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Abstract: 

Collaborative optimization (CO) and 
concurrent sub-space optimization (CSSO) are 
two typical multidisciplinary optimization (MDO) 
algorithms. Both of them are bi-level approaches 
including one system-level optimization and 
several discipline-level optimizations, which 
have been proved to be effective by some 
examples. However, this paper reveals the low 
computational efficiency of these two algorithms 
caused by discipline-level optimizations. To 
solve this problem, the computational framework 
of CSSO is analyzed, which indicates that the 
purpose of the discipline-level optimizations is 
only to provide good sample points for 
constructing response surface (RS) models. 
According to this important conclusion, the 
uniform design (UD) theory was introduced into 
CSSO to develop a more practical algorithm 
named discipline-level analysis system-level 
optimization (DASO). In this algorithm, 
discipline-level optimizations are replaced by 
UD to provide good sample points, which 
dramatically reduces the computational amount. 
In the last section, an analytical example and a 
transporter wing design problem are 
successfully solved by DASO. 

1 Introduction 

In conventional optimization strategy, an 
optimizer directly deals with a system analysis, 
that is, at each iteration, a system analysis is to 
be performed at least one time. This strategy is 
suitable for a simple system whose analysis is 
also simple. However, for a complex system, 
this strategy will cause low computational 
efficiency. Take a wing structural design for 
example. For a complex aircraft wing structure, 
the simplified beam theory is no longer 
applicable; instead, the finite element method 
(FEM) has to be utilized. It normally takes 
several hours to perform a structural FEM 
analysis for a wing even after adopting many 
simplifications. In the wing structural 
optimization design, at each iteration, if we have 
to do such an analysis at least one time until 
convergence is achieved, we can imagine how 
time-consuming and inefficient this optimization 
process is. For a multidisciplinary problem, the 
condition is even worse because some other 
complex disciplinary analyses such CFD also 
have to be performed at each iteration. Moreover, 
complex information exchanging exits between 
different disciplines [1]. 

Multidisciplinary optimization (MDO) is a 
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promising strategy for solving complex 
optimization design problems. Collaborative 
optimization (CO) and Concurrent subspace 
optimization (CSSO) are two typical 
multidisciplinary optimization algorithms, which 
have been proved to be effective by some 
examples [2-4]. However, in this paper it will be 
shown that these two algorithms still have some 
shortcomings in solving a complex design 
problem due to discipline-level optimizations. 
By analyzing the iterative process of CSSO, a 
new computational framework based on the 
uniform design (UD) theory is put forward. In 
the last section an analytical example and a 
transporter wing design shows the effectiveness 
of this new method. 

2 Computational Problems 

  Both CO and CSSO are bi-level approaches 
including one system-level optimization and 
several subsystem optimizations. In CO and 
CSSO, an original complex optimization 
problem is decomposed into several relatively 
simple problems. This bi-level strategy has 
proved to be effective by some demonstrated 
examples. But for a complex design, the 
problem of low computational efficiency still 
exists in CO and CSSO. The analysis is as 
follows. 

Consider a wing design with two disciplines 
of aerodynamics and structure. In CSSO, the 
original design problem is decomposed into an 
aerodynamic optimization, a structural 
optimization and a system-level optimization. In 
the system-level optimization, all disciplinary 
constraints are replaced by response surface (RS) 
model constraints, that is to say, in the 
system-level optimization no complex 
disciplinary analysis is necessary. However, in 
the structural optimization, although the 
aerodynamic analysis is replaced by RS model, 
the optimizer still directly deals with full FEM 

analyses. Similarly, in the aerodynamic 
optimization, the optimizer still directly deals 
with full CFD analyses. In CO, it is the same 
condition that although no complex disciplinary 
analysis is necessary in system-level 
optimization, in aerodynamic optimization and 
structural optimization, optimizer still directly 
deals with CFD and FEM analyses respectively. 
As a result, the above-mentioned problem of low 
computational efficiency still exists in CO and 
CSSO. 

2 Analysis of the CSSO Computational 
Framework 

It has been concluded from the above analysis 
that in CO and CSSO, the problem of low 
computational efficiency still exists due to 
discipline-level optimizations. In this section, we 
will reveal the purpose of the discipline-level 
optimizations in CSSO by examining the 
iterative process of CSSO, shown in Fig.1 [4]. 

 
Fig.1. Iterative Process of CSSO 

There are several notable considerations in the 
CSSO computational framework: 
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• The convergence criterion is set for 
system-level optimization and the results 
are also provided by system level  

• No discipline-level optimization (also 
called subspace optimization) but RS 
model directly links with system-level 
optimization. 

From the above two points we can find an 
interesting problem that since the computational 
results are provided by system-level 
optimization and no discipline-level 
optimization relates to system-level optimization, 
what is the purpose of discipline-level 
optimizations? 

To answer this question, let’s investigate 
the computational process of CSSO shown in 
Fig.1. After the discipline-level optimizations 
are finished, system analyses are performed at 
the discipline-level optimum design points and 
the results of these analyses are added to the 
system database. Then a refined RS model is 
constructed based on the expanded database. 
Next, a system-level optimization is performed 
by using the refined RS models. Thus, it is clear 
that the purpose of each discipline-level 
optimization is just to provide a sample point to 
expand the system database. Compared with 
random selected sample points, the sample 
points provided by the discipline-level 
optimizations are generally closer to the real 
optimum design point. Using these sample 
points to construct RS model is helpful to 
accelerate the convergence. However, it is an 
expensive cost to obtain such good sample 
points because we have to perform many 
discipline-level optimizations.  

Thus, if we can obtain good sample points 
without discipline-level optimization, 
computational cost will be dramatically reduced. 
Based on such a concept, an improved CSSO 
computational framework named 
discipline-level analysis system-level 
optimization (DASO) is put forward. DASO 

exploits the uniform design theory and the main 
difference between DASO and CSSO is that in 
DASO what all optimizers deal with are only RS 
models instead of disciplinary analyses. Details 
of this method will be further discussed in the 
next section.  

3 DASO Method 

3.1 Uniform Design Theory 

It is easy to understand that for the same 
number of sample points, a set of sample points 
which are uniformly scattered in the design 
space can more comprehensively represent the 
original system. Therefore, it is reasonable to 
utilize the uniformly distributed sample points to 
construct a global approximate model. 

For a one-dimensional design space, it is 
intuitive to understand the uniformity of 
distribution and it is easy to determine a set of 
uniformly scattered sample points. However, for 
a general multi-dimensional problem, how to 
measure the uniformity of distribution and how 
to obtain a set of uniformly scattered sample 
points are two complex mathematical problems. 
Uniform design theory is a powerful tool to 
solve these problems. 

A brief description of UD theory is as follows. 

Suppose }1,{ nkX k L= are n points in an 

s-dimensional design space sC , where 

ksk xxX )( 1L= . For any X in sC , let 

sxxxXv ***)( 21 L= be the volume of a 

hyper-rectangle ],0[ X . xn  is the number of 

points of }1,{ nkX k L=  which lies in ],0[ X . 

Then  
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is called the discrepancy of }1,{ nkX k L=  in 

sC . A uniform design requires that the absolute 

value of ratio of the number of points lying in 

the hyper-rectangle ],0[ X  and the total number 

of points of the set minus the volume of the 
hyper-rectangle should be small. 

To determine a set of uniform design points is 
also an optimization process, which involves 
some complex mathematical theories. 
Fortunately, like orthogonal design tables, tables 
of uniform design have been constructed, which 
is convenient for engineering application. Table 
1 illustrates a 3-factor 4-level and 8-experiment 
UD table U8(43). For the details of UD theory, 
references [5,6] are recommended.  

Table1 UD Table U8(43) 
No. x1 X2 x3 

1 1 1 3 

2 1 3 2 

3 2 2 1 

4 2 4 4 

5 3 2 4 

6 3 4 1 

7 4 1 2 

8 4 3 3 

3.2 Framework of DASO 

As shown in Fig.2, in this method, the sample 
points are firstly selected by using uniform 
design sampling; then the system analyses at 
these points are performed and the results are 
used to build the database of the object of design; 
next, the RS model is constructed and the 
optimization is performed based on the RS 
model. If it is not satisfy the convergence 
criterion, system analysis is performed at the 
optimum point and the results are added to the 

database. Then a refined RS model is 
constructed based on the expanded database and 
a system-level optimization is performed based 
on the refined RS model. The above-described 
iteration is repeated until convergence is 
achieved.  

Compared with the framework in Fig.1, in 
Fig.2, optimizers are completely separated from 
disciplinary analysis; that is to say, during each 
optimization process only RS model evaluation 
is needed instead of complex disciplinary 
analyses, which dramatically decrease the 
computational amount. Moreover there is 
another advantage for this strategy that it avoids 
the complex interfaces between optimizer and 
different disciplinary analyses, which facilitates 
programming. 

 
Fig.2. Framework of DASO 

4 Examples 

4.1 An Analytical Example  

This is an analytical example taken from [4]    

min  f = 2
13

2
2

yeyxx −+++               (2) 
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1 ≥−=

yc                  (3) 
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1 2
2 ≥−=

yc                (4) 

232
2

11 2.0 yxxxy −++=      (5) 

        3112 xxyy ++=           (6) 

 100,100,1010 321 ≤≤≤≤≤≤− xxx  

where (5) and (6) represent two different 
disciplinary analyses respectively. The provided 
optimum design point is (3.03 0 0) 

A set of 8 uniformly distributed Sample points 
is chosen, shown in table 1. RS model is 
constructed by neural network. Fig.3 is the 
convergence history of DASO and the optimum 
point is (3.0024 0 0). Compared with CSSO, the 
computational amount of DASO is much less 
because of the elimination of discipline-level 
optimizations. 184 disciplinary analyses are 
needed in CSSO, while in DASO only 82.  
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Fig.3 Convergence History 

4.2 Transporter Wing Design 

In this example, the DASO method is applied 
to a transporter wing design problem with two 
disciplines of aerodynamics and structure. The 
design point is the cruise condition: altitude 
10000m, velocity 0.76M 

The optimization problem is stated as follows 

min )(XW  

s.t.  0)(1 1 >−
bσ

σ X
  0)(1 2 >−

bσ
σ X

 

0
)(

1 3 >−
bσ

σ X
  0)(1 4 >−

bσ
σ X

 

0)(1
al

>−
δ
δ X

  0)(1
al

<−
r

r X
  (7) 

Where )(XW  is the weight of the wing; 1( )σ X  

is the maximum stress of the upper skin; 2 ( )σ X  

is the maximum stress of the lower skin; 

3 ( )σ X is the maximum stress of the front spar; 

4 ( )σ X  is the maximum stress of the rear spar; 

bσ is the material allowable stress; ( )δ X is the 

tip displacement; aδ  is the allowable 

displacement; ( )r X  is the lift-drag ratio; ar  is 

the allowable lift-drag ratio.  
After mathematical derivation, the objective is 

equivalent to the minimization of the material 
volume of the wing.  

The design variables are shown in table 1. 
Table 1 Design Variables 

Design variables Upper bounds Lower bounds 

Span l/m 18 12 
Sweepback angle θ/rad 0.611 0.349 
Taper ratioλ 0.4 0.2 
Dihedral angleφ/rad 0.122 0 
Thickness of upper skin d1/mm 25 1 
Thickness of lower skin d2/mm 25 1 
Thickness of front spar d3/mm 25 1 
Thickness of rear spar d4/mm 25 1 

Fig.4 and Fig.5 illustrate the aerodynamic 
analysis model and the structural analysis model 
respectively. The aerodynamic analysis is 
performed by the Quasi-Simultaneous 
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Viscous-Inviscid method; the structural analysis 
is performed under ANSYS environment.  

The design problem is solved successfully by 
the DASO method. The iterative process is 
shown in Fig.6.   

 

 

 

Fig.4. Aerodynamic Model 

 

 

 

          Fig.5. Structural Model 
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Fig.6. Convergence History 

5 Conclusion 

1 For a complex system design, optimizer 
directly dealing with disciplinary analysis will 

cause low computational efficiency. 
2 In the disciplinary optimizations of CO and 

CSSO, optimizer still directly deals with 
disciplinary analysis, which makes CO and 
CSSO inefficient in solving complex problems  

3 By analyzing the CSSO iterative process, it 
is concluded that the purpose of discipline-level 
optimizations in CSSO is only to provide good 
sample points. 

4 Based on this conclusion, framework of 
DASO is put forward by using UD theory. In 
this framework, all disciplinary analyses are 
performed outside the optimization process, 
which dramatically lowers the computational 
cost.  

References 

[1] Alexandrov N. M., Lewis R. M. Analytical and 
computational aspects of collaborative optimization. 
NASA TM-2000-210104 

[2] Sobieski, I., Kroo, I.. Aircraft design using 
collaborative optimization. AIAA Paper 96-0715, 
1996 

[3] Braun R. D., Moore A. A., Kroo I. M. Collaborative 
approach to launch vehicle design. Journal of 
Spacecraft and Rockets, Vol. 34, No.4, pp478-486 

[4] Sellar R. S., Batill S. M., Renaud J. E. Response 
surface based, concurrent subspace optimization for 
multidisciplinary System. AIAA Paper 96-0714, 1996 

[5] Fang K. T. Theory, method and applications of the 
uniform design. International journal of reliability, 
quality and safety engineering. Vol.9, No.4, 2002, pp 
305-315 

[6] Jing M. E., Hao Y., Zhang J. F., Ma P. J. Efficient 
parametric yield optimization of VLSI circuit by 
uniform design sampling method. Microelectronics 
Reliability, Vol.45, No.1, 2005, pp 155–162 

 

 
 
 


