runs confirmed the selection of
the smaller time-step for further DES computa-
tions. Due to the larger root chord of the nu-
merical model employed in this study, the re-
sulting outer (dimensional) time-step was set to
1.62-107%s.

3.2 Sharp Leading Edge
3.2.1 Case 0l

The surface pressure coefficient for this case is
shown in figure 6. Here the match of primary
vortex strength is shown to correlate well for
x/c, = 0.4 and 0.6 for both EARSM and DES
runs. At x/c, = 0.2, DES shows a poorly re-
solved primary vortex, but at x/c, = 0.8, DES
still predicts the strength of the primary vortex
accurately enough and EARSM already shows a
weakening suction peak. At x/c, = 0.95 both
EARSM and DES do not show evidence of vor-
tex breakdown. For this condition, further analy-
sis of the DES results confirms vortex breakdown
position to be at approx. x/c, = 0.97. The con-
vergence history for the DES run of case 01 is
visible in figure 7.

For case 13, the comparison between RANS,
time-averaged DES and experimental surface
pressure coefficient data at five different sections
is presented in figure 8. For this case, the DES
solution matches well the EARSM solution in
terms of primary vortex strength and location, but
the EARSM solution resolves better secondary
separation. Both CFD solutions underestimate
the strength of the primary vortex downstream of
x/cr = 0.6.

3.3 Medium Leading Edge

For the medium leading edge cases, previous in-
vestigations [8, 2] on this geometry have shown
that an inner vortical system is already present
when the leading edge (outer) primary vortex is
formed. This (inner) second vortical structure
was described first by Hummel [6]. The notation
used in the following conforms to previous def-
initions by denoting the inner vortical structure,
inner (primary) vortex, as the sense of rotation is
equal to that of the outer primary vortex.

3.3.1 Case 05

For case 05 the difference between steady, un-
steady and experimental data is more pronounced
than for case 17. The main discrepancy is vis-
ible at x/c, = 0.2, see figure 9(a). Here the
experimental data shows a suction peak at ap-
prox. n = 0.5, revealing the presence of the inner
primary vortex and a stronger suction peak be-
tween approx. 11 = 0.85 and n = 0.9 correspond-
ing to the outer primary vortex. In contrast, the
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Fig. 6 Case 01; pressure coefficient plots at dif-
ferent chord-wise locations for the sLE geome-
try; comparison between RANS (EARSM), DES
and experimental data (suction side only).
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Fig. 7 Residuals and force coefficients conver-
gence; case 01, DES.

EARSM + k — ® RANS solution shows a weaker
outer primary vortex, but no visible evidence of
the inner primary vortex. For this case, the dif-
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Fig. 8 Case 13; pressure coefficient plots at dif-
ferent chord-wise locations for the sLE geome-
try; comparison between RANS (EARSM), DES
and experimental data (suction side only).

ference between SA and EARSM + k£ — ® model
were most pronounced. In the inner region, SA
and DES match up to approx. n = 0.75, where
SA starts predicting a weak primary vortex. On
the other hand, DES predicts here fully attached
flow over the entire semi-span.

At x/c, = 0.4 DES predicts separated vorti-
cal flow leading to a stronger outer primary vor-
tex suction peak and an inner suction peak corre-
sponding to the inner primary vortex.

Further downstream, at x/c, = 0.6, both CFD
solutions match well the experimental data.
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Fig. 9 Case 05; pressure coefficient plots at
different chord-wise locations for the mLE ge-
ometry; comparison between RANS (SA and
EARSM), DES and experimental data (suction
side only).

3.3.2 Casel7

At x/c, = 0.2 both CFD solutions predict lead-
ing edge separation, see figure 10(a). The pres-
sure coefficient plot at x/c, = 0.2 for this case is
comparable with position x/c, = 0.4 of case 05,
where both CFD solutions predict leading edge
separation. As in the previous case, DES pre-
dicts a stronger (and further outboard) inner pri-
mary vortex compared with experimental data,
whereas EARSM predicts better the inner pri-
mary vortex location, but under-predicts the outer
primary vortex suction peak.

After x/c, = 0.6, no remarkable increase in
accuracy is visible between DES and EARSM.
This is probably due to the coarse computational
grid above the rearward part of the delta wing,
which in case of DES is not enough to resolve
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Fig. 10 Case 17; pressure coefficient plots at dif-
ferent chord-wise locations for the mLE geome-
try; comparison between RANS (EARSM), DES
and experimental data (suction side only).

the relevant turbulent structures. At x/c, = 0.8
and 0.95, the pressure signature on the surface is
flattened and broadened because of the presence
of vortex breakdown. This phenomenon is like-
wise predicted by EARSM and DES, although at
x/c, = 0.8 the experimental values do not display
evidence of vortex breakdown.

Convergence history for the EARSM run of
case 17 is visible in figure 11.
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Fig. 11 Residuals and force coefficients conver-

gence; case 17, EARSM.

3.4 Cross Comparison

Comparing at the same conditions the sharp and
blunt leading edge cases, reveals consistent be-
havior of EARSM and DES. The apex region
(x/cr = 0.2) at the lower AOA of 18.5° (case
01 and 05) is resolved better by EARSM rather
than DES, see figures 6(a) and 9(a). This trend is
reversed in the rear region (x/c, = 0.8), see fig-
ures 6(d) and 9(d).

The discrepancies between numerical and ex-
perimental results are alleviated by increasing the
AOA to 23° (case 13 and 17). Due to the for-
ward shift of vortex separation onset in case of
the blunt leading edge case, the difference be-
tween EARSM and DES at the apex are less pro-
nounced; see figures 8(a) and 10(a).

4 Conclusions

The results presented in this paper are mainly go-
ing to be used for future decision-making pro-
cesses. Both for the sLE geometry as well as for
the mLE geometry, this evaluation highlights the
strengths and weaknesses of DES and RANS.
DES is better suited for the sLE geometry as
the separation line of the primary vortex is fixed
at the leading edge. This is in line with the origi-
nal concept of DES. One reason for the similarly
bad performance of DES compared to EARSM
for case 13, might be a poorly resolved LES re-
gion in the aft vortex core path. The discrep-
ancy from the experimental data is even more of

a concern since the VFE-2 common mesh has
been used in this case. To use a computational
grid generated for RANS to perform DES calcu-
lations was recognized to be sub-optimal. This
approach is on the other hand expected, when ei-
ther switching to DES as an incremental step af-
ter RANS, or when having to compute with com-
mon computational grids as in this case. Here,
consistent isotropic h-adaptation would be a ma-
jor future contribution.

For this case, as well as for all other investi-
gated cases, the DES solutions consistently over-
predict the strength of the secondary vortex and
the suction due to the initial shear layer roll-up.
Based on these results no substantial benefit can
be obtained by the use of DES in regards of mean
surface pressure coefficient. But the position and
topology of vortex breakdown are resolved accu-
rately with DES, giving also information about
e.g., the rotation frequency of the spiral-type vor-
tex breakdown. Unstationary surface pressure
data needed for this comparison will be available
from upcoming VFE-2 wind tunnel campaigns.

The blunt leading edge cases have shown two
main problems associated with DES. In case 05,
at lower AOA, advanced RANS methods guar-
antee a better evaluation of the boundary layer
characteristics, leading to an increased accuracy
in primary separation prediction. This is clear
when studying the apex region and comparing
the near-wall turbulence model of DES (SA) with
EARSM. In this respect DES might be an inap-
propriate choice, but the increased accuracy in re-
solving primary vortex development, such as un-
stationary vortex breakdown phenomena, make it
a valuable tool. Unfortunately, for blunt lead-
ing edge delta wings, the increased accuracy of
DES in respect of vortex core development is
negatively influenced by the model’s capability
to predict vortex separation onset, location and
thus strength.

At higher AOA where the fully attached flow
region is confined to the apex of the delta wing,
both DES and EARSM resolve with similar ac-
curacy the fore flow-field. Here, the unstation-
ary and more accurate physical modeling of DES
can be better exploited. At downstream positions
a further weakness of DES appears; a computa-



tional grid, which is fine enough for RANS to
achieve reasonable results, is probably too coarse
in the LES region and no apparent improvement
over RANS can be found.
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