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Abstract  

The executive gears of aircraft control system 
are its crucial elements. In this work we  discuss 
over the operation and the joint action of 
aircraft longitudinal control system units. We 
introduce: the models of friction in kinematics’ 
peers of control system, the model of free – play 
models, as well as the model of 
servomechanisms dynamics, regarding the 
limitations putting on movement of individual 
executive units of arrangement of elevator 
control system. In this paper we consider 
stability and bifurcation analysis based on 
nonlinear description of the aircraft dynamics 
to  aid in the design of reconfigured controllers 
for actuator failure accommodation  We present 
the computational tools required for stability 
and bifurcation analysis. These tools for design, 
validation and verification are illustrated using 
a full envelope model of the Su-22M aircraft. 
We use continuation methods to identify 
bifurcation points of the Su-22 model in straight 
and level flight, for the nominal system and 
various single actuator failure situations.. 

1. Introduction 
 Faults such as actuator failures in aircraft 
result in significant deviation from the nominal 
dynamics and may cause departure in to highly 
nonlinear regimes. There is need for the 
development of relevant nonlinear analysis and 
simulation tools to aid the design and 
verification of reconfigured control laws. Since 
the impaired aircraft operate with a restricted 

maneuverability envelope relative to fully 
functional vehicles it is necessary to be able to 
evaluate post failure flight control system 
performance. Understanding the behavior near 
operational limits and developing control and 
recovery strategies for these circumstances is 
fundamental to achieving flight safety goals. 
The problem of flight control reconfiguration 
following actuator failure has been formulated 
as a nonlinear regulator problem (see for 
example refs. [1, 2, 11, 24]). The post-fault 
controller uses the remaining functional 
actuators. It is designed to regulate key flight 
parameters while rejecting the disturbance 
induced by the failed actuator. The idea is that 
the pilot would maneuver the impaired aircraft 
by specifying the desired flight parameters. The 
post fault system dynamics can differ 
significantly from normal conditions, and the 
aircraft can be expected to operate within 
limited stability boundaries. The ability of the 
impaired aircraft to maneuver needs to bee 
valuated. This can be accomplished by 
analyzing the aircraft equilibrium point 
structure. 
Using a continuation method the equilibrium 
surface is generated by varying a single 
parameter such as airspeed or flight path angle 
[9, 14, 15, 16, 18, 22]. Thus, a co-dimension 
one surface is obtained in the space of states and 
(functional) controls. On this surface we 
identify: 
1. points at which stability is lost, 
2. functional actuator limits, 
3. static bifurcation points. 
The most binding of these identify the limits of 
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variability associated with the continuation 
parameter. Thus, we can identify the 
maneuverability envelope associated with any 
failure. 

2  Mathematical model of aircraft motion 

2.1 Modeling of\actuator and control system 
The servo-actuators are initially designed to 
provide hydraulic power to aid the pilot in the 
movement of various aircraft controls. All 
actuators work on the same principle such of 
them usually include a cylinder where a piston 
is free to move under the action of the high-
pressure fluid. Such actuators usually includes 
an actuating piston (cylinder, see figure 1), a 
multi-port flow control valve, check valves and 
relief valves together with connecting linkages. 

 
Fig. 1 The simplified model of the elevator’s hydraulic 

servo-actuator 

The construction of a servo-actuators differ 
from one to the another depending on their 
operational requirements. They can be hydraulic 
actuators, mechanically controlled, electro 
hydraulic, electrically controlled or electrical 
actuators, which is far different in construction 
than the others. The hydraulic servo-actuators 
play an important role in the control and 
dynamics of the aircraft, especially in the 
longitudinal control. 
During the process of creating or deriving 
mathematical models, it is important to that the 
modeler has a clear idea of what the model is 
for, and that he states this together with his 
definition of his model. It is important because 
the purpose of the model influences its form and 
quality. Many systems are strictly governed by 
equations, which may often be simplified in the 
interests of obtaining practical solutions 
In the first approach, the elevator jack system is 
simulated using a simple mass/spring approach. 

The realistic model of the hydraulic servo-
actuator is shown in the Fig. 1, and its 
mathematical model can be expressed using the 
following set of differential equations [12, 20]: 
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This set of differential equations (1) describes 
the realistic model of the hydraulic servo-
actuator. 
In this work we will discuss over the operation 
and the joint action of aircraft’s longitudinal 
control system units. We will considered aircraft 
and its control system as multibody dynamical 
system. 

 
Fig. 2 Scheme of the Su-22M fighter aircraft longitudinal 

control system 

As numerical example we will discussed the Su-
22M fighter aircraft. The scheme of this aircraft 
longitudinal control system is shown in fig. 2. 
We will introduce: the models of friction in 
kinematics’ pairs of control system, the model 
of free – play models, as well as the model of 
servomechanisms dynamics (with different 
grade the simplification), regarding the 
limitations putting on movement of individual 
executive units of arrangement of elevator 
control system. We will presented the results of 
simulation documenting the influence of 
dynamics and error in executive gears of control 
system on dynamics of longitudinal motion of 
strike aircraft. 
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2.2  The mathematical model of aircraft and 
longitudinal control system dynamics 
Non-linear equations of aircraft motion and the 
kinematic relations will be expressed by using 
moving co-ordinate systems, the common origin 
of which is located at the aircraft center of mass 
(Fig .2 ) 

 
Fig. 3  System of co-ordinates attached to the aircraft 

A most powerful approach to obtain an 
appreciation for the effects of automatic control 
on the aircraft dynamics, is to consider closed-
loop systems formed by direct feedback of 
aircraft motion quantities to the control. In our 
approach we include whole mechanical model 
of longitudinal control system. Kinematic 
scheme of longitudinal control system of the Su-
22M fighter aircraft is shown in Fig. 4. 

 
Fig. 4 The kinematic scheme of the Su 22 fighter aircraft 

longitudinal control system 

The formalism of analytical mechanics allows 
to present dynamic equations of motion of 
mechanical systems in quasi-coordinates, giving 
incredibly interesting and comfortable tool for 
construction of equation of motion of aircraft. 
An example can be Boltzmann-Hamel 

equations, which are generalization of Lagrange 
equations of the second kind for quasi-
coordinates. 
Boltzmann-Hamel equations have the following 
form [22]: 

* * *
*

1 1

 
k kd T T T Q

dt
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σλ λ σ

µ λσ σ µ

∂ ∂ ∂γ ω
∂ω ∂π ∂ω= =
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− + = 

 
∑∑   (2) 

where: 
T* – kinetic energy (function of quasi-
coordinates and quasi-velocities), 

σω  – quasi-velocity, 

σπ  – quasi-coordinate, 
σλ qq , – generaized coordinates, 

k

=1

* = QQ  bσ σ σµ
σ
∑  – a coordinates of generalized 

force vector, 
 k – number of degree of freedom of mechanical 
system, 

r
µαγ  are the Boltzmann symbols [9], 
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and ,r ra bσ σ are elements of transformation 
matrix.  
Relations between quasi-velocities and 
generalized velocities are shown in equations 
are following: 
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Esq. (4) can be written in the matrix form: 

T=Ω A q    1
T T

−= =q A Ω B Ω (5)

where Ω - vector of quasi-velocities, q – vector 
of generalized coordinates 

[ ]
[ ]

1 2

1 2

, ,..........., ,

, ,.............,

T
k

T
kq q q

ω ω ω=

=

Ω

q
 (6)

The construction of matrix AT depends on 
explored issue. For example, for model of the 
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rigid airplane with movable control surfaces the 
matrix AT has a following construction: 

G

T T

 
 
 
  

=
A 0 0

A 0 C
0 0 I

0
 

(7) 

where I is the unit matrix, AG and CT are 
classical matrices of transformations of 
kinematics and can be found in Ref. [22]. The 
unit matrix I has dimension: 14 x 14. 
In case when we consider model of aircrafts as 
systems containing rigid fuselage and 14 
elements of longitudinal control system (Fig. 4) 
the vectors of quasi-velocities, quasi 
coordinates, and generalized coordinates have 
the following forms: 
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Matrices Di can be determine as follows  
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where the vector ai means  i-th row of the 
matrix AT . 
In the matrix notation the Boltzmann symbols 
can be presented in the form of elements of 
block matrix Γ(k x (k x k)): 
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Where 1
T T

−=B A . At last the matrix Γ can be 
presented in the short matrix form: 

( )T T
T T= −Γ B D D B  (13)

Finally, Boltzmann-Hamel equations written in 
the matrix form can be presented as follows: 

( )
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Eq (14) are very comfortable to use in 
procedures of automatic formulation of equation 
of motion. 
In the case when we considered dynamics of 
aircraft with movable control surfaces, and 
control system elements, vector of quasi-
velocities is given by esq. (8). In that case total 
kinetic energy of the whole system is the sum of 
the kinetic energy of the rigid fuselage and  
movable control surfaces, and control elements. 

* * * * *
s r eT T T T Ta= + + +  (15)

According to the general theorem, the kinetic 
energy of airframe can be calculated as follows:: 

* 21 1
2 2

T
s k A kT m= +V Ω J Ω  (16)

The kinetic energy elevator and  elements of 
longitudinal control system can be calculated 
from the following formula: 
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(17)
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where: Rj – vector connecting centre of gravity 
of aircraft with axis of rotation (or centre of 
gravity) of a elevator or j-th element of 
longitudinal control system; xj – vector of 
translation of j-th element of control system, Jj – 
moment of inertia of elevator or j-th element of 
rotating element of longitudinal control system, 

 – vector relative angular velocity that 
elevator  or rotating element of longitudinal 
control system, mj – mass of j-th element.  

jδ

After making conversions, relation for kinetic 
energy can be presented in the form: 

* 1
2

TT = Ω EΩ  (18)

The matrix E depends on the mass distribution 
of airframe and control surfaces, and has the 
form: 

( ) ( )
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After making differentiation and conversions we 
obtain a set of equations describing motion of 
aircraft with movable control surfaces: 

( )T T T T edd
d d

+ − = −
UEEΩ Γ Ω EΩ B Ω Ω Q B

q q
 (20)

Eq (23) with kinematic relations make non-
linear set of ordinary differential equations of 
first kind describing the motion of aircraft with 
movable control surfaces. These equations are 
written in the form allowing to create 
procedures meant for their automatic 
formulation, (e.g., by means of such well known 
commercial software as Mathematica® or 
Mathcad®). The vector Q is the sum of 
aerodynamic loads and another nonpotential 
forces and moments acting on the aircraft. 

2.3  Non-potential loads (vector Q) 

2.3.1. Modeling of aerodynamic loads 
The adequacy of mathematical modelling 

of aircraft dynamics is strictly dependent on the 

adequacy of the aerodynamic model. There is 
nontrivial problem due to the very complicated 
nature of the separated and vortex flow in 
unsteady regime. Precise describing of 
aerodynamic forces and moments found in 
equations of motion is fundamental source of 
difficulties. In each phase of flight dynamics 
and aerodynamics influence each other, which 
disturbs the precise mathematical description of 
those processes. The requirements for method 
on aerodynamic load calculations stem both 
from flow environment and from algorithms 
used in analysis of aircraft flight dynamics. The 
airframe model consists of the fuselage, 
horizontal tail, vertical tail, and wings. The 
fuselage model is based on wind tunnel test 
data. The horizontal tail and vertical tail were 
modelled as aerodynamic lifting surfaces with 
lift and drag coefficients computed from data 
tables as functions of angle of attack α and slip 
angle β.   
For linear extent of lifting force aircraft 
aerodynamic loads can be defined on the basis 
of algorithms, relations, diagrams and formulas 
shown, for example, in DATA SHEETS or in 
The USAF Stability and Control DATCOM 
[23]. However, there is no efficient method to 
calculate aerodynamic loads for higher angles of 
attack. Therefore to define aerodynamic loads in 
the nonlinear region of aerodynamic 
characteristics we attempted the modified strip 
theory. The modification of the strip, is 
presented below. We made the following 
assumptions: 

• In given wing cross section resultant  
aerodynamic force, and aerodynamic 
moment depend on a local angle of 
attack. 

• The flowfield is disturbed by vector of 
speed resulting from aircraft rotation 
(angular rates P, Q, R). 

• It id included the mutual relation 
between neighboring strips (by adding 
the speed induced by flowing down 
vortex.) 

• It is included vortex structures 
dynamics, and vortex break-down. 
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• There are included unsteady effect 
(aerodynamic hysteresis), and stall 
phenomenon (ONERA deep stall model 
[19, 25]). 

 The algorithm of calculations allows 
defining loads of wings of any shape. In case of 
modern fighter aircraft, with strongly coupled 
aerodynamic configuration, it was assumed that 
lifting fuselage is modeled by the centre wing 
section. The modified strip theory allows in 
relatively easy way to consider a phenomenon 
of asymmetrical vortex break-down (see ref. 
[22]).. Wings are divided into a number of 
elements (strips). For each strip we calculate a 
local angle of attack and a airspeed. Then, from 
airfoil data we find lift, drag and pitching 
moment coefficients.. Resulting aerodynamic 
force and moment, is calculated as sum of 
forces and moments on acting on each strip.. 
For purpose of numerical analysis, functions 
CL(α) and CD(α) were approximated with 
trigonometric polynomials:  

0

0

( ) [ cos( ) sin( )]

( ) [ cos( ) sin( )]

n

L k k
k

n

D k k
k

C a k b

C c k d

k

k

α α α

α α α

=

=

= +

= +

∑

∑
 (21)

Where coefficients ak, bk, ck, and dk were 
calculated from Runge’s scheme. Values of 
these coefficients are shown in work [22].  
 The angle of attack of α of elementary 
strip of a wing depends on: the aircraft angle of 
attack, angle of attack induced by horseshoe 
vortex and angle of attack induced by airspeed 
generated by pitch, roll, and yaw angular rates .. 
The induced angle of attack can be calculated 
from the relation: 

0
arctan i

i
V

Vα  =  
 

 (22)

The induced speed can be calculated from Biot -
Savart’s law: 

1 2
1

3 4
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4
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4
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yV y
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y
r

ϕ ϕ
π

ϕ ϕ
π

Γ
= − + −

Γ
− +

 (23)

Where r1 and r2 – correspondingly, a distance 
from left and right bound vortex from point A 
(in which induced speed is calculated).  
Distribution of circulation along wing span is 
given with following differential-integral 
equation:  

0

2

0
0

2

cos ( )
( )

2 ( )

1 ( )( )
4 (

z
A

b

b

C c yVy
k y

d dy
V d z

χ
α

ξ ξα
)π ξ ξ

Π

−

∂
∂Γ = ×

 
Γ × − −

  
∫

 (24)

 Equation (24) can be solved with 
approximate methods (for instance, 
approximation of trigonometric series). 
Distribution of circulation along wing span can 
also be calculated with engineer methods (for 
example, classic Multhopp’s method) or 
evaluated with help of known (for example from 
examining a plane in aerodynamic tunnel) 
distribution of pressures along wing span. On 
the basis of known distribution of circulation we 
can define distribution of induced angles of 
attack along wing span (and therefore for each 
wing’s section). 

2.3.2. Modeling of freeplay  
Due to manufacturing tolerances or loosened 
mechanical linkages, the connection between 
a control surface and a servoactuator may have 
some nonlinearities. For analysis purpose, the 
nonlinearities can be represented by a nonlinear 
hinge spring. 

 
Fig. 5 Free-play and bilinear spring. [3] 
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Fig. 5 shows characteristic of a bilinear spring. 
The bilinear spring can be expressed as [3, 4] : 

( )
( )

( )

1 ,           > ,

,                        - < ,
1 ,          <- ,

K a

f aK
K a

θ

θ

θ

θ δ θ δ

θ θ δ θ δ
θ δ θ

 − −  = <
 + −   δ

 (25)

where θ and δ are a elevator rotation angle and 
free-play, respectively. When the stiffness ratio 
a is zero, eq. (25) represents a nonlinear spring 
with free-play. 
The elements of {f } in Eq. (25) are zero except 
for the element representing force exerted by the 
nonlinear hinge spring of a control surface. This 
element can be represented by free-play or 
bilinear nonlinearity. 
For frequency-domain analysis, we need to 
obtain the equivalent spring from the bilinear 
spring in eq. (26). The main idea of the 
describing function method is to calculate the 
equivalent spring under the assumption of 
a harmonic motion. If the motion of the .flap 
angle θ is harmonic, we can write this as: 

sinA tθ ω=  (26)

where A and ω are the amplitude and frequency 
of harmonic motion, respectively. Considering 
only the fundamental component, the restoring 
force can be written as: 

( ) eqf Kθ θ=  (27)

Fig. 6 shows the relationship between the LCO 
amplitude of a elevator  responses and the 
equivalent stiffness. 

( )

( )

1

1

,                                      A

2 1 sin

1 sin 2sin ,   A

eq

aK

K a
AK

a
A

θ

θ

δ

δπ
π

δ δ

−

−

≤ ≤


 − − + =  
   − − ≥     

 (28)

As shown in Fig. 6, the equivalent stiffness of a 
nonlinear spring decreases considerably 
compared with that of a linear spring and the 
equivalent stiffness increases as the LCO 
amplitude increases. The equivalent stiffness of 
a bilinear spring is larger than that of free-play 
and the characteristics of a bilinear spring are 
predicted to be better than those of free-play. 

 
Fig. 6 Equivalent stiffness of nonlinear spring. 

 
Fig. 7 Example of simulation of elevator motion (θ/δ=1.5) 

 
Fig. 8 Example of simulation of elevator motion (θ/δ=1.0) 
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Figs. 7-8 show the time history and phase plot 
for the elevator tip. It is shown that two 
different types of LCO occur. One is LCO 1 
with low frequency (19.7 Hz) and the other is 
LCO 2 with high frequency (61.2 Hz). Due to 
the difference of the .utter mode, the tip 
amplitude of LCO 1 is larger than that of LCO 2 
whereas the flap amplitudes of LCO 1 and LCO 
2 are almost the same. These LCO types are 
dependent on an initial flap amplitude. 

2.3.3 Modeling of unilateral contact conditions 
with application to aircraft  control system 
involving backlash and friction 

Joints impose constraints on the relative 
motion of the various bodies of the system. 
Most joints used for practical applications can 
be modeled in terms of the so called lower pairs 
[4]: the revolute, prismatic, screw, cylindrical, 
planar and spherical joints, all depicted in fig. 9. 
If two bodies are rigidly connected to one 
another, their six relative motions, three 
displacements and three rotations, must vanish 
at the connection point. If one of the lower pair 
joints connects the two bodies, one or more 
relative motions will be allowed. For instance, 
the revolute joint allows the relative rotation of 
two bodies about a specific body attached axis 
while the other five relative motions remain 
constrained. The constraint equations associated 
with this joint are presented above. 

 
Fig. 9 The six lower pairs. 

Consider two bodies denoted with superscripts 
(.)k and (.)l, respectively, linked together by a 
revolute joint, as depicted in Fig. 10. In the 
reference configuration, the revolute joint is 
defined by coincident triads S0

k = S0
l, defined by 

three unit vectors 10 10
k l=e e , , and 20 20

k l=e e

30 30
k l=e e . In the deformed configuration, the 

orientations of the two bodies are defined by 
two triads, Sk (with unit vectors ), 
and Sl (with unit vectors ). The 
kinematic constraints associated with a revolute 
joint imply the vanishing of the relative 
displacement of the two bodies while the triads 
Sk and Sl are allowed to rotate with respect to 
each other in such a way that 

1 2 3, ,  and k k ke e e

3,  and le

3 3
k l

1 2,l le e

=e e

3
ke

. This 
condition implies the orthogonality of  to 
both e  and e . These two kinematic constraints 
can be written as: 

1
l

2
l

C

C

( ) )2 cos 0φlC = + =e e

iCλ

1 3 1 0kT l= =e e  (28)

and 
2 3 2 0kT l= =e e  (29)

In the deformed configuration, the origin of the 
triads is still coincident. This constraint can be 
enforced within the framework of finite element 
formulations by Boolean identification of the 
corresponding degrees of freedom. 
The relative rotation 4 between the two bodies 
is defined by adding a third constraint 

(3 1 1 1sinkT kT lφ e e  (30)

The three constraints defined 8by eqs. (2) to 
(30) are nonlinear, holonomic constraints that 
are enforced by the addition of constraint 
potentials i , where iλ , are the Lagrange 
multipliers. Details of the formulation of the 
constraint forces and their discretization can be 
found in Refs. [3, 4]. 

 
Fig. 10 Revolute joint in the reference and deformed 

configurations. {cf. [4]) 
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A revolute joint with backlash is depicted in 
Fig. 11(a. The backlash condition will ensure 
that the relative rotation φ, defined by eq. (30), 
is less than the angle φ1, and greater than the 
angle φ2 at all times during the simulation: i.e. 
φ1 ≥ φ ≥ φ2, φ1 and φ2 define the angular 
locations of the stops. When the upper limit is 
reached, φ = φ1, a unilateral contact condition is 
activated. The physical contact takes place at a 
distance R1, from the rotation axis of the 
revolute joint. The relative distance q1 between 
the contacting components of the joint writes 

q1 = R1(φ1 - φ) (31)

When the lower limit is reached, φ = φ2, 
a unilateral contact condition is similarly 
activated. The relative distance q2 then becomes 

q2 = R2(φ 2- φ) (32)

where R2 is the distance from the axis of 
rotation of the revolute joint 
If the stops are assumed to be perfectly rigid, 
the unilateral contact condition is expressed by 
the inequality q > 0, where the relative distance 
q is given by eq. (34) or (35). This inequality 
constraint can be transformed into an equality 
constraint q - r2 = 0 through the addition of a 
slack variable r. Hence, the unilateral contact 
condition is enforced as a nonlinear holonomic 
constraint 

C = q – r2 =0 (33)

This constraint is enforced via the Lagrange 
multiplier technique. The corresponding forces 
of constraint are 

2

T
Cq q

C
r r r

δ λ δ
δ λ

δ λ δ
     

= =     −     
F  (34)

where λ is the Lagrange multiplier. To obtain 
unconditionally stable time integration schemes 
[23, 24] for systems with contacts, these forces 
of constraint must be discretized so that the 
work they perform vanishes exactly. The 
following discretization is adopted here 

2
mc

m
m m

s
s r

λ
λ

 
=  − 

F  (35)

where s is a scaling factor for the Lagrange 
multiplier, λm the unknown midpoint value of 

this multiplier, and rm = (rf + ri)/2. The 
subscripts (.)f and (.)i are used to indicate the 
value of a quantity at the initial time ti, and final 
time tf of a time step of size ∆t. respectively. 
The work done by these discretized forces of 
constraint is easily computed as W c= Ct  - Ci)λm. 
Enforcement of the condition Cf = Ci = 0 then 
guarantees the vanishing of the work done by 
the constraint forces. The Lagrange multiplier 
λm is readily identified as the contact force. 

a)    b)  
Fig. 11 a) A revolute joint with backlash. The magnitude 

of the relative rotation ¢ is limited by the stops; 
b)  A revolute joint with friction. (cf. [4] 

For practical implementations, the introduction 
of the slack variable is not necessary. If at the 
end of the time step qf ≥ 0, the unconstrained 
solution is accepted and the simulation proceeds 
with the next time step. On the other hand, if qf 
< 0 at the end of the time step, the step is 
repeated with the additional constraint qf = qi 
and the Lagrange multiplier associated with this 
constraint directly represents the contact force. 
In general, the stops will present local 
deformations in a small region near the contact 
point. In this case the stops are allowed to 
approach each other closer than what would be 
allowed for rigid stops. This quantity is defined 
as the approach and is denoted a; following the 
convention used in the literature [9], a > 0 when 
penetration occurs. For the same situation, q < 
0, see eqs. (33) and (34). When no penetration 
occurs, a = 0, by definition, and q > 0. 
Combining the two situations leads to the 
contact condition q + a ≥ 0, which implies q = -
a when penetration occurs. Here again, this 
inequality condition is transformed into an 
equality condition C = q + a - r2 = 0 by the 
addition of a slack variable r. When the revolute 
joint hits a deformable stop, the contact forces 
must be computed according to a suitable 
phenomenological law relating the magnitude of 
the approach to the force of contact [ 3, 4].  In a 
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generic sense, the forces of contact can be 
separated into elastic and dissipative 
components. As suggested in ref. [4], a suitable 
expression for these forces is 

( )

( )1

contact elas diss

d

d

dV dV f a
da da
dV f a
da

= +

= +

 = + 

F F F

 (36)

where V is the potential of the elastic forces of 
contact, and ( )df a  accounts for energy 
dissipation during contact. In principle, any 
potential associated with the elastic forces can 
be used; for example, a quadratic potential 
corresponds to a linear force-approach 
relationship, or the potential corresponding to 
the Hertz problem. The particular form of the 
dissipative force given in eq. (37) allows to 
define a damping term that can be derived from 
the sole knowledge of a scalar restitution 
coefficient, which is usually determined 
experimentally or it is readily available in the 
literature for a wide range of materials and 
shapes [3]. 
When sliding takes place, Coulomb’s law states 
that the friction force Ff is proportional to the 
magnitude of the normal contact force Fn 
When sliding takes place, Coulomb’s law states 
that the friction force Ff is proportional to the 
magnitude of the normal contact force Fn 

( )f n r
k r

r

VV
V

µ= −F F  (37)

where µk(Vr) is the coefficient of dynamic 
friction and rV the magnitude of the relative 
velocity tangent to the plane, Vr. If the relative 
velocity vanishes, sticking may take place if the 
following inequality is met 

f n
s Fµ≤F  (38)

where µs is the coefficient of static friction. A 
revolute joint with friction is shown in fig. 4. In 
this case, the relative velocity, Vr is given by 

rV ρφ= , where ρ  is the radius of the inner and 
outer races and φ  the relative rotation. When 

the races stick together, the relative velocity φ  
vanishes, resulting in the following linear non-
holonomic constraint, 

0φ =  (39)

Application of Coulomb’s law involves discrete 
transitions from sticking to sliding and vice-
versa, as dictated by the magnitude of the 
friction force and the vanishing of the relative 
velocity, eqs (36) and (37)) respectively. These 
discrete transitions can cause numerical 
difficulties, and numerous authors have 
advocated the use of a continuous friction law 
[3, 4], typically written as 

( ) ( 0/1 rV vf n r
k r

r

VV e
V

µ= − −F F )  (40)

where v0, is a characteristic velocity usually 
chosen to be small compared to the maximum 
relative velocity encountered during the 
simulation.  ( )0/1 rV ve−  is a “regularizing factor” 

that smoothes out the friction force 
discontinuity. The continuous friction law 
describes both sliding and sticking behavior, i.e. 
it replaces both eqs. (37) and (38). Sticking is 
replaced by “creeping” of the inner race with 
respect to outer race at small relative velocity. 
Various forms of the regularizing factor have 
appeared in the literature. 
However, the use of a continuous friction law 
presents a number of shortcomings [4]: 

1) it alters the physical behavior of the 
system and can lead to the loss of 
important information such as large 
variations in frictional forces; 

2) it negatively impacts the computational 
process;  

3) it does not appear to be able to deal with 
systems with different values of the 
static and kinetic coefficients of friction. 
Consequently, friction effects will be 
modeled in this work through a 
combination of Coulomb’s friction law 
and the enforcement of the sticking 
constraint. 

In practice, it is not convenient to determine the 
exact instant when the relative velocity 
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vanishes: i.e. when Vr = 0. Rather, the sticking 
constraint, eq. (40), is enforced when Vr < v0, 
where v0 is an appropriately selected 
characteristic relative velocity. 

3  Bifurcation-based analysis technique 
 Bifurcation analysis essentially finds 
solutions (or “continues”) along surfaces of 
solutions expressed as a function of a state 
vector x and a continuation parameter vector µ. 
In aircraft problems x is a vector of aircraft 
states and µ is a vector of control inputs. The 
solution surfaces are typically folded, i.e. they 
bifurcate, and hence difficult to continue along. 
The power of Bifurcation Analysis lies in its 
ability to systematically search for these 
bifurcating solution surfaces. Nonlinear 
Bifurcation methods were originally developed 
and applied for departure prediction and spin 
analysis [8, 9, 11, 14, 15, 16, 18, 24]. 
Bifurcation Analysis principally provides a 
picture of the globally attainable steady state 
equilibrium conditions by a platform with a 
given set of control powers. “Equilibrium” is 
used here in the global sense, i.e. straight and 
level flight as well as limit cycle oscillations 
such as wing rock regimes or oscillatory spins. 
The technique is smart in that, once it finds an 
initial trim solution, it generates the entire set of 
equilibrium solutions (or “branch” of solutions) 
on a continuous solution space very rapidly and 
without significant user intervention. 
The methods are well suited to the analysis of 
highly non-linear regions of the flight envelope 
where significant aerodynamic and inertial or 
kinematic coupling is exhibited due to vortex 
flow breakdown. This coupling typically 
manifests as spin and other undesired modes 
that are unique a particular air plat-form and that 
must be avoided by careful design of the 
stabilizing flight control system. Bifurcation 
Analysis provides an understanding of the basic 
airframe characteristics and underlying causes 
of instability and uncontrollability. It enables 
classification of “safe” and “unsafe” regions of 
the flight envelope and accurate pinpointing of 
control critical flight conditions, e.g. where 

there may be insufficient control powers for 
departure recovery. 
The methodology is founded upon the use of 
“continuation methods”, which are a 
fundamental tool in numerical bifurcation 
analysis. Bifurcation analysis is a process used 
to study the behavior of non-linear dynamical 
systems in terms of the geometry of their 
underlying structure, as characterized by the 
evolution of steady state solutions as parameters 
vary. Steady states include in general stationary 
point equilibria and periodic orbits (and other 
attractors) and non-linear systems can have 
multiple steady states for the same values of 
input parameters. 
One means of visualizing the numerical output 
is the “one-parameter bifurcation diagram”: 
projections of the steady state solution paths as 
a parameter varies, plotted as one state 
component at a time versus the parameter. The 
algorithms used to generate this information are 
known as “continuation methods” - and it is 
principally this that is adapted to form the 
bifurcation-based analysis technique. 
Given a non-linear dynamical system, 

( ),=x f x µ , where x is the state vector, µ is a 
vector of parameters and f is a smooth vector 
function, we choose one member of µ as the 
parameter to vary (the continuation parameter, 
λ) and fix the remaining components of µ. For 
equilibria steady states (the only type 
considered in this paper), we then solve for 

( ),λ 0= =x f x  as λ varies; the idea is to find all 
solutions within the required range of λ. The 
continuation method is thus a path-following 
algorithm which, given a starting guess, 
attempts to continue along the solution branch. 
Bifurcation points are identified along the path 
and often it is required to solve also for the new 
solution branches that arise from them. Usually, 
local stability along the branches is indicated by 
use of different line types on the bifurcation 
diagrams; bifurcation points are also indicated 
where necessary [5, 6, 13, 17, 26, 27. 
When applied to aircraft flight dynamics models 
the parameters are usually the inputs to the 
system (control surfaces or pilot demands). 
However, for the purposes of control law 
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clearance analysis, the parameters include 
uncertainty parameters and model variabilities. 
The process of applying continuation methods 
to clearance analysis involves generating the 
steady state solution branch, as in standard 
bifurcation analysis. The model used is set up to 
represent whatever form of ‘trim’ is specified 
for the clearance task.  
Once each solution point is found, one or more 
clearance criteria is evaluated at that point. The 
criteria may use a different form of the model, 
such as with controller command path omitted 
or with an actuator loop cut, to match the 
clearance requirement. Thus the versatility of 
continuation methods is exploited in the 
process: using one form of model for finding the 
steady state solution and one or more others for 
application of criteria at each solution (this is 
referred to as the ‘dual-model’ continuation 
framework). Note that the criteria are 
implemented as in a conventional baseline 
clearance process, so there is no conservatism 
involved. The “bifurcation diagrams” generated 
during the analysis may adopt line-type 
definitions corresponding to the outcome of a 
clearance criterion. 
A detailed description of the analysis cycle is 
given in ref. [9, 13, 27]. In principle, the process 
is as follows: first, for each flight conditions 
(FC), evaluate each clearance criterion along the 
required trim points across the specified α range 
for the nominal model (no uncertainties 
applied). This involves a continuation run, with 
an appropriate pilot input as continuation 
parameter; it shows α’s where the nominal 
system violates the criteria, or values where it 
comes closest to doing so. These points may be 
referred to as nominal critical points and suggest 
where the system should be studied further (it is 
this logic that provides the majority of time 
saving relative to the conventional gridded 
approach1). 

                                                 
1 Violation of a criterion with uncertainties applied at an α 
far from the nominal critical points is not likely unless 
there is a discontinuity in the system - e.g. a non-smooth 
mode change - that occurs when uncertainties are applied 
but not in the nominal case. Such situations can be missed 
also in the conventional gridding method 

The next step is to evaluate each criterion in the 
neighborhoods of each critical nominal point, 
with uncertainties applied. The continuation 
method is now run at each such point, with α 
fixed, and the uncertainty parameters used as 
continuation parameter, one at a time. In the 
first iteration, the remaining uncertainties are 
fixed at their nominal value. Each of these non-
linear sensitivity bifurcation diagrams indicates 
the change in clearance criterion as the variable 
uncertainty ranges from its minimum to 
maximum value; it reveals the value of this 
uncertainty that gives the worst case (biggest 
degradation in criterion measure) while the 
others are fixed at their nominal value. We 
repeat this step of varying one uncertainty at a 
time but now the others take on their worst-case 
value from the first iteration. This approach 
allows the worst-case value of each uncertainty 
to lie anywhere between its minimum and 
maximum values, but we follow the 
conventional clearance process and choose 
either the minimum or the maximum value. 
Iterations continue until there is no change 
relative to the previous iteration. 
This yields the worst-case combination of 
uncertainties for that specific solution point for 
the criterion under consideration. Furthermore, 
since it gives a quantitative change in criterion 
measure for each uncertainty, it is possible to 
invoke the reduction factors for aerodynamic 
uncertainties. This allows the choice of all the 
uncertainties to be compared with a selection of 
a subset of the uncertainties - something that the 
conventional baseline method does not do. 
Finally, a continuation run with the pilot input 
as continuation parameter is conducted again 
but this time using the worst-case combination 
of uncertainties. This identifies the α at which 
the system violates the criterion under worst-
case conditions. It is only strictly applicable in 
the local neighborhood of the nominal critical 
point because the worst-case combination was 
determined at that specific α.  This is repeated 
in the region of each nominal critical point for 
each criterion at each flight condition, giving 
the desired cleared and uncleared α regions. 
Generally speaking, bifurcation analysis is the 
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study of the global behavior of nonlinear 
systems in an (n+m) dimensional space where n 
is the number of state variables and m is the 
number of control variables in the system. 

a)   b)  

c)  
Fig. 12 Different equilibrium structures: a) Fold; b) Cusp 

c) Butterfly 
The bifurcation surfaces are the projection of 
the equilibrium surfaces (n) onto the control 
space (m). A bifurcation surface divides regions 
in the control space where different numbers of 
equilibrium states are possible. As examples, 
Fig. 12 show scenarios of bifurcation structures 
with one state variable and a one or two control 
variable space corresponding to Fold, Cusp and 
Butterfly respectively. As controls vary in such 
a way as to cross the bifurcation surface, 
catastrophes in the form of sudden “jumps” 
between equilibrium solutions occur. The 
solution is said to bifurcate to a new equilibrium 
branch in state space. The bifurcation surface 
marks the boundary between the stable and 
unstable equilibrium solutions. Hysteresis 
effects may be prevalent where bifurcations 
occur. The above facts raise the possibility that 
control recovery actions, which are effective in 
stable and/or linear regions of the equilibrium 
state space, may be ineffective or actually 
counterproductive, once a bifurcation has 
occurred. 

4 Results of calculations 
A wide collection of useful numerical 
algorithms for the exploration of ordinary 
differential equations has been made available 

through the public domain software XPPAUT2 
[7]. With its graphical interface to the popular 
continuation and bifurcation software AUTO, 
XPPAUT combines the advantages of two 
worlds: A set of ordinary differential equation 
can be integrated with the phase plane explorer 
XPP until a steady-state has been reached; once 
balanced, the system equations can then be 
passed to AUTO973 [6] for continuation and 
bifurcation analysis 
In our work we concerned with static 
bifurcations, i.e. bifurcations associated with 
changes in the equilibrium point structure. 
There is a fundamental difference between 
bifurcation analysis of dynamical systems and 
control systems. As seen above, the behavioral 
aspects at the bifurcation points of control 
systems involve issues of system controllability, 
observability, et cetera, which are nonexistent 
for dynamical system bifurcation analysis. In 
addition to the limiting points that arise from 
static bifurcation points, we are also interested 
in limitations due to loss of stability and 
functional actuator limits. The bifurcation 
analysis is the same for the open and closed 
loop cases. However, the analysis of stability, 
and the characteristics of the system at the 
bifurcation points are different for the two 
cases. The equilibrium equations are simpler for 
the open loop system. Once we have obtained 
the bifurcation curves for the open loop system, 
the closed loop bifurcation curves can be 
obtained using the control law. 
A failure via a stuck actuator alters the structure 
of the control system. The stuck control surfaces 
not only ceases to be a viable input, but also acts 
as a persistent disturbance on the system. The 
reconfigured controller is designed as a 
regulator with disturbance rejection properties. 
The nonlinear regulator problem is to determine 
a feedback control law that guarantees 
asymptotic stability of the closed loop system 
and ensures that the regulated variables 

                                                 
2 XPPAUT is a WINDOWS® version of well known 
AUTO software available at internet address: 
http://www.math.pitt.edu/~bard/xpp/xppwin.html 
3 AUTO97 is very powerful public domain software 
available at the address: http://indy.cs.concordia.ca/auto/  
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specified by equation have the prescribed steady 
state value. The control law requires 
information about both the states and the 
disturbance, i.e., the stuck actuator position. 
This information can be obtained through 
measurements of an observer. The observer 
dynamics and design are not relevant to the 
bifurcation analysis. We reduce the number of 
control inputs of the nominal system to one by 
setting δel = δer, in order to satisfy the conditions 
for designing regulators With conditions for 
straight and level flight. Also by substituting Q 
= 0 results in the right side of the three state 
equations  being exactly 
zero, satisfying equilibrium condition for these 
equations. Dropping these three equations 
simplifies the analysis by allowing larger 
increments in the bifurcation parameter values. 
We can also set   

0,   0,   0U W Q= =

1 3 0,ARZ RAδ δ− −= =

=

=0 2500, 0BUδ −

250 0, 0, 0,BU P H HPδ δ δ− = = = 8 0,DRx − =  

1 1000, 0, 0,ARZ SMO MPx x x− = = − = 30 0,RAx − =  to 
simplify the equilibrium equations. 
For the nominal system, we carry out the 
bifurcation analysis with the velocity V as the 
bifurcation parameter. For each of the actuator 
failures, namely, a stuck elevator, we carry out 
two kinds of bifurcation analysis. First, for each 
kind of failure, we consider the control surface 
to be stuck at it’s trim value, and treat the 
velocity as the parameter. Second, we hold the 
velocity fixed at the nominal value of 110 m/s 
and vary the stuck position of the failed 
actuator. The bifurcation curves with velocity as 
the parameter for the nominal and the 
reconfigured systems 
for each kind of failure are shown in Figure 15. 
The curves shown are with respect to the 
elevator surface deflection. The same 
information can be obtained with the bifurcation 
curves plotted with respect to. the other states. 
These curves are qualitatively similar although 
they can differ somewhat in shape. The black 
plot corresponds to the nominal system. Three 
bifurcation points, LA (130.7 m/s), LB (132.6 
m/s) and LC (127 m/s) can be identified on the 
equilibrium surface. At these three points both 
the open and closed loop systems are unstable. 

The linearized system at these points has 
transmission zeros at the origin, is 
uncontrollable and has dependent inputs. The 
open loop system is unstable at all values of the 
velocity parameter. The closed loop is designed 
to be stable at LO (351 m/s). However, at 
velocities lower than 279 m/s corresponding to 
the equilibrium point LI the closed loop system 
becomes unstable. We can also identify actuator 
limits on the equilibrium surface. The point E2 
(127.7 m/s) corresponds to the elevator upper 
limit. Analysis for straight and level flight with 
a stuck elevator at trim respectively result in the 
same equilibrium surface. The reconfigured 
systems for the elevator failure have different 
stability boundaries, closed loop system is 
unstable for speeds lower than S3 (132.4 m/s) 
and S4 (197 m/s) with the appropriate 
regulators. The linearization at the bifurcation 
points LA, LB, and LC, for the reconfigured 
control systems for elevator failures have 
dependent inputs, are uncontrollable, 
unobservable and have two transmission zeros 
at the origin. The reconfigured system with a 
stuck elevator results in a qualitatively different 
equilibrium surface shown in red in the fig.15. It 
has only one bifurcation point identified as B1 
(138.5 m/s) at which the linearized system is 
unstable and is uncontrollable, unobservable, 
has dependent inputs and one transmission zero 
at the origin. The reconfigured system becomes 
unstable at velocities lower than 214 m/s 
marked by S1. The upper elevator limits are 
marked on the surface at A1 (172.7 m/s) and R1 
(138.5 m/s) respectively. The bifurcation curves 
for the reconfigured left elevator failure, aileron 
failure and elevator failure are shown in figures 
13, 14, and 15. The reconfigured system for the 
stuck left elevator first encounters the aileron 
actuator limits. A2 (3 deg.) and A3 (-7.2 deg) 
correspond to the allowable lower and upper 
elevator deflection. Next it encounters the 
elevator limits: R2 (-13 deg.) is the lower limit 
and R3 (10.5 deg.) is the upper limit. The 
elevator reaches its saturation point at E1 
(-23 deg.). 
Some results of numerical simulation of aircraft 
dynamics are shown in figs. 16, 17, 18, 19. 
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Fig. 13 Bifurcation curves of the nominal and 
reconfigured systems with single actuator failures and 

velocity as the parameter 

 

 
Fig. 14 Bifurcation curve of the system with a stuck 

elevator and the stuck position as the parameter. 
 

 

Fig. 15 Bifurcation curve of the system with actuator 
saturation – high α branch 

 
Fig. 16 Results of simulations. Deflection of elevator 

- no friction and free-play in control system 

 
Fig. 17 Results of simulations. Course of pitch angle - no 

friction and free-play in control system 
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Fig. 18 Influence of free-play on elevator dynamics 

Free-play ratio θ/δ=5. 
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Fig. 19 Influence of  free-play on longitudinal aircraft 

dynamics. Free-play ratio θ/δ =1.5 

The figures 16 and 17 show the response of the 
aircraft under ruder disturbance in the case of 
absent of free-play and friction in control 
system. Influence of free-play and friction on 
aircraft dynamics is pictured in figures 18, and 
19. We can observed irregular response of 
elevator, as well as selected flight parameters. 

6 Conclusions 
In many applications the hydraulic servo-
actuators are superior to electrical ones, there 
are applications where the relative simplicity of 
electrical drive is preferred. Free play effect can 
radically change the response of aircraft. In this 
work we calculated static bifurcation points for 
the Su-22M aircraft in straight and level flight, 
for the nominal and various reconfigured 
systems for single stuck actuators. The analysis 
was performed for a full envelope nonlinear 
model of the Su-22, allowing for large 
variations in the parameters. The bifurcation 
analysis was carried out using a continuation 
method based on the AUTO-97 software. In 
applying the continuation method to the Su-22 
dynamics several numerical issues were 
addressed. This work will aid the automation of 
bifurcation analysis for control systems which is 
ongoing work. This will help us to identify the 
complete maneuverability envelope associated 
with actuator failures and see how the post fault 
operating conditions differ from the operating 
conditions 
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