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Abstract  

The effect of damping and controls on an 
aircraft wake encounter is modeled using the 
following assumptions: (i) the wake of the 
leading aircraft is represented by a pair of 
counterotating Hallock-Burham vortices, with 
arbitrary circulations and core radii; (ii) the 
vorticity decays with distance due to a turbulent 
kinematic viscosity, according to a law which is 
consistent with flight data from the Memphis 
data base; (iii) the rolling moment induced in 
the following aircraft is calculated assuming it 
flies aligned behind the leading aircraft; (iv) the 
rolling moment equation is solved analytically 
including the effect of the control surface 
deflection (e.g. ailerons) and of aerodynamic 
damping; (v) the airplane response, in terms of 
roll rate and bank angle is plotted for a Boeing 
B757-200 flying behind another. It is shown that 
in the absence of control action, the roll rate of 
the following aircraft goes through a peak, and 
then decays, leading to a constant asymptotic 
bank angle; the latter is a measure of the 
magnitude of the wake effect, e.g. is larger for 
weaker damping. The exact analytical solution 
of the roll equation appears as a power series of 
a damping factor, whose coefficients are 
exponential integrals of time; it is shown that the 
first two terms give an accuracy better than 2%.  

1  Introduction 

The effect of damping and controls on an 
aircraft wake encounter is modeled using the 
following assumptions: (i) the wake of the 
leading aircraft is represented by a pair of 
counterotating Hallock-Burham vortices, with 
arbitrary circulations and core radii; (ii) the 

vorticity decays with distance due to a turbulent 
kinematic viscosity, according to a law which is 
consistent with flight data from the Memphis 
data base; (iii) the rolling moment induced in the 
following aircraft is calculated assuming it flies 
aligned behind the leading aircraft; (iv) the 
rolling moment equation is solved analytically 
including the effect of the control surface 
deflection (e.g. ailerons) and of aerodynamic 
damping; (v) the airplane response, in terms of 
roll rate and bank angle is plotted for a Boeing 
B757-200 flying behind another. It is shown that 
in the absence of control action, the roll rate of 
the following aircraft goes through a peak, and 
then decays, leading to a constant asymptotic 
bank angle; the latter is a measure of the 
magnitude of the wake effect, e.g. is larger for 
weaker damping. The exact analytical solution 
of the roll equation appears as a power series of 
a damping factor, whose coefficients are 
exponential integrals of time; it is shown that the 
first two terms give an accuracy better than 2%.  

2  Rolling Moment Induced by vortex pair 

 
The main effect of the wake of a leading 

aircraft on a following is to induce [7] a rolling 
moment: 
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the chord is a linear function of spanwise 
coordinate [8] for a trapezoidal wing 
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where the mean geometric chord c  and taper 
ratio λ  are specified by the root rc  and tip tc  
chords: 
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It remains to specify the downwash ( )yw , 
which depends on the vortex model assumed. 

For an Hallock-Burnham (HB) vortex [20] 
the tangential velocity is given by: 
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where the vorticity may be introduced for the 
peak velocity at the vortex core radius: 

( ) aawwa π4/4/ 00max0 Γ=≡=Ω .    (5) 

Instead of a single HB-vortex: 
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the wake of the leading aircraft is represented 
(Figure 1) by a pair of possibly dissimilar HB-
vortices, with vorticities rΩ , lΩ− , core radii 

lr aa ,  and axis at lr yy ,  parallel to the flight 
path: 
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and lying at the same altitude. The correction to 
(7) has been given [21] when the aircraft is not 
at the same altitude as the vortex core centers or 
has a bank angle. Substitution of (2) and (7) in 
(1) specifies the rolling moment for any 
spanwise vortex pair position, i.e. either vortex 

within, outside or partly inside the span of the 
following aircraft. 

The rolling moment (1) is specified by: 
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The rolling moment is thus given by: 
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where rh  is a dimensionless factor: 
( ) rrr JJh 21 14 −+= λ ,              (10) 

involving the integrals: 
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where the second integral is evaluated twice at 
each limit. Corresponding formulas apply to lh , 
and a similar change of variable, allows 
elementary evaluation of the integrals:  
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Substitution of (12a,b) in (10) and (9) completes 
the evaluation of rolling moment, for dissimilar 
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vortices and zero bank angle. The opposite case 
of similar vortices and non-zero bank angle has 
been considered elsewhere [21]. The bank angle 
correction became important if the aircraft roll 
significantly as a consequence of the wake 
encounter.  

3 Roll equation with damping and controls 

For substitution in the roll dynamics 
equation, including the effects of aerodynamic 
damping and flight controls, the rolling moment 
induced by the pair of dissimilar HB-vortices is 
used in the form (9), where the dimensionless 
encounter factors rh , lh ,  (10) are specified by 
(12a,b), viz.: 
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Note that the last three terms on the r.h.s. of (13) 
vanish for a rectangular wing 1=λ . The 
average dimensionless encounter factor h  is 
defined by: 
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where a  is taken to be the mean vortex radius: 
( ) 2/lr aaa +≡ .                     (16) 

The simplest case is that of vortices with equal 
radii aaa lr == , symmetrically placed  

0yyy lr =−=  when hhh lr == ; in general 

lr hh ≠ , for a asymmetrically placed vortices 

lr yy −≠ with distinct vortex radii lr aa ≠ , and 
the average encounter factor is defined by (15).  

Substitution of (15)  specifies (9) the 
rolling moment: 
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whose time dependence is specified by that of 
the sum of the vorticities of the right and left 
vortices: 

( ) ( ) ( )ttt lr Ω−Ω≡Ω2 .             (18) 
These time dependences are similar [7] for 
identical vortex radii: 
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where the wake vortex circulation strength [22] 
is specified by: 
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and the index “1” applies to the leading aircraft.  
Substitution of (20) into (19) specifies the 

time dependence (17) of the induced rolling 
moment: 
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which appears in the roll dynamics equation, 
with one degree-of-freedom, i.e. no coupling to 
other axis: 
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Writing the roll moment of inertia in terms of 
mass and radius of gyration: 
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2
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leads to the roll dynamics equation in the form:  
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4 Aileron schedule to compensate vortex 
encounter 

The simplest result to follow from (24) is 
that there will be no roll motion, i.e. the wake 
vortex encounter will be compensated by the 
aileron deflection as a function of time specified 
by: 
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Thus the aileron deflection needed to 
compensate the wake vortex encounter is given 
by (25) as a product of dimensionless factors, 
showing that it increases: (i) for smaller aileron 
rolling moment coefficient δC ; (ii) for larger 
mean encounter parameter h  defined in  (15); 
(iii) for smaller taper ratio of following aircraft 
λ  in (3a), noting it also appears in (13); (iv) for 
larger leading aircraft wing loading 11 / SW  
(hence stronger wake), smaller air density 
ρ (e.g. higher altitudes) and smaller following 
aircraft span 2b (i.e. smaller roll moment arm); 
(v) for larger vortex core radius a  squared, 
divided by viscosity η  multiplied by time t , so 
that larger viscosity and longer time, which 
cause wake decay, also reduce required 
compensation by aileron deflection; (vi) for 
larger root chord of leading aircraft (hence 
stronger wake)  multiplied by the acceleration of 
gravity g , to be dimensionless when divided by 
the product of the velocities of the leading and 
following aircraft. So the aileron deflection 
required to compensate wake effects increases 
for slower leading aircraft (hence stronger 
wake) and slower following aircraft (lower roll 
control effectiveness). 

The last exponential factor in (25), is the 
same as in the vorticity (19,20), and shows that 
its peak occurs at the time: 
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and the corresponding aileron deflection would 
occur at the same time: 
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The aileron deflection for wake vortex 
compensation at peak vorticity increases with: 
(i) larger encounter factor h  in (15); (ii) smaller 
wing taper ratio λ  of following aircraft; (iii) 
smaller aileron rolling moment coefficient; (iv) 
larger wing loading 11 / SW , of leading aircraft; 
(v) smaller air density, due to smaller 
aerodynamic forces; (vi) smaller following 
aircraft span, due to smaller moment arm; (vii) 
larger root chord 

1r
c  of leading aircraft, due to 

stronger wake; (viii) smaller speed of leading 
aircraft 1U  due to stronger wake; (ix) smaller 
speed of the following aircraft, due to reduced 
roll control effectiveness. 

As an example, the case of two Boeing 
757-200 flying one behind the other is 
considered. The data needed to calculate the 
maximum aileron deflection is given in Table I, 
with basic data from open sources [23,24] at the 
top, and at the bottom, data derived by 
calculation using the formulas in this paper. The 
vortex core radius was taken to be 3% of the 
wing span. The peak aileron deflection is 
specified by (27), viz. º50.4* =δ .  The ratio: 

4.4// max*max =ΩΩ=δδ ,             (28) 
specifies the fraction of the peak vorticity the 
following aircraft can cope with; the smaller the 
fraction of the peak vorticity the following 
aircraft can cope with, the larger must be the 
separation distance, for the vorticity to have 
decayed by that much.  

5 Free response and aileron deflection  

The preceding case (§4) of an aileron 
control law which compensates the wake vortex 
encounter is the only situation in which there is 
no aircraft roll response, because the forced 
response to the ailerons (ii) exactly balances the 
response to the wake vortex (iii), leaving only 
the free response (i), which is zero if there are 
no initial perturbation. The three terms of the 
response (i,ii,iii) are calculated next in turn, 
starting with the free response ( )t1φ , which is 
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the solution of the roll equation (24) without 
forcing terms on the r.h.s., viz.: 

011 =φµ+φ ,                (29) 
where the overall damping coefficient is 
specified by: 
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and the damping time by µ/1 . The damping 
increases with: (i) the ratio of span to gyration 
radius squared; (ii) the roll damping coefficient 

φC ; (iii) the air density (lower altitude), airspeed 
and wing area divided by the mass. The roll 
damping coefficient φC , the overall damping 
coefficient µ  in (30) in seconds-1, and the 
damping time µ/1  are indicated in the third 
panel of Table I.  

The solution of (29) is the free response: 
( ) tBeAt µ−+=φ1 ,               (31) 

where the constants of integration BA,  are 
determined from the initial bank angle 0φ  and 
roll rate 0φ  at time zero: 

( ) ( )0 1 0 10 ,   0A B Bφ φ φ φ µ≡ = + = = − .        (32) 
It follows that the free response (31) is given by: 
( ) ( )[ ]tet µµφφφ −−+= 1/001 ,              (33) 

for arbitrary initial bank angle 0φ  and roll rate 

0φ . 
The forced response to the ailerons ( )t2φ  

is even simpler, since it is a particular solution 
of the roll dynamics equation (24), omitting the 
last term on the r.h.s. side representing wake 
vortex effects: 

ν=φµ+φ 22 ,                (34) 
where the aileron deflection was taken to be 
maximum: 
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The forcing term increases with: (i) the air 
density times span and wing area (which is the 
mass of a parallelepiped of air, with base area 

equal to the wing area and height equal to the 
span) divided by the aircraft mass, specifying a 
relative density [7]; (ii) the square of airspeed 
divided by the radius of gyration; (iii) the 
aileron rolling moment coefficient; (iv) the 
aileron deflection taken at maximum value for 
fastest response. The forced response to 
constant aileron deflection is a bank angle 
varying linearly with time: 
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showing that in the presence of damping the roll 
rate is constant ( ) µν−=φ /2 t , and increases 
with: (i) the airspeed divided by the span; (ii) 
the ratio of the aileron rolling moment 
coefficient δC  to the dimensionless 
aerodynamic roll damping coefficient φC ; (iii) 
the maximum aileron deflection. The forcing 
factor ν  in (34) and the rolling moment 
coefficient δC  and the roll rate due to maximum 
aileron deflection 2φ  are indicated in the fourth 
panel of Table I. Note that in the absence of 
damping: 

20 :          µ φ ν= = ,               (37) 
the roll acceleration would be constant, and 
hence the roll rate would be  linear function of 
time (38a): 

( ) ( ) 2
2 2

1,           
2

t t t tφ ν φ ν= = ,        (38a,b) 

and the bank angle a quadratic function  of time 
(38b). 

6 Response forced by wake encounter  

The response to the wake encounter 
would be almost as simple as for constant 
aileron deflection (§5) if the induced rolling 
moment is taken to be constant [25]. Taking into 
account the dependence of the induced rolling 
moment on time leads to a less simple response 

( )t3φ , specified by a particular integral of the 
roll dynamics equation (24), without the first 
term on the r.h.s.: 
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( )tat η−ξ−=φµ+φ − 2/exp 21
33 ,             (39) 

where the vortex wake effect is specified by: 
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and increases for : (i) larger encounter factor h  
and smaller taper ratio λ ; (ii) larger ratio of 
wing loading of the leading aircraft to the wing 
loading of the following aircraft: (iii) larger 
ratio airspeed of following aircraft (catches 
wake sooner) to the airspeed of the leading 
aircraft (leaves stronger wake for lower 
airspeed); (iv) larger square ratio of vortex core 
radius to radius of gyration, i.e. larger vortex 
and mass further inboard; (v) larger root chord 
of leading aircraft, leading to larger wake vortex 
strength (20); (vi) smaller viscosity leading to 
slower vortex decay. 

It is convenient to introduce a 
dimensionless time divided by the time (26a) of 
peak vorticity: 
  ( ) ( )2

* 3/ 2 / ,   t t t a tτ η τ φ≡ = Φ = ,        (41a,b) 
so that the roll response forced by the wake 
vortex satisfies: 

( ) τ−τξ−=Φµ+Φ /1 / e ,              (42) 
where the dimensionless aerodynamic damping 
(30) and vortex effect (40) are given 
respectively by: 
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                                  (43b) 
The forced solution of (42) is sought by the 
method of variation of parameters, i.e. as the 
free solution (31) with non-constant 
coefficients: 
( ) ( ) ( ) µτ−τ+τ=τΦ eBA  ,              (44) 

which can be chosen at will. 
Substitution of (44) into (42) yields: 

( ) ( ) ( ) µτ−τ− µ−+µ+=τξ− eBBAAe /1/ ,         (45) 
which is satisfied in particular by: 
                             
( ) 1 1/0,    A B B e e dτ µττ µ ξ τ τ− −= − = − ∫ ,   (46a,b) 

viz. the first arbitrary function is not needed 
(46a), and the second satisfies a first-order 
differential equation (46b), for which a 
particular solution is obtained again by the 
method of variation of parameters: 
( ) ( ) µττ=τ eDB  ;             (47a) 

substitution of (47a) in (46b) specifies the 
function ( )τD  by: 

µτµττ−− =µ−=ττξ− ∫ eDBBdee /11 .           (47b) 
Integration of (47b) and substitution in (47a), 
leads together with (46a) to (44) the forced 
response: 
( ) ( ) τττξττ µττµτ deedeD /11 −−− ∫∫−==Φ ,   (48) 

to the wake vortex. 

7 Time evolution of the forced response 

The total roll response is the sum of the 
free response (33) with the forced responses to 
the ailerons (36) and the wake vortex (41b): 
( ) ( ) ( ) ( )tttt 321 φ+φ+φ=φ .              (49) 

Assuming that the initial bank angle and the roll 
rate are zero there is no free response ( ) 01 =φ t  
in (33), and the total forced response 

( ) ( ) ( )2
0 0 20 :   2 /t t t aφ φ φ φ η= = = +Φ ,      (50) 

consists of: (i) the response to the ailerons, 
given explicitly by (36) in the presence of 
damping , and by (38b) in the absence of 
damping; (ii) the response to the wake vortex, 
which in the presence of damping is given by 
(48), and in the absence of damping is expressed 
in terms of the exponential integral [15]: 
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by (48) with 0=µ : 
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d d e

E d

τµ τ ξ τ τ τ

ξ τ τ

− −= Φ = −

= −

∫ ∫

∫
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in agreement with [8]. 
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Since the dimensionless roll rate in the 
absence of damping (52) is specified by an 
exponential integral of order zero: 

( ) ( ) ∫ ττ=τ=τΦξ− τ−−− deE /11
00

1 /1 ,             (53) 

the comparison with the dimensionless roll rate 
in the presence of damping (48) 

( ) ∫ ττ=τΦξ− µττ−−µτ−− deee /111 ,             (54) 

suggests considering the integral: 
( ) ( )

( )

0

1 1/ 1  /

H e

e e d

µτ

τ µτ

τ τ

τ τ ξ− −

⎡ ⎤≡ − Φ −Φ⎣ ⎦

= −∫
.              (55) 

Expanding the exponential in power series leads 
to: 

∫∑ −−
∞

=

= ττµ τ de
n

H n

n

n
1/1

1 !
,              (56) 

where the coefficients are exponential integrals 
of order n: 

( )
1/

1/ 1 1

0

1/ :              

1/n n T
n

T

T

e d T e dT E
τ

τ

τ

τ τ τ
∞

− − − − −

=

= ≡∫ ∫
,        (57) 

and thus: 

( )τµ /1
!1

n
n

n

E
n

H ∑
∞

=

= .               (58)  

Substituting (58) and (53) in (55) yields: 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

+−=Φ ∑
∞

=

− τµτξτ µτ /1
!

/1
1

0 n
n

n

E
n

Ee ,   (59) 

which specifies the dimensionless roll response: 

( ) ( )∑ ∫
∞

=

−−=Φ
0

 /1
!n

n

n

dEe
n

ττµξτ µτ ,             (60) 

as a series of powers of the damping, with 
exponential integrals of order n  as coefficients. 
If the damping is weak, only the first terms of 
the series are needed, e.g. the first two for 

12 <<µ . 

8 Identical and aligned leading and following 
aircraft 

The forced response to the wake vortex, is 
represented by roll rate and bank angle plotted 
in Figures 2 and 3, for identical leading and 
following aircraft of Boeing 757-200 type. The 
Figure 2 plots (top) the dimensionless roll rate 
(59) and (bottom) the bank angle (60) versus 
dimensionless time 200 ≤≤ τ  corresponding 
(41a) to *200 tt ≤≤  twenty times peak vorticity 
time. It is seen that the roll rate (Figure 2, top) 
increases initially due to the wake vortex 
encounter, and decays ultimately due to roll 
damping; the peak roll rate occurs at 22.2=τ , 
i.e. at about twice the peak vorticity time. Since 
Figure 2 plots (59,60), i.e. the roll response 
(41a,b) with damping, but without aileron 
reflection, it is clear from (39), that, for long 
time +∞→t  or τ>>t , the r.h.s. vanishes, 
leading to: (i) a zero roll rate 0→Φ  as 

+∞→τ  in Figure 2, top; (ii) a constant 
asymptotic bank angle 
( ) ( ) ( ) ∞≡→=Φ φφφτ tt 33  as +∞→τ  in Figure 

2, bottom. The asymptotic bank angle is a 
measure of the effect on the following aircraft of 
the wake of the leading aircraft. The Figure 2 
bottom shows that the bank angle increases 
monotonically with time during the vortex 
encounter to a constant asymptotic value 

∞→Φ φ  as the dimensionless time becomes 
large 10>τ . These results are confirmed in 
Figure 3, by the roll rate (top) peaking at 

st  3.4= after the vortex encounter, and 
decaying to a small value after st  20> , to an 
asymptotic bank angle (bottom) of º5.12=∞φ .  

The Figure 4 shows the contrast between 
the undamped roll response, which diverges 
rapidly, and the damped roll response which 
tends to a constant bank angle. The value 

º5.12=∞φ  is just above the threshold 
º10max =φ  for which airline procedures 

regarding passenger comfort require a go-round 
on approach to land. Since the asymptotic bank 
angle does not include the effect of aileron 
deflection, it is clear that roll control could be 
used to keep the bank angle below the threshold. 
The Figure 5 shows the sum of the first 1+N  
terms of the series (60), viz.: 
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( ) ( ) ( )∑ ∫
=

−−=Φ≡
N

n
n

n
NN dEe

n
t

0
3  /1

!
ττµξτφ µτ , (61) 

for several values of  N . The first two terms 
1=N  of the series solution (60) to ( )µO  give 

an error of less than 20% in the bank angle 
response, and the first three terms 2=N  or 
( )2µO  give an error of less than 2%. This can 

be confirmed from Table II, which indicates the 
asymptotic bank angle ( ) ( )∞≡∞

NN
3φφ  calculated 

with 1+N  terms (61) of the series (60), and 
shows rapid convergence for 2≥N . The Figure 
6 shows the bank angle response for the same 
aircraft, replacing the actual roll damping 

5.0=µ , by larger and smaller hypothetical 
values, up to the double and a half, and half-way 
between. It is clear that stronger damping leads 
to a smaller asymptotic bank angle, which is 
established sooner, as indicated in Table III.  
 
 

 
 
Figure 1- Interaction of following aircraft with two wing 
tip vortices of leading aircraft, with parallel axis and 
asymmetric positions and different radii and vorticities. 
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Figure 2- Roll rate (top) and bank angle (bottom), as 
function of  time made dimensionless by dividing by peak 
vorticity time, for wake vortex encounter between 
identical leading and following aircraft of type (Boeing 
757-200). 
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Figure 3-  Roll rate (top) and bank angle (bottom) as a 
function of time for wake vortex encounter between 
leading and following aircraft both of the same type 
(B757-200).  
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Figure 4-  Bank angle as a function of time for Boeing 
757-200 encountering the wake of a similar aircraft, 
without (dotted line) and with (solid line) damping.  
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Figure 5-  Bank angle response due to wake vortex 
encounter of identical leading and following Boeing 757-
200 aircraft, calculated from the exact series solution (60), 
truncated with 0,1,2,5,10N = terms. 
 

0 5 10 15 20 25 30 35
t@sD

0

5

10

15

20

25

φ@
”D

 
 
Figure 6-  Exact bank angle response of identical leading 
and following Boeing 757-200 aircraft, replacing the roll 
damping coefficient 5.0=µ  by hypothetical larger and 
smaller values. 
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