
25TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

EuroFighter/Typhoon has to deal with
obsolescence of avionic hardware and
increasing performance requirements.

To improve reusability of software and
ease the migration to new platforms a three-
layer stack following Allied Standard Avionics
Architecture Council standards is introduced.

The steps towards an Integrated Modular
Avionic are illustrated.

1 Introduction
The presentation gives a short overview

why and how the ASAAC standards are
introduced to the EuroFighter program. It
describes the challenges in introducing new
technology to a program with respect to legacy
software.

2 Motivation for ASAAC
The rapid development of computer

technology is both a blessing and a curse. On
one side it provides the computing power
necessary to utilize advanced algorithms. On the
other side the lifetime of computer components
is much shorter than that of an aircraft,
especially a military fighter aircraft. The
lifetime of aircrafts is measured in decades
whereas the components may become obsolete
during development.

2.1 Current Situation
The development of EuroFighter started in

the eighties of the last century. Now, with the
first series aircrafts having been delivered to

customers the necessity for an avionic upgrade
is visible due to hardware obsolescence and
increased performance requirements. To address
the obsolescence issue and provide the
processing capabilities for future enhancements
a new hardware platform is introduced to the
EuroFighter program together with a new
software architecture.

The EuroFighter avionics is a federated
architecture where proprietary avionic
computers, so called Line Replaceable Items
(LRIs), are connected via busses. The LRIs have
a high functional integration and subsystem
functionality is allocated to single LRIs. With
this kind of architecture changes and extensions
are expensive and time consuming. An
enormous effort is spent on integration.

2.2 Route to IMA
The intention is to introduce an Integrated

Modular Avionic (IMA) in the EuroFighter
eventually. The Allied Standard Avionics
Architecture Council (ASAAC) defined a set of
open standards, concepts and guidelines for
such an Integrated Modular Avionic. This
includes hardware standards to allow
manufacturers the production of common off
the shelf components that fit into an ASAAC
system, networking standards to allow
interoperability between modules of different
manufacturers and software standards to allow
reusability of software. The IMA architecture
will reduce the cost for development and
maintenance of an aircraft.

For risk reduction purposes the legacy
application software and avionics architecture
remains unchanged in the first step. A set of

TRANSFER OF ADVANCED ASAAC SW
TECHNOLOGY ONTO THE EUROFIGHTER/TYPHOON

Thomas Brixel

European Aeronautic Defence and Space Company
(EADS Deutschland GmbH)

Keywords: Software Development, ASAAC, Integrated Modular Avionic, EuroFighter

Brixel, Thomas

2

avionic computers is replaced by upgraded
hardware with identical shape and connectors. A
three layer stack (TLS) following ASAAC
software standards is implemented on selected
computers to prepare the application software to
run on a modular avionic in the future. A
commercial Real-Time Operating System
(RTOS) is introduced. INTEGRITY from Green
Hills was selected for the EuroFighter.

The upgraded LRIs consist of one
Common EFEX Module (CEM) that provides
access to external busses and three Common
Processing Modules (CPM) that run the
application software. The modules are
connected through a VME backplane. In the
ASAAC standard the terminology for a module
is processing element.

3. The ASAAC Software Stack
In the meanwhile the North Atlantic Treaty

Organization (NATO) agreed ASAAC as
Standardization Agreement (STANAG) number
4626 [1]. Part II of the standard defines the
software architecture.

The software stack has a layered software
architecture where each layer provides an
additional level of abstraction.

3.1 Three Layer Stack
The Module Support Layer (MSL)

encapsulates the details of the underlying
hardware and provides generic, technology
independent access to low-level resources.
Especially point-to-point unidirectional transfer
connections are accessible through a network
independent interface. Transfer connections
were implemented for communication between
modules over the VME backplane.

A Real-Time Operating System (RTOS) is
the major component of the Operating System
Layer (OSL). It controls the real-time behaviour
of the processing element and its resources. The
functionality offered by the Generic System
Management (GSM) is as the name already
implies generic and therefore it resides in the
OSL. Functions of the GSM are health

monitoring, fault management and configuration
management.

The Configuration Management (CM)
performs the configuration of the system
according to information from the Run-Time
Blueprints (RTBP) that are stored in files
formatted in Extensible Mark-up Language
(XML).

The application software resides in the
Application Layer (AL).

The layers of the software stack itself are
independent from the actual application running
on a LRI. The hardware dependent MSL and the
hardware independent OSL can be reused in
different LRIs. The application layer is also
hardware independent, which eases the
migration to new hardware platforms.

3.2 Tailoring of the Software Stack
Not the complete functionality of an

ASAAC software stack is required.
Health monitoring and fault handling is

still performed by the application software. The
chosen Real-Time Operating System, Integrity
from Green Hills, performs the major tasks of
the Operating System Layer.

The work focused on the implementation
of communication services required by the
application software and their configuration.

The resulting software stack should be
reusable for safety critical and any other kind of
application. Therefore the use of INTEGRITY
functionality was restricted to the certifiable
subset available in INTEGRITY DO-178b.

3.3 Virtual Channels and Transfer
Connections

Virtual channels allow communication
independent from the number and location of
the participants. The application uses identifiers
that are local to a process to access the virtual
channel. A virtual channel may be attached to
an arbitrary number of processes for receiving
and/or sending. For transmission of messages to
other modules the virtual channel is attached to
transfer connections.

3

TRANSFER OF ADVANCED ASAAC SW TECHNOLOGY
ONTO THE EUROFIGHTER/TYPHOON

When a message is sent to a virtual channel
it is delivered to each attached receiver.

Services are provided for blocking and
non-blocking transmission. A timeout can be
specified for blocking transmissions.

4 Implementation of the Software Stack
An international team was formed to

develop the software stack following ASAAC
standards for the next generation of avionic
computers in the EuroFighter. I was a member
of that team from the beginning.

The target hardware was not available from
the beginning. The target hardware and
hardware related software services where
developed in parallel to the software stack.
Common off the shelf (COTS) hardware boards
were used for development of the software
stack.

4.1 The Prototype
When development started no

commercially available version of an ASAAC
software stack existed. The standards were
available as drafts and a prototype of the
software stack written in C already existed. This
prototype was originally written to run on
LynxOS but the Real-Time Operating System
selected for EuroFighter is INTEGRITY from
Green Hills. So the prototype was rewritten to
run on INTEGRITY without much
considerations of a proper software design.

The decision was to start development
using that prototype which was with hindsight
not really optimal.

The Prototype had some deficiencies that
required an extension or reimplementation of
the existing functionality but then it also
contained functionality we did not use.

The attachment of virtual channels to
transfer connections was performed as a local
transmission to an extra process on the same
processing element, which forwarded the data.
We considered this as too time consuming as
each message had to pass some extra layers on
the sender as well as on the receiver side. But
more important it also violated an important

requirement that the communication shall be
independent from the location of participants,
which could not be realized with this
implementation.

The implementation of the MSL used
common off the shelf libraries that are not
available for our target.

4.2 Adaptation of Prototype to Requirements
The prototype was first adapted to the

requirements that were imposed from the legacy
application software and hardware platform.

So was the implementation of transfer
connections via fibre-channel or ATX and usage
of the COTS library for backplane
communication removed.

The application software uses a mailbox
mechanism for communication between objects
that can reside on a single or on different
processing elements. It ensures that a message is
stored in the receivers’ mailbox if no error is
indicated. This mailbox mechanism has to be
mapped to virtual channels. In the ASAAC
standard a send operation is successful when the
message was handed over to the Operating
System Layer. This does not guarantee that it is
delivered to the receivers. To avoid the
necessity of a time consuming handshake at
application level the behaviour of the
communication services was modified to be
suitable for replacement of the mailbox
mechanism.

In deviation to the ASAAC standard our
virtual channel management uses a transmission
protocol between instances of the Operating
System Layer. As a consequence the data sent
via transfer connections differs from the
specified format, which makes it incompatible
to other implementations of the software stack.
After the application software is fully migrated
to an Integrated Modular Avionic a standards
conformant software stack can be used.

The fact that INTEGRITY DO-178b does
not have a file system leads to another deviation
from the standard. The Run-Time Blueprints are
not stored in XML files. Instead the
configuration data is provided as constants in
Ada packages. This also eliminates the need of a

Brixel, Thomas

4

XML parser as the Ada compiler checks the
syntax. The values adherence to defined ranges
can be ensured by use of appropriate Ada types.

4.3 Migration to Ada
Integration tests showed that the software

stack developed from the prototype does not
satisfy the quality and reliability requirements
of avionic software. Therefore we decided to re-
implement it in Ada, which is the official
programming language for the EuroFighter
program. The Ada implementation was much
more stable from the beginning and showed that
there are good reasons to use Ada in security or
mission critical systems.

As the Ada implementation was based on
existing C code and not done from scratch it
showed many similarities to the C code. The
software design of the prototype still remained.

4.4 EFEX Connection
A major challenge was the integration of

external busses into the ASAAC software stack.
The LRIs use MILBUS (MIL-STD-1553,
STANAG 3838), EFABUS (STANAG 3910) as
well as the newly introduced EFABUS Express
(EFEX). These bus systems follow a completely
different approach than the ASAAC virtual
channel concept. The ASAAC standard
provides message based and streaming
communication that rely upon packet switched
networks or dedicated connections. As well as
its older equivalents, EFEX is a multiplexed bus
that transmits messages scheduled according to
a predefined transaction table.

In the first run with the unmodified legacy
application we decided to implement a remote
procedure call mechanism. The application used
Target Specific Ada Packages (TSAP) to access
MILBUS and EFABUS on the old LRIs. Calls
to the Target Specific Ada Packages are now
propagated to the Common EFEX Module that
is the only processing element that can access
the EFEX hardware. The calls are translated to
EFEX services, which in some cases require
that they are retained and finished when the
complete information required by an EFEX

service is available. Virtual channels are used
for communication. The remote part on the
EFEX module receives the service requests on a
virtual channel and returns the result on another
virtual channel that is assigned to the task that
performed the TSAP call.

The CPU of the EFEX module proved to
be too weak to handle the amount of
communication through all the ASAAC layers
plus the conversion of the TSAP services. This
performance problem was partly solved on the
supplier side by tuning the hardware settings.
The other part was solved by a change in the
software stack.

In the second run the Remote Procedure
Call services on the EFEX module directly send
and receive on a transfer connection. This
relieved the CPU load on the EFEX module.
The virtual channel management is bypassed.
The protocol (acknowledgment of messages) is
not necessary because synchronisation is
performed by the queue of the transfer
connections. The downside is that we lost some
flexibility. The use of TSAP services is
restricted to a single CPU. This is acceptable
because the application software that was spread
over 6 processors on the old hardware is now
combined into a single program.

4.5 Redesign of Virtual Channel
Management

Two severe problems were found during
integration with the application software.

The configuration managers on each
processing element send synchronisation
messages after the configuration is finished. It
leads to errors when the receiver of these
messages has not finished the configuration
itself. The ASAAC standard defines the
message format for the logical interface between
configuration managers and defines that it uses
virtual channels but it does not address this
problem.

The send operation of the transfer
connections blocked the caller when the queue
of a transfer is full. As the majority of messages
is exchanged between two modules this can lead

5

TRANSFER OF ADVANCED ASAAC SW TECHNOLOGY
ONTO THE EUROFIGHTER/TYPHOON

to a deadlock situation when the queues in both
directions are full.

The software stack was re-implemented
several times but at no time there was a cut and
a real re-design. The software design of the
virtual channel management resulted from the
migration of C code to Ada and a gradually
growing functionality and complexity.

Therefore, even in a relative late phase of
development, we decided to re-design the
Virtual Channel Management from scratch.
Now it contains only the necessary functionality
and uses a strict type concept to avoid type
conversions and run-time checks. It also avoids
using addresses instead of Ada types wherever
possible. This led to a much improved software
with respect to maintainability and testability.

5 The Software Stack in Everyday Life
The software stack passed the formal

reviews that are mandatory for the EuroFighter
development process. It is in use since the
middle of the year and proved to work on the
development COTS system and in the target
hardware on test benches and rigs. Recently it
accomplished its first mission in an aircraft even
though only on ground. The first flight tests are
planned for the forthcoming year.

6 Conclusion
It seems to be true that everybody has to

make mistakes by himself. The developed
software reached a usable status quite fast, but
definitely we would do better with the
experience we have now.

The development started as a technology
project. Some challenges had to be met to bring
it to a mature, stable and reliable state. It is best
practice to leave a prototype as a prototype and
start development of production software from
scratch following the standardised development
process.

Currently the advantages of a platform
independent application on top of a layered
software stack are not visible to everybody.
Some see only the disadvantages, mainly the

performance overhead of this software
architecture.

In my opinion this will change soon. The
application software can run virtually anywhere
when ASAAC is available on various platforms.

References
[1] STANAG 4626 – MODULAR AND OPEN AVIONICS

ARCHITECTURES, PART II: SOFTWARE, Draft 1,
NORTH ATLANTIC TREATY ORGANIZATION
(NATO), 2004.

