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Abstract

The analysis of non-linear dynamical systems
can be based on data from either a mathemati-
cal model or an experiment. Mathematical mod-
els for aeroelastic response associated to the dy-
namic stall behaviour are very hard to obtain. In
this case, experimental or flight data seems to
provide a more suitable basis for non-linear dy-
namical analysis. Dynamic systems techniques
based on time series analysis can be adequately
applied to non-linear aeroelasticity. When ex-
perimental data are available, state space re-
construction methods have been widely consid-
ered. Moreover, the Lyapunov exponents pro-
vides qualitative and quantitative characteriza-
tion of nonlinear systems chaotic behavior. A
positive Lyapunov exponent is a strong signa-
ture of chaos. This work presents the applica-
tion of Lyapunov exponents calculation for non-
linear aeroelastic responses, in order to predict
chaotic behavior. State space reconstruction has
been also performed by means of the method of
delays. An aeroelastic wing model has been con-
structed and tested in a closed circuit wind tun-
nel. The wing model has been mounted on a
turntable that allows variations in the wing inci-
dence angle. Structural deformation is captured
by means of strain gages thereby providing infor-
mation on the aeroelastic response. The method
of delays has been used to identify an embedded
attractor in the state space from experimentally
acquired aeroelastic response time series. To ob-

tain the time delay value to manipulate the time
series during reconstruction, the autocorrelation
function analysis has been used. For the attractor
embeeding dimension calculation the correlation
integral approach has been considered. To predict
positive Lyapunov exponent two methods have
been considered. Data filtering has been aldo
considered and the effects on Lyapunov expo-
nents calculation are discussed. This preliminary
work has been successful in predicting chaotic
structures from aeroelastic time series. Future
applications are towards robust methodologies
that can provide better physical interpretation on
chaos in aeroelastic systems.

1 Introduction

The treatment of aeroelastic phenomena with lin-
ear models have provided a reasonable amount
of tools to the assessment and analysis of most
of the adverse behaviour [1], [2]. Nonetheless,
modern aviation has shown advances that lead
to lighter and faster aircraft, thereby increas-
ing the danger for severe aeroelastic problems.
For instance, transonic flight is surrounded by a
complex mixture of flows experiencing different
speeds, aggravated by shock waves appearance.
Aeroelastic phenomena associated to those com-
pressibility effects introduce a great deal of non-
linear effects, and can not be predicted with linear
models [3]. Highly separated flows also lead to
complex aeroelastic phenomena that are difficult
to model [4].

Non-linear aeroelasticity research has re-
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cently become more relevant. Various ap-
proaches have been taken to model non-linear
aeroelastic behaviour. In some cases the complex
unsteady aerodynamics has been resolved with
CFD methods [3], or by other methodologies to
reduce the computational effort [4], [5]. How-
ever, the majority of non-linear aeroelastic mod-
els still need to be validated or checked. In this
case, experimental data is of great importance,
but it is not common to find significant non-linear
aeroelastic data available.

Among the possible behaviour that a non-
linear system presents one can assess are many
equilibrium points, bifurcations, limit cycles,
chaos, etc. Bifurcations and limit cycles occur
mainly in transonic aeroelastic responses or when
introducing non-linear structural dynamics [6].
Moreover, chaotic motion almost certainly ap-
pears in highly separated flows, such as the case
of dynamic stall [7].

The analysis of non-linear dynamical systems
can be based on data from either a mathemati-
cal model or an experiment. A variety of mathe-
matical tools have been available to explore and
analyse such possible non-linear features, which
can also be applied to aeroelastic problems [8].
Mathematical models for aeroelastic response as-
sociated to the dynamic stall behaviour or stall-
induced motion are very hard to obtain. In this
case, experimental or flight data seems to provide
a more suitable basis for non-linear dynamical
analysis. Experimental data furnishes a sequence
of measurements that corresponds to a time series
with the embedded system dynamics.

Typical dynamical systems responses can be
assessed by means of reconstructing the state
space from time series using the so-called method
of delays (MOD). This technique has been shown
to be robust enough to characterize non-linear dy-
namic systems, as well as to analyze chaotic be-
haviour. The fundamentals of this method have
been introduced by Packard [9] and Takens [10].
The MOD uses delayed values of the time se-
ries to build a new coordinate system. This leads
to the reconstruction of the state space for the
observed dynamical system and any embedding
attractor of interest in the true state space can

be reconstructed. The main task of the MOD
is then to provide adequate values for the time
delays and the so-called embedding dimension
(attractor dimension). Several approaches to ob-
tain the MOD parameters have been investigated.
The aim of this paper is to present techniques
from the theory of non-linear time series analy-
sis for the investigation of experimentally ac-
quired non-linear aeroelastic phenomena. The
characterization of the non-linear behaviour of
stall-induced oscillations of an aeroelastic wing
is achieved using the method of delays, leading
to the state space reconstruction. An aeroelastic
wing model has been constructed and tested in a
wind tunnel. The wing model has been mounted
on a turntable that allows variations in its inci-
dence angle. Structural deformation is captured
by means of strain gages, thereby providing in-
formation on the aeroelastic responses. The test
cases correspond to aeroelastic response time se-
ries at specific strain gages points due to oscil-
latory motions of the turntable. A self-sustained
oscillatory motion observed when the turntable
is left free to move in the flow field, is also con-
sidered for analysis. The parameters for apply-
ing the method of delays are the time delay and
the embedding (attractor) dimension. The auto-
correlation function has been used to determine
the time delays, while the correlation integral is
used to obtain the embedding dimension. Evolu-
tions of reconstructed state spaces, with respect
to flow and motion parameters, are presented and
discussed. Two methods based on reconstructed
spaces have been considered to seatch for posi-
tive Lyapunov exponents and the comparative re-
sults are presented.

2 State space reconstruction

Consider a dynamical system

x(k+1) = F(x(k)) (1)

wherex and F are n-dimensional vectors. The
embedding theorem attributed to Takens [10] and
Mañé [11], established that if one is able to ob-
serve a single scalar quantity, sayh(·), of some
function g(x(k)) then the geometric structure of
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the system dynamics can be unfolded from this
set of scalar measurementsh(g(x(k)) in a space
made out of new vector

yk = [h(x(k)) h(g1(x(k))) h(g2(x(k))) . . .

h(gTd−1(x(k)))]T (2)

which define motion in ad-dimensional space
[12]. If d is large enough, for smooth func-
tions h(·) andg(·) it is shown that many impor-
tant properties ofx(k) are reproduced in the new
space given byyk without ambiguity [13].

Let s(k) denote the actual measured variable.
If one chooseh(·)=s(k) and gi(x(k)) = x(k +
Ti) = x(t0+(k+Ti)τs) with τs being the sampling
time, the new vector forTi = iT takes the form

yk = [s(k) s(k+T) s(k+2T) . . .

s(k+T(d−1)]T. (3)

The space constructed by using the vectorsyk

is called the reconstructed space, the parameter
T is called time delay andd the embedded di-
mension. According to the theory of state space
reconstruction, the geometric structure of an at-
tractor can be observed in thed-dimensional re-
constructed space ifd ≥ 2da +1, with da the di-
mension of the attractor of interest. The central
issue in the reconstruction of the state space is the
choice of the time lagTτs along with the dimen-
siond.

The time lagTτs is usually chosen as the
quarter of the period of the predominant fre-
quency in the Fourier spectrum of the measured
variable or equivalentlyT is found as the first
zero of the linear autocorrelation function

C(T) = ∑
k

[s(k)−s][s(k+T)−s] (4)

wheres= 1
N0

N0

∑
k=1

s(k) with N0 is the total number

of sampled points.
There are different methodologies to assess

the embedding dimension. When dynamical sys-
tem responses are obtained from experiments,

noise contamination is practically inevitable. The
determination of the MOD parameters must fol-
low specific procedures in order to guarantee
proper state space reconstruction. The methodol-
ogy considered here uses the saturation of system
invariants, that is, the invariance properties of an
attractor calculated from the reconstructed trajec-
tory does not change by increasingd. To estimate
d, the average fraction of the number of points
on the attractor with interdistances less thanr are
calculated from the correlation integralC(r) [8]:

Cd(r) =
1

M2

M

∑
i, j=0
i 6= j

H(r−
∣∣yi −y j

∣∣) (5)

where M = N0 − T(d− 1) and H(t) is the
Heaviside function, that is:

H(u) =
{

1 if u≥ 0
0 if u < 0

. (6)

The|·| is taken as the Euclidean distance

∣∣yi −y j
∣∣ =

√√√√ d

∑
k=1

(si+T(k−1)−sj+T(k−1))2. (7)

The correlation integralCd(r) is a function of
r and the embedding dimensiond. The slope of
log10Cd(r) versus log10r is calculated as a func-
tion of d over a sufficient range for small interdis-
tancesr and the embedding dimensiond is thus
obtained when the slope becomes independent of
d. The slope tends to saturate into a value called
the correlation dimension.

3 Lyapunov exponents

The Lyapunov exponents are essentially a mea-
sure of the average rates of expansion and con-
traction of point in trajectories in phase space.
They are asymptotic quantities, defined locally
in state space, describing the exponential rate at
which a perturbation to a trajectory of a system
grows or decays with time at a certain location in
the state space [8].
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Given a continuous dynamical system in an
n-dimensional phase space, the Lyapunov expo-
nents can be monitored in terms of the long-term
evolution of an infinitesimaln-sphere of inicial
conditions. The infinitesimaln-sphere will be-
come ann-ellipsoid due to the locally deforming
nature of the flow [14]. Theith one-dimensional
Lyapunov exponent is them defined in terms of
the length of the ellipsoidal principal axispi(t):

λi = lim
t→∞

1
t

log2
pi(t)
pi(0)

where theλi are ordered from largest to smallest.
The Lyapunov exponents signs provide a

qualitative picture of a system dynamics. In a
three-dimensional continuous dissipative dynam-
ical system the only possible spectra, and the at-
tractors can be described as:(+,0,−), a strange
attractor;(0,0,−), a two-torus;(0,−,−), a lim-
ite cycle; and(−,−,−), a fixed point [14].

4 Experimental Apparatus and Database

The aeroelastic wing comprises a wind tunnel
model of an arbitrary straight rectangular semi-
span wing. The wind tunnel facility presents
a testing chamber with about 2m2 cross-section
area. The maximum flow speed in the testing
chamber is 50ms with turbulence level of 0.3%.
The wing model has been fixed to a turntable that
allows incidence variation to the wing. The wing
semi-span is 800mmand the chord is 290mm.

The model main structure has been con-
structed using fiber glass and epoxy resin in the
shape of a tapered plate. The taper ratio is of
1 : 1.67, where the width at the wing root is
250mm. To provide aerodynamic shape high den-
sity foam and wooden cover have been used. The
NACA0012 airfoil from wing’s root to tip has
been used. In order to minimize as much as pos-
sible the effects of the skin to the wing structure
stiffness, both foam and wooden shell have been
segmented at each 100mmspanwise.

Figure 1 illustrates the experimental appara-
tus with indications of the strain gages locations
inside the wing model.

Fig. 1 Experimental set-up and strain gages lo-
cations.

Incidence motion is achieved with an electri-
cal motor mounted beneath the turntable. The
motor actions are controlled by software inte-
grated to the acquisition system. Strain gages
have been fixed to the plate surface to furnish
proper measurement of the dynamic response of
the wing main structure. The strain gages have
been distributed along three lines spanwise. The
first and last lines present three strain gages each,
all to capture bending motions. The intermedi-
ate line presents three strain gages for torsional
motion.

Data acquisition and the motion control of
the servo motor have been achieved by us-
ing a dSPACEr DS1103 PPC controller board
and real-time interface for SIMULINKr. The
HBMr KWS 3073 amplifier for strain gage
bridge energizing has been used to acquire and
amplify the strain gage signals. The resulting sig-
nals are directly acquired by the dSPACEr con-
troller board, allowing subsequent data storage
into a PC compatible computer.

5 Results and Discussion

During experiments different turntable motions
have been executed and the respective aeroelastic
responses at each strain gage point have been ac-
quired. Prescribed turntable motions correspond
to oscillatory and random ones, and they have
been also carried out at different airspeeds (from
9 to 16.5m

s , approximately). Oscillatory motions
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have been run at relatively low amplitude values
(maximum of 5.5◦), but such oscillations have
been considered around two average angles, that
is, zero and 9.5◦. For the cases where the average
oscillatory angle is about 9.5◦, highly unsteady
separated flow is occuring. These cases furnish
an adequate database for non-linear phenomena
investigation.

The randomly generated motions follow the
same strategy. Tests have been also proceeded
for static turntable at different incidences and for
free turntable at a range of flow speeds. For the
last one, it has been observed a peculiar self-
sustained oscillatory motion at higher angles of
attack.

The techniques for assessing the time delay
and embedding dimension have been used to pro-
vide the basic parameters for state space recon-
struction. Figure 2 shows the time delay determi-
nation by means of the autocorrelation function.
The time delay is taking where the autocorrela-
tion function becomes zero. Figure 3 illustrates
the embedding dimension determination via the
analysis of the correlation integral and its satura-
tion as the dimension increases. Saturation can
be observed when the curves of log10Cd(r) ver-
sus log10r for each dimension present a similarity
in their slopes.
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Fig. 2 Time delay determination.

State space reconstruction has been achieved
and the non-negative Lyapunov exponent was
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Fig. 3 Embedding dimension determination.

calculated for stall-induced aeroelastic responses
when the turntable is free to move.

When the turntable is left free, the aerody-
namic forces and other flow effects are the re-
sponsable for the wing motion. It has been ob-
served a peculiar self-sustained oscillatory mo-
tion of the wing, typical of a limit cycle. The
oscillatory motion has kept the amplitude con-
fined in between 4.0◦ to 14.0◦ turntable inci-
dence angle. In these cases the stall has induced
a deep break to the increasing pitching moment
that builds up for the free wing motion immerse
into the flow. Both incidence angle and frequen-
cies increase as flow speed also increases.

The torsional measurement time series, that
has been acquired from the strain gage at the
point 4 (Fig. 1), has been used to reconstruct the
state space. The experiments have been carried
out for six different freestream velocities and the
resulting time delays for these cases are summa-
rized in the Tab. 1, whereU∞ is the freestream
velocity. The embedding dimension is found to
be 3, which leads to the reconstructed vectors as
yk = [x(k) x(k+T) x(k+2T)]T.

Figure 4 shows the evolution in terms of
freestream velocity of the reconstructed state
spaces. Periodic motion is evident from the ob-
tained trajectories. The bouncing phenomenon is
also observed in these cases, which characterizes
the existence of a resonance mode. The effect of
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Table 1Parameters for free turntable.

Case U∞(m
s ) time delay

1 9.42 27
2 11.46 24
3 13.49 22
4 14.29 21
5 15.13 20
6 16.75 18

stall inducing the breakdown in pitching moment
may be the reason for such phenomenon. The re-
constructed state spaces depict a closed orbit that
corresponds to a limit cycle.
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Fig. 4 Evolution with respect to the freestream
velocity of reconstructed state spaces for free
turntable cases.

Figure 5 presents the reconstructed state
space without low pass filtering and Fig. 6
presents the reconstructed state space with low
pass filtering for the case 5 for free turntable (Tab.
1).

Since a positive maximal Lyapunov exponent
is a strong signature of chaos, it is of considerable
interest to determine its value for a given time se-
ries [15]. The first algorithm for this purpose was
suggested by Wolf et al [14]. Table 2 presents
the Lyapunov exponents obtained for the case 5
in free turntable with and without filtering using
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Fig. 5 Reconstructed space state for case 5 with-
out low pass filtering.
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Fig. 6 Reconstructed space state for case 5 with
low pass filtering.

the method proposed by Wolf et al[14].

Table 2 Lyapunov exponents obtained using the
method by Wolf et al [14]

Lyapunov Exponents
without filtering 0.34441

with filtering 0.31661

The method proposed by Wolf et al [14] is ef-
ficient to characterize the chaotic behaviour, but
it is limited to the non-negative Lyapunov expo-
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nent and it is impossible calculate the other sys-
tem’s invariants. Moreover, this algorithm does
not allow one to test for the presence of exponen-
tial divergence, but just assumes its existence and
thus yields a finite exponent for stochastic data
also, where the true exponent is infinite [15].

Rosenstein et al. [16] and Kantz [17] had de-
veloped independently, similar algorithms based
in the Wolf’s algorithm. In these works they con-
sider that the divergence between nearby trajecto-
ries in a determinated direction oscillates through
the sinal. It tests directly for the exponencial di-
vergence and thus allows us to decide whether it
really makes sense to compute a Lyapunov expo-
nent for a given data set. This algorithm allows
to calculate the other invariants of the system. It
seems to be adjusted in the calculation of the Lya-
punov exponents in time series.

The Lyapunov exponent have been obtained
using the method proposed by Roseinstein et al
[16]. Table 3 presents the Lyapunov exponents
obtained for the case 5 in free turntable with and
without filtering.

Table 3 Lyapunov exponents obtained using the
method by Rosenstein et al [16]

Lyapunov Exponents
without filtering 0.34405

with filtering 0.52764

In the Wolf’s method [14], if the data are
noisy it is important that the initial distance be-
tween the reference trajectory and a new neigh-
bour are larger than the noise level, otherwise
fluctuations due to noise would be interpreted as
deterministic divergence [17].

Another drawback is that the embedding di-
mension is an important parameter. For small di-
mension values, the trajectories may diverge sim-
ply because they are not neighbours in the true
phase space.

The choice of the time delay and replace-
ment steps is also very important to calculate of
the Lyapunov exponents. The choice of the re-
placement steps depends on additional parame-

ters. Accurate exponent calculation therefore re-
quires the consideration of the following inter-
related points: the desirability of maximizing
evolution times, the tradeoff between minimiz-
ing replacement vector size and minimizing the
concomitant orientation error, and the manner in
which orientation errors can be expected to accu-
mulate.

Finally, in none of the two methods the filter-
ing has modified the nature of the results. The
positive exponents obtained by the two methods,
indicate the presence of chaos. However, the dif-
ferent results between the methods will be stud-
ied on going research.

6 Concluding Remarks

Techniques from the theory of time series analy-
sis, in the context of non-linear systems, is
used to investigate experimentally acquired non-
linear aeroelastic phenomena. An aeroelastic
wing model has been tested in wind tunnel.
Aeroelastic responses have been obtained from
strain gages outputs. The wing is mounted on a
turntable that allows variations to the incidence
angle. The aeroelastic time series are related
to oscillatory and free turntable motions. The
aeroelastic responses studied in this paper are in-
fluenced by highly separated flow fields. The
method of delays is employed and for the oscilla-
tory turntable motion a complex evolution of the
reconstructed state space is observed when re-
duced frequency varies for the same freestream
velocity. It is possible to infer that bifurcation
and chaotic behaviour are related to the aeroelas-
tic system. It has been observed that when the
turntable is left free in the aerodynamic flow, a
self-sustained oscillation happens. In this case,
the existence of the bouncing phenomenon, char-
acterizing a resonance mode, is observed. The re-
constructed attractors depict a closed orbit corre-
sponding to a limit cycle. The non-negative Lya-
punov exponents obtained by two different meth-
ods indicate the occurrence of chaos.
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