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Abstract

A new method, Collaborative Allocation
(CA), is proposed to solve large-scale optimum

allocation problem in aircraft conceptual design.

According to the characteristic of optimum
allocation in aircraft conceptual design. the
principle and mathematical model of CA is
established. The optimum allocation problem is
decomposed into one main optimization
problem and several sub-optimization problems.
A group of design requirements for subsystems
are provided by the main system respectively,
and the subsystems execute their own
optimizations or further provide detailed design
requirements to bottom components of aircraft,
such as spars, ribs and skins, etc. The
subsystems minimize the discrepancy between
their own local variables and corresponding
allocated value, and then return optimization
results to main optimization. Main optimization
is performed to reallocate design requirements
for improving integration performance and
progressing toward compatibility between
subsystems. CA provides general optimum
allocation architecture and is easy to be carried
out. Furthermore concurrent computation can
also be realized. Two numerical examples of
optimum reliability allocation are used to
describe the implementation procedure of CA
for two-level allocation and three-level
allocation respectively, and to preliminarily
validate its correctness and effectiveness. Then
an engineering problem further proves our
method is applicable for engineering design. It
is shown that the developed method can be
successfully used in optimum allocation of
design requirements. Then taking weight

requirement allocation as example, the
mathematical model and solution procedure for
collaborative allocation of design requirement
in aircraft conceptual design is briefly depicted.

1 Introduction

Optimum allocation of design requirements
(reliability, weight, cost, etc.) has been and is an
important problem in aircraft conceptual design.
A good allocation of design requirements can
shorten design cycle, improve performance and
reduce cost, etc. Since optimum allocation is to
acquire best integration performance by
allocating design requirements reasonably, it is
an optimization problem in essence. Optimum
allocation in aircraft conceptual design is a
complicated large-scale problem. Apparently
the conventional allocation depending on
experience and statistics can hardly provides the
best design results. Direct Method (DM) ™2 and
Decomposition Coordination Method (DCM)
B34 are two conventional methods for optimum
allocation. DM is problem dependent and
cannot reflect comparatively independence of
subsystems ). DCM is frequently used for
large-scale  engineering  optimization. It
transforms an all-at-once optimum allocation
problem into many small-scale optimization
problems in multi-level nested optimization
architecture. Each sub-optimization shares in
the duty of optimizing original objective
function by minimizing or maximizing part of it.
Father  optimization  requires  optimum
sensitivity provided by its daughter optimization.
More levels the system is decomposed, more
complicated the nested optimization of DCM
goes and worse convergence appears. It is
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proven by practice that DCM is very sensitive to
step size, which indicates it is not so well in
robustness. In addition, like DM, DCM cannot
also provide a general allocation framework.
For disadvantages mentioned above, DCM is
still not so appropriate for aircraft conceptual
design. This study is motivated by developing a
new method with general allocation framework,
better robustness and easy to be carried out,
which is appropriate for large-scale optimum
allocation problem in aircraft conceptual design.

According to our experience ¥, it is found
that Collaborative Optimization (CO) has a few
features that are applicable to optimum allocation.
Firstly, CO is designed for multidisciplinary
complex problems. Secondly, CO provides a
general optimization framework. Thirdly, system
level providing disciplinary level with targets of
variables is similar to allocation of design
requirements, which deserves attention mostly.
And lastly, coordination for variables of different
disciplinary can easily be associated with repeated
coordination for design requirements allocation.

In this study, a new method, Collaborative
Allocation (CA), is proposed to solve large-scale
optimum allocation problem in aircraft conceptual
design. CA is of similar solution procedure with
CO. CA provides general optimum allocation
architecture and is easy to be carried out. And
concurrent computation can also be realized. Two
numerical examples of reliability optimum
allocation are used to describe the implementation
procedure of CA for two-level allocation and
three-level optimum allocation, respectively, and
to preliminarily validate its correctness and
effectiveness. Then an engineering problem is to
further prove our method is applicable for
engineering design. And in last part of this paper,
weight requirement allocation is taken as example
to briefly describe the mathematical model and
solution procedure for collaborative allocation of
design requirement in aircraft conceptual design.

2 Optimum Allocation in Aircraft
Conceptual Design

In aircraft design process, before detail
design begins, design requirements must be

assured to indicate some design constraints,
such as reliability and weight constraints for
each part of aircraft. The problem, which is how
to allocate design requirements can make the
system (such as an aircraft) achieving best
integration performance, is defined as optimum
allocation of design requirements or optimum
allocation as abbreviation. For aircraft design,
conventional design requirements need to be
defined include reliability, cost and weight
requirements. They are usually allocated
according to topology structure of aircraft,
which is characteristic of hierarchy and
decomposition. Aircraft can be hierarchically
decomposed into wing, fuselage, horizontal tail
and vertical tail, etc, or further decomposed into
spars, ribs, skins and frames, etc, as shown in
Fig.1. In this way, design requirements may be
allocated to large-scale parts (such as wing and
fuselage), or to medium-scale components (such
as wing box and spar) in more detail. It is
apparent that the former belongs to two-level
allocation problem and the latter belongs to
three-level one. Ref.9 suggests that the bottom
level of decomposed aircraft had better be
medium-scale components. It can be concluded
that the approach of three-level allocation
architecture is sufficient for optimum allocation
problem in aircraft conceptual design.

| Aircraf t Structure |
I

. Horizontal | | Vertical Landing
Wing Tail Tail Fuselage Gear

T T T 1

Fig. 1 Hierarchical decomposition framework of aircraft

3 The Principle and Mathematical Model of
Collaborative Allocation

3.1 Principle of CA

For CA, the optimum allocation problem is
decomposed into one main optimization problem
and several sub-optimization problems. Main
optimization provides subsystems with design
requirements. Sub-optimization is to minimize
the discrepancy between allocation value and its
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own corresponding variables. Sub-optimization
optimizes its local variables, such as structure
size, or provides bottom components, such as
wing box, with detailed design requirements. The
results of sub-optimization are returned to main
optimization to  construct  compatibility
constraints. Then main optimization is performed
to reallocate design requirements for improving
integration performance and progressing toward
compatibility between subsystems.

CA is of two-level optimization
architecture, as shown in Fig.2. Compared with
DCM, CA owns general allocation framework
and really realizes separating main optimization
from sub-optimization. The allocation procedure
of CA is almost same as optimization procedure
of CO. Therefore most CO algorithms !, such
as response surface based CO [® Subspace
Optimization ~Algorittm (SAO)!, can be
applied in CA.

Rule for terminating

System iteration

main optimization
Main optimization Rule for terminating

system optimization

Rule for terminating —
sub-optimization

Sub-optimization

Fig. 2 Optimization architecture of CA

The allocation framework of CA is
illustrated in Fig.3. Where, N is the number of
subsystems, M, is the number of components in
subsystem i , X is design requirement, and
subscript * ¢, “;’ (i=12-,N) and ° "’
(j=12,---,M,) indicates corresponding value of
system, subsystem i and component j in
subsystem i, respectively. For case 1 in Fig.3,
main system provides subsystems with design
requirements and subsystems optimize their
local variables. And for case 2 in Fig.3, main
system provides subsystems in medium level
with design requirements and subsystems gives
detailed design requirements for components in
bottom level and optimizes local variables of
components. Accordingly, in the aspect of
allocation  architecture, our method is
appropriate for conventional optimum allocation
problem in aircraft conceptual design.

—— Main System Level

. .. —— Subystem Level

(1) Framework of two-level allocation

—— Main System Level

Subystem Level

—— Component Level

(2) Framework of three-level allocation

Fig. 3 Allocation framework of CA

3.2 Mathematical Model of CA

According to the principle defined in
section 2.1, mathematical model of CA is
established in Eqg.1 and Eq.2.

Min J, = (X, - P f + (v, -P )

st. Y, =g,(T,)elp;,q;]
X; =h(T))ela;,b;] (1)
T, e[m;,n;]

f
N Z(X; - PNI)Z +<Yl\j_ PNZ)Z =0 (c)
R, ela,b], - Py elay,by]
P, e[p,dd Py € [Py, O]

Eq.1 is sub-optimization model. Where, P and
Py* , are design requirement and auxiliary
variables for subsystem i provided by main
system, respectively. X, and Y,, as variables in
subsystem i, correspond to allocated value above.
If the system is decomposed in two-level, T, are
local variables in subsystem level, by which X,
and Y, can be calculated. And for three-level
decomposition, T, are local variables in
component level. In this condition, X; is acquired
through calculation of design requirements of
components in subsystem i, and Y, can be gotten
in the similar way. EQ.2 is main-optimization
model. P are design variables. The first inequality
constraint shows that the prescribed design
requirement cannot be exceeded. (a)-(b) are
compatibility  constraints, which indicates
compatibility between allocation value prescribed
by main system and expected value for subsystem.
Superscript “**” and ‘"’ indicates allocated value
and expected value, respectively.



ZHANG KE-SHI, LI WEI-JI, WEI HONG-YAN, HAN ZHONG-HUA

4 Applications of CA in Reliability Optimum
Allocation

4.1 A Numerical Example of Two-level
Allocation Architecture

Reliability optimum allocation problem in
Eq.3 is used to explain how to apply CA for
two-level optimum allocation and preliminarily
validate it.

Find R =[R,,R,]
min C;=C,+C,
st. Rg=RR,>09
C =0.8(1-In(l-R,)/10)<1.1 (3)
C,=0.7(1-In(1- R{) <1.0
Rl,R [0.5,0.99]

Where, R is reliability requirement and C is cost.
Subscript “” and *, ” indicates corresponding value
of main system and subsystem i, respectively.

According to CA, Sub-optimization in Eq.4
and 5 and main optimization in Eq.6 is
established.

Find T =R,
min f=(R —R*f+(c,—cf @
st. C,=08(1-In(l-R,)/10)<1.1

R, €[0.5,0.99]

Find T =R,
min 1 <(R, ~ R +(c, ~cf
s.t. C2:0.27(1—2In( R 3/8)<10 ()

R, €[0.5,0.99]

Find P =[R,,R,,C,,C,]

min C;=C,+C,

st. Rg=RR,>09 (6)
Conl=0, Con2=0
R,,R, €[0.5,0.99]

Where, Coni is compatibility constraint
corresponding to subsystem i, superscript ‘¥’
indicates value allocated by main system.

SAO M is transplanted into CA to solve this
problem, the flowchart of which is shown in
Fig.4. Initial allocation is provided experientially.
Auxiliary variables including cost of subsystems
are introduced to calculate total cost. Sub-
optimization is to minimize the discrepancy
between allocation value and corresponding

value in subsystems. After that linear
approximation constraints representing sub-
optimization are established and return to main
optimization to replace initial compatibility
constraints. Then main optimization is carried
out with reliability and cost of subsystems as
design variables, the results of which are
reallocated to subsystems. As the iteration going
on, the linear approximation constrains provided
by subsystems are continuously appended in
main optimization. All these linear constraints
gradually approach initial constraints, until
convergence is achieved.

[ Main optimization and sub-optimization ]

models are established using CA.

| Initial allocation is decided by experiencel

(e m—

|Sub—optimization 1 |Sub—optimization 2 |
Rcly Y[r.CJ

Construct linear approximation constraints of subsystems

| Linear constraints are appended to main optimization |

| Carry out main optimization |

N
o
R rence]

Yes
@utput optimal allocation [g;,R;] )

Fig. 4 Flowchart of optimum allocation in Eq.3 using CA

DM and CA are both used to solve problem
in Eg.3 and results are listed in Table 1 for
comparison. And iteration histories for main
optimization and sub-optimizations using CA are
shown in Fig.5 and 6, respectively. Table 1
shows that, with constraint of R;>09, C,<1.1
and C,<1.0, the lowest cost of 1.9973 and
1.9974 is acquired using CA and DM,
respectively, which preliminarily validate our
method. Fig.5 and 6 indicates that CA is of better
convergence performance, and compatibility
constraints finally achieve ideal value zero.

Table 1 Two-level reliability optimum allocation results using

DM and CA
Subsystem 1 Subsystem 2 Main System
Ry C; R> C; Rs Cs

1A 0.94 0.85 | 0.96 0.9
DM [ 0.9497 1.0392|0.9477 0.9582| 0.9000 1.9974

CA | 0.9510 1.0413(0.9464 0.9560| 0.9000 1.9973
|A=Initial Allocation
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4.2 A Numerical Example of Three-level
Allocation Architecture

The reliability optimum allocation problem
in Eq.7 is used to validate CA for three-level
optimum allocation. Through Fig.7 it is
apparent that system is composed of five
subsystems and each subsystem encompasses
two components.

FlndR [Rll Rlz ° R511R52]
min Cg= ZZC.,( .,)

i=1l j=1
st Rg>0.999

Rs = R; + R, (1- R, NR,R, +R,
05<R; <0.98,i=12j=12
02<R;<099,i=345j=12 (7
R =RyR,>05,i=12

0.5< R, <0.998,i =34,5

R =1-(1-R,)1-R,)i=345

Cil(Ril): Ri21/3’ CiZ(RiZ): Rizz/z’i =12
Cil(Ril) = [In(l_ Ril)]z /100,i =345

CiZ(Ri2)= [In(l_ Riz)]z/GO,i =345

- R2R3R4)

Fig. 7 Topology of system

Where, R is reliability requirement and C is cost.
Subscript *’°, “; " and *;; "indicates corresponding
value of main system, subsystem i and
component j in subsystem i, respectively.

According to CA, sub-optimization in Eq.8,
Eg.9 and main optimization in EQ.10 is
established. Eq.8 is the optimization model for
subsystem 1 and 2, while Eq.9 shows that for
subsystem 3-5. Main optimization takes the duty
of allocating reliability requirements for
subsystems, and sub-optimization defines those
for components. Auxiliary variables,
[C,.--,C¥], are also transmitted to subsystems
in addition to reliability requirements to
calculate total cost.

Find T =[R,,R,} i=12
min =<Ri - Risys)z +(Ci _Cisys)z
st. C,=C,+C,, R =R,R,<05 (8)

CulRu)=Ri/3. Cu(R,)=R3/2

05<R <098, j=12

Find T =[R,,R,] i=345
min 1= (R R +(c, -
st. C,=C,+C,

05<R =1-(1-R,J1-R,)<0998 (9
.( )=[In@-R, )J /100

( )_[In(l_ R_iz)]z/GO
02< R; <099, j=12

Find X =[R;,---,R;,C,,---,C;]
5
min Cgy =) C,

i=1
st. Ry >0.999 (10)

Rs =Ry + R, (1- R (R,Rs + R, — R,R,R,)
Conl=0,---,Con5=0
R >05, i=12
0.5<R, <0.998, i=345
Where, Coni is compatibility constraint

corresponding to subsystem i, superscript ‘¥’

indicates value allocated by main system.
Response surface based collaborative

optimization [ is transplanted into CA to solve
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this problem, the flowchart of which is shown in Nevertheless, for problem of multiple variables

Fig.8. and complicated analysis, such as aircraft
[Mamopﬁmization and sub_optimization] conceptual design, CA is easier to be realized.
models are established using CA While compare to DCM, the solution of CA is
A group of sample points about allocation are provided bette_r: WhICh may_ be Causeq by DCM bemg
by Central Composite Design method - sensitive to step size. And Fig.5 and 6 shows
R cl¥ ol ol CA’s bette_r convergence performance.
Sub-optimizationl Sub-optimization2 | .- |Sub—optimization5| N
1 2 Ts

|Optimum information database ofsub—optimization|
v - L

| Construct quadratic response suface |

Y]

| Compatibility constraints in main optimization model are established |

| Main Optimization
No -~

Converge?

Yes [Rfys,nysc'-,Ré“,Céyf I T T T
@utput optimal allocation [R,,--+Ry,R,;, Ry RSl,RSZD

Fig. 9 Iteration history of main optimization
Fig. 8 Flowchart of CA solving allocation problem in Eq.7 001

DM, DCM and CA are all adopted to solve
optimum allocation problem in Eq.7 and results
are listed in Table 2 for comparison. Where, S
(i=12,---5, j=12) represents component j in
subsystem i. And Fig.5 and 6 shows iteration
histories for main optimization and sub-
optimizations of CA, respectively. Table 2
shows that, with constraint satisfaction, DM,
DCM and CA provide best allocation of the
lowest cost of 1.1266, 1.1533 and 1.1397. The
solution of DM is a little better than that of CA,
which is due to compatibility constraints in
main optimization of CA are approximated by

Sub-optimization 3

Sub-optimization 4

Sub-optimization 5 Sub-optimization 1

Goal Value of Sub-optimization
8
o
B

e

Sub-optimization 2

P ERIREEN ENRTETEN SN SRR R |
5 10 15 20 25 30
Iterations

Fig. 10 Iteration history of sub-optimization

-0.002

quadratic response surface method.
Table 2 Three-level reliability optimum allocation results using DM, DCM and CA
Subsystem (S1) Subsystem (S2) Subsystem (S3) Subsystem (S4) Subsystem (S5)
Su Si2 Sa S22 Sa1 Sa2 Sa Saz Ss1 Ss2
Rij 0.8093 0.6607 | 0.7815  0.6398 | 0.3536  0.2687 | 0.7746  0.6082 | 0.9792  0.9040
Ci 0.2183 0.2183 | 0.2036  0.2046 | 0.0019  0.0016 | 00222  0.0146 | 0.1499  0.0915
DM| R, 0.5348 0.5000 0.5273 0.9117 0.9980
Rs=0.9990 Cs=1.1266
Rj 0.8472 0.6917 | 0.7826  0.6389 | 05572 03870 | 06159  0.4363 | 0.9795  0.9027
oeml Ci 0.2392 0.2392 | 0.2042  0.2041 | 0.0066  0.0040 | 0.0092  0.0055 | 0.1510  0.0904
Ri 0.5860 0.5000 0.7286 0.7835 0.9980
Rs=0.9990 Cs=1.1533
Rj 0.8102 0.6608 | 0.7830  0.6386 | 0.3757  0.2001 | 0.8465  0.2039 | 0.9900  0.8000
cal Gi 0.2188 0.2183 | 0.2044  0.2039 | 0.0022  0.0008 | 0.0351  0.0009 | 0.2121  0.0432
Ri 0.5354 0.5000 0.5006 0.8778 0.998
R<=0.9990 Ce=1.1397




ANEW METHOD FOR OPTIMUM ALLOCATION OF DESIGN REQUIREMENTS IN AIRCRAFT CONCEPTUAL DESIGN

4.3 Reliability Optimum Allocation for An
Engineering Truss System

In this section, CA is applied in the
reliability optimum allocation problem for an
engineering truss in Fig.11. We aim to define
reliability requirement for each bar in it.

Fig.11 Topology of the engineering truss

The dimension and applied force of the truss is
listed in Table 3. The material attributes are
listed in Table 4.

Table 3 Data of dimension and applied force

Parameter/Unit ~ D,/m D,/m D,/m p,/m DJ/m | kN
Value 3 2 8 8 0.5 200

Table 4 The material attributes

Parameter / Unit Symbol Value
Density / kg/m® P 2.68x10°
Admissible pulling stress / GN/m? [S,] 0.1724
Admissible crushing stress/ GN/m? [S.] 0.1724
Modulus of elasticity / GPa E 69
Intensity variability Vi 0.1

Load variability \A 0.2

Because D,+D, is much larger than D,,

the displacement at node 3 or 4 must be much
smaller than that at node 7 or 8. That is to say,
comparing with the displacement at node 7 and
8, the displacement at node 3 and 4 is near to
zero. Therefore, the truss in Fig.11 can be
approximately treated as a system composed of
two subsystems in Fig.12.

(2) Topology of subsystem 2
Fig.12 Topology of subsystems

The reliability optimum allocation problem
is defined in Eqg.11. This problem is carried out
to allocate appropriate reliability requirement to

each bar, on condition that the reliability
requirement for system and subsystems no less
than prescribed value.

FindR =[R,,R,, -, Ry;]
13
min W= >'W,

i=1
st. Rg = fy(Rg, R, )>0.99 (11)
Rg; = fry(Ri Ry, -+, R ) > 0.9999
Rsz = fRZ(RG,R7,-~-,R13)ZO.99

Where, Ry, R, and R, is reliability requirement
for engineering truss system in Fig.11 and
subsystems in Fig.12, respectively. R, and w; is
reliability requirement and weight of No.i bar,
respectively, i=1.2,---13.

According to failure rule, R, multiplied by
R(S,[S,) is R,. Because the lower limit of R, is
much larger than that of Ry, and is near to 1, R
can be approximately calculated through
multiplying R, directly by R,,. That is to say,
two subsystems in the engineering truss system
are supposing to be series-wound. And due to
Ry -Rs, <Ry -R(S,[S,), if Ry-Rg, IS NO less
than 0.99, R -R(S,|S,) must also satisfy this
constraint. In this condition, the supposition of
subsystems being series-wound is credible.

CA is used to solve the reliability optimum
allocation problem in Eq.11. Sub-optimization
in Eq.12, Eq.13 and main optimization in Eq.14
Is established.

Find T, =[x, X %]
Min J, =(R51 -RS’ )2 + (W51 —We” )2 (12)
st. Ry =1-P;; 20.9999

o, < [0'], i=12,---5

Find T, = [Xg, Xp0eees Xp5 ]
Min J, :(Rsz - Rggs)z + (Wsz _WSS%IS)2 (13)
st Ry =1-P,,>0.99

o; < [0'], i=6,7,---13

Find P = [R51, Rsz:Wsl7W82]T

Min W5 =Wy, +W,

S.t. RS = R51 : Rsz 2 Rg (14)
Conl=(Ry —Ry)? + Wg ~Wg)? =0
Con2=(Rg, - Rs*z)z + (W, _Ws*z)2 =0
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Where, for No. i bar, x, is section area and o,
is pulling stress or crushing stress. P, and P;,
is probability of failure for subsystem 1 and 2,
respectively. wg, is weight of subsystem k, and
Conk is compatibility constraint corresponding
to subsystem k, k =1,2. Superscript *¥” and “*’
indicates value allocated by main system and
expected value of subsystem, respectively. In
order to calculate total weight, auxiliary
variables, wg* and wg)°, are also transmitted to

subsystems in  addition to reliability
requirements.
Response surface based collaborative

optimization [ is transplanted into CA to solve
this problem. In subsystem level, structural
reliability optimization is carried out, using
O.Ditlevsen’s Narrow Reliability Bounds for
Structural Systemt®. The results are listed in
Table 5. The results using DM are also listed in
it for comparison. Table 5 shows that, with
constraints satisfaction, DM and CA provide
best allocation of the lowest weight of 1119.4
and 1119.6, which is almost equal. It indicates
that CA is effective for reliability optimum
allocation of engineering design. And the
iteration history of main optimization in Fig.13
shows CA'’s better convergence performance.

Table 5 Results using DM and CA for the reliability optimum
allocation problem in Eq.11

Variable DM CA
subsvetom 1 R 0.9999 0.9999
Y w, kg 213.9947 210.0000
Subsvstem 2 Rs: 0.9901 0.9901
Y w,, /K9 905.3687 909.5588
_ R, 0.9900 0.9900
Main System Ik
wokg 11194 1119.6
x,/m’ 0.0005 0.0005
x,/m* 00152 0.0149
x/m* 00024 0.0027
x,/m*0.0020 0.0025
x/m* 00147 0.0143
x/m* 0.0093 0.0093
: . :
Optimal section /m?
ren of bar M 0.0003 0.0002
XM 0.0107 0.0106
/ 2
x,/m 0.0093 0.0094
x,/m* 0,007 0.0007
X, /M 00023 0.0024
x,/m* 0.0017 0.0018
x:/m* 0.0090 0.0093

1500+

1400

13004

Weight / kg

12004

11004

6
Iterations

Fig.13 Iteration history of main optimization

5 Design Requirement Collaborative
Allocation in Aircraft Conceptual Design

In aircraft conceptual design, designers
care much about how to allocate weight
requirements. In this section, how CA can be
applied in this problem is briefly depicted.
According to decomposition framework of
aircraft in Fig.1, weight requirement is allocated,
the allocation architecture of which is shown in
Fig.14. Where, w is weight, R is reliability,
subscript ‘57, L7t fwe s Cwe o g and f’
indicates corresponding value of aircraft, wing,
fuselage, wing box, spar, frame and crossbeam.
Aircraft is composed of a great deal of large-
scale parts and medium-scale components, most
of which are omitted in Fig.14 for simplification.

Aircrat ==~ Main System Level

|
My fe, Ty T

| Wing | Fuselage
W, [ & W, |4 WA .Wfs A

A wa“. \ A Rws A4 Rff. Y R

fs
|Wing Box” Spar | | Frame | |Crossbeam | - --Component Level

| - - - Subsystem Level

Fig. 14 Simplified weight requirement allocation
architecture for aircraft structure

Here, total weight of aircraft, w,, need to
be reasonably allocated for components to
achieve highest integration reliability Ry, with
constraint that wg is no more than prescribed
weight requirement w, . Mathematical models
for weight requirement allocation problem in
Fig.14 are listed in Fig.15. Where, X are local
design variables in sub-optimization (such as
structure size), by which reliability and weight

of components can be expressed (such as
Ru = Run(X.s)). Since optimum allocation must
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be finished in aircraft conceptual design,
calculation of reliability and weight may rely on
simplified analysis model. In Fig.15, constraints
at last row in sub-optimization model are side
constraints for local design variables, side
constraints for reliability and weight of
medium-scale components (such as wing box),
and side constraints for reliability and weight of
large- scale part (such as wing). Constraints at
last row in main optimization model are side
constraints for reliability and weight of large-
scale part, and side constraints for integration
reliability and total weight. According to
mathematical model in Fig.15, and appropriate
CA algorithm is adopted, it is expected that
design requirement can be saved and integration
performance can be improved.

Main Optimization (MP)
Find W, ,W;,---,R, ,R¢]
Min Rg=Rs(R,, " R;)
st Wy =W, +---+W; <W,
’V\/W 7WV€><p 2+‘RW - R\?\/Xp

ex 2
’\Nf_Wfp =0
W,ReB

2

=0,

2
+[Re =R?®

A
y | wee R
Fuselage Sub-Optimization (SP-F)
Find X ,---, X
Min J, (X, X ) =
W, [ R - Ri|
st Wy =W (X )oor,

WV’\;’R;V i exp pexp
v W, Ry
Wing Sub-optimization (SP-W)
Find X5, 0 X s

Min ‘Jw(walu'lst)=
«|2 *
W, -W,| +[R, —R;,

st W, :Wwb(wa)""’

WL R
\

‘ 2

st:st(st) Wfs :Wfs(xfs)

Ww _Wwb +"'+st Wf =Wff +”'+Wfs
Rus= Ry (X R =Ry (Xg ),
Rws= Rws( ws Rfs = Rfs st
szRw(waﬁ'“’Rws) Rf =Rw(RffY""Rfs)
X,W,ReB X,W,R e B;

Fig. 15 Mathematical model of weight requirement collaborative
allocation according to Fig.14
According to CA, weight optimum
allocation problem above can be solved in steps
below:

(1) Initial weight requirement allocation is
provided experientially: W —w,, W,
Auxiliary variables are also initialized
experientially: R > R;,,---,R; .

(2) Concurrent sub-optimization is performed: SP-W
iS to provide expected value for wing
subsystem: W R>®; SP-F is to provide those for

fuselage subsystem: W>* R .
(3) Main optimization is carried out to provide a new

*

allocation: W =W, ,--- W,", R—>R. -, R/.

4) If

step 2. Where, R is integration reliability in n
iteration, ¢ is a user-defined small positive value.
Optimization is finished. The best weight
requirements for components are w,

wh Wwss """
-
Wi , W .

R —RM

/RS” < ¢, go to step 5. If not, back to

*

6 Conclusion

A new method named Collaborative
Allocation is developed for optimum allocation
of design requirements in aircraft conceptual
design. CA is preliminarily validated and it still
needs to be further studied. Through our study,
it is shown that:

Compare to DM and DCM, CA is of more
general optimization architecture. For different
allocation problem, main program may keep
unchanged except little modification of
optimization model. So CA is better in program
inheritance.

(1) Compare to DM, the dimension of design
variables is reduced through decomposition
of optimization in CA. In this way,
complicated analysis of subsystem may be
performed inside its respective sub-
optimization. So optimization is easier and
concurrent computation can be realized.

(2) Compare to DCM, main optimization is
really departed from sub-optimization in
CA. Sub-optimization need not to be
performed in the process of main
optimization. Accordingly optimization is
easier and robust is better.

The main difficulty in CA is how to
construct compatibility constraint can make
main optimization easier to be solved.
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