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Abstract

Response of flexible high aspect ratio wings
to wind turbulence is analyzed using the con-
tinuum cantilever beam model of Goland for
the structure and typical-section compressible
attached flow aerodynamics. The wind turbu-
lence model is derived from the Kolmogorov
power-law spectrum random field, invoking
the Taylor hypothesis. The gust loading and
the wing bending/torsion spectral response
are studied in detail for the extreme cases
M=0 and M=1, as typical.

1 Introduction

In this paper we model the aeroelastic re-
sponse of a flexible wing structure of high
aspect ratio due to air turbulence. Unlike
classical treatments limited to “sinusoidal”
gust models (see [1] and [2]) we consider
the full space-time random turbulence field
as well as a continuum model of the flexible
wing. Specifically, the cantilever beam model
of Goland [3] is used for the wing with two
degrees of freedom — bending and torsion.
The aerodynamic model is the linearized sub-
sonic/transonic (0 < M < 1) inviscid — at-
tached flow with the Kutta-Joukowski bound-
ary conditions typical section theory valid for
assumed high aspect ratio [6]. The turbulence
model is the classical Kolmogorov isotropic
power-law spectrum model [4] combined with
the Taylor hypothesis.

We begin in Section 2 with the wind gust

model leading to the spectral density of the
vertical component of the velocity field. In
Section 3 we calculate the gust loads in invis-
cid compressible air flow. The bending-torsion
structure response to the gust loading is cal-
culated in Section 4 using the continuum can-
tilever model of Goland [3]. In particular the
temporal spectral density of the plunge/pitch
gust response at any point on the wing is eval-
uated. Some numerical results are presented
in Section 5.

2 Turbulence Field

Let v(x,y, z) denote the 3x1 vector turbulence
wind field. Let k denote the unit vector normal
to the wing, assumed plane. By vertical wind
gust w,(-) we mean the component:

wy(x,y,2) = [v(:):,y, 2), E}

We assume that this is isotropic and is Gaus-
sian with the 3D Kolmogorov spectral density
(cf. [8]):
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c,
Qvi, 12, v3) =
| (k2 4 v+ v+ )"0
—00 < 1 < 00 (1)
where ¢? is a constant that we assume is

known. This constant characterizes the tur-
bulence strength and is considered arbitrary
for our purposes here.

With X-axis as the pitch axis and x denot-
ing the chord-wise coordinate:

-b<x<bH



and s the spanwise coordinate:
0 <s <V

(We consider only one side of the wing. The
other side is taken care of by making the func-
tions symmetric in s.) We are interested in

the 2D random field:
wy(z,s,20), —00<x,5<00

where z is the fixed altitude (level flight). The

spectral density of
wy(z,s,20), —00 <z <00, —00<Ss<O00

is given by (2D-Kolmogorov)

Q211 12) = /

— 00

jeel

Q(V1, Vo, Vs) dvs

constant
- 2 2(,,2 2\\4/3 ° (2)
(k% + 4m2(vf +13))

The constants in (1), (2) are not the same.
In fact from now on we will ignore the multi-
plicative constant, since it is irrelevant for our
purposes.

2.1 Wind Gust Model: Temporal

For an aircraft in motion, the wind gust at
a fixed point on the wing becomes a function
of time. We invoke the Taylor “frozen field”
hypothesis to characterize the temporal gust
field. Thus we assume that the aircraft veloc-
ity at the fixed altitude 2z , relative to the wind
(to be distinguished from turbulence) is along
the negative X-axis, the magnitude (speed)
being U (level flight, constant speed), the tur-
bulence component assumed small enough in
comparison with U that it may be neglected.
Then at any point (x,s,2p) on the moving
wing the vertical wind turbulence is a func-
tion of time t given by:

wy(t,z,s) = wy(x —Ut, s, z0). (3)

For each z, s we have a stationary Gaussian

process. The covariance function:
E[wg(t, z, 3) w9<t + T, T, S) ] = R9<U7—7 Oa O)
(4)
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where Ry(x,y, z) denotes the covariance func-
tion of the 3D field. We may simplify it as

R,(UT,0)
where
Ry(x,s)

is the covariance function of the 2D field with
spectral density given by (2), since zq is fixed.
In either case we have for the temporal covari-
ance function:

Rl(T)
= E[wy(t,z,s) wy(t+ 7, x, 5)]

= constant / - e2rivur dv
—00 (k2 + 4m2p2)5/6 7

(5)

using the fact that

o0 dvs
~/—00 (k? + 4m2(v? + V%))4/3
1
(k2 + 47T2V12)5/6 .

From (5) we see that the spectral density of
the temporal process

wy(t, z, s)
at the point (z,s) on the aircraft is given by

constant - U?/3
(R2U? 1 An202)5/6

—00 <V <00

(6)
and of course the same at all points z,s.
We note that (5) is the spectral density of
any straight-line (1D) scan of of the 3D field
wy(x,y, z) at speed U.
We also need the covariance function of the
space-time field (again stationary)

Qi(v) =

wy(z —Ut, s, 2z9), —o0<t,s<o0.

This covariance function is defined by:
RQ (7—7 z, S)

= E[U}g<l’1 — Utl, Sl,.il?()) wg<56'2 — UtQ,SQ,CE())]
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where

To—X1 =2, to—1t1 =T, Sg—8 =S

is given by (using (2)),

0 0
/ / 627ri1/1 (z—UT)+2mivas
—00 J—00

dVl dVQ
(K2 Am2 (0 +12))8

generalizing (6).

(7)

3 Aerodynamic Loads Due to Wind
Turbulence

To calculate the aerodynamic loads due to
wind turbulence, we begin by noting that the
vertical component of the turbulence veloc-
ity is the downwash function. In the small-
disturbance linearized theory the correspond-
ing force and moment (per unit span) can be
expressed:

Fis) = [ t / beF(t—a, ) wa(0, £, 5) de do,

0<t, 0<s</

for the force, and

4 b
M(t,s) = /0 /7bHM(t—a, €) walo, €, 5) dé do,

0<t, 0<s<V.

The kernels Hp(-,-) and Hp(-,+) can be
derived by solving the Possio Equation [4],
valid for the inviscid small-disturbance (lin-
earized) subsonic (0< M <1) flow [5,6]. Note
that the kernels do not involve the span vari-
able because of the assumed high aspect ratio.

Following [1] we may take

wa(") = —wy(*)

and since for the random field the sign does
not matter, the gust induced lift F(¢,s) can
be expressed conveniently as the chordwise in-
tegral

Fylt,s) = /bb L6 s)ds (8

where
fo(t, €, 5)
- /otHF@—o, §wy(§ —Ua, s) do. (9)

We are interested only in the steady state
(temporal) response. Hence (see [4]) we may

define
fg(t,ﬁ,s)
— /:O Hp(o,&)wy(€ —U(t—0), s) do. (10)

Similarly the steady-state moment is given by:
b
Myts) = [ my(t.5)ds ()

mg(t,f, S)
_ /O°° Hat(0,8) wy(€ — U(t—0), s) do. (12)

The covariance function of the gust-
induced force can then be expressed as the
double integral:

E[Fy(t1, s1) Fy(t2, s2)]

_/ / fg t1,€1,81)fg(t2,€2,52)} dél d§2

where we can calculate the integrand:

E[fy(t1, &1, 51) folta, &2, 52) ]

= / / HFU1,§1

Elwy(& — U(ti— 1), 51)
“wy(§2 — Ulta— 03), s2) |
* Hp(oy, &) doy dos,

= / / Hp(o1, &)

“ (& — & — Ut + U(og— 1), 8)
HF(O-27£2) do_l dUQ,
:tg—tl; S = S92 — 81 (13)

[ e an)

</ HF(O'Q ’ 52)627riu1U02 dO'Q)
0

—2miv1Ut 6271’2'1/1 (&2—¢1) 627Ti1/25
dVl dVQ
(k2 + dm2(v} + )"

e




Let Hp(iw,€) denote the Fourier transform

/ T e Hi(o,€) do.
JO

Then (13)

oo oo )
— / / e2mivi(€2—€1)
—0oQ —0oQ

: ﬁF(iV7 U7 51) HF@”’ U’ 62)
dV1 dl/2
(k + 4m2 (v +13))"

e27ri1/2572m'z/1 Ut

Hence

E[Fy(t1, s1) Fy(ta, s2)]

[ orinUt 42w
— / / e~ TV 6+ TV S
—oo J—oo

2

~

]‘:’F<iV1U, iVl)

: dvy dv
(0 + 4w +)”

where .
HF(’ile, iVl)

is the double Fourier transform
b ~00 . .
— / / 6—271'11/1Ut+27rwl§ HF(t,f) dt df (14)
J-v Jo
This shows that F,(¢,s) is steady-state sta-

tionary in both variables, with stationary co-
variance function Rp(t,s),

R t _ i o0 o0 —2miv1t+27wives
rlhs) =g ) e

2

]‘:’F(iyl, iVl)

(i (B )

and spectral density Pr(v;, o)

dVl dVQ

2

1 HF(iVl s iVl)

P ) = 77 )
(V1 Vo) U <I<:2 + 472 <Z_§2+U22>>4/3

00 < Uy, Uy < 00. (15)
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Similarly, for the stationary covariance
function of the moment:

Ru(t,s) = E[My(t1,s1) My(ta, s2)],
tg—tlzt; SS9 —S1 =S (16)
1 o) 00 | A ) ) 2
=gl [t )

6277i1/gs+2m'1/1t
. 2 173 dV1 dl/Q
<k:2 + 472 (% + V%))
where (17)

[:[M (iVl ) iVl)

0 ) b .
—_ / 67271'11/]_0' / 627ru/1§ HM<O', 5) do df
Jo J—b
(18)
Next the cross covariance:

E[Fy(t1,s1) My(t2, s2) ]

1 [e%] ] . .
— / / 6—27rw1t 6—27rzu25
UJ-x J-x

Hp(iyl, iUl) F[M(Z.Vl, ’iVl)
) p 473
<k2 + 472 <U—%2 + V%))
tg—tl :t, S9 — 81 = S, (19)

dl/1 dVQ s

which we denote by
RFM (t, S)
and

E[M,(t1,s1) Fy(t2, s2) ]

1 [e'¢] o] . .
_ —2mivit  —2mivaes
= = (& (&

U —o0 J—00

. ﬁM<iV1, ’iVl) ﬁF<iV17 iVl)
V2 4/3
)
t2_t1 :t, S9 — 81 = S, (20)

dl/1 dVQ s

which we denote by
RMF (t, 8) .

For calculating the aeroelastic response we
need to consider the 2x 1 process

Fy(t,s) ‘

M,(t,s) (21)
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and the corresponding (stationary) covariance
matrix functions:

Ry(t,s)

_ Rp(t,s) Rru(t,s) (22

Ruyr(t,s) Ruum(t,s)

— O; 0:062”””“””28 P,(v1,10) dvy disy
where
Py(vi, v2)

1 1

g
where
Py (1)

7 . . 2 - B S —
|HF(’LI/1,ZI/1)| Hp(ivy ,ivy) Hpy(ivy ,ivy)

N _— A . . 2
Hpy(ivy ,ivy) Hp(ivy ,ivy) ‘H}\/[(Zl/l,zlll)|

(24)
We should note in particular that if we fix s,
say s = Sg, then the temporal process

Ng (t, So)

is such that the statistical properties in the
steady state do not depend upon sg, and we
have only to set s = 0 in (22) for the cor-
responding covariance function, and obtaining
for the spectral density (omitting multiplica-
tive constants)
1 1
P(v) = = Pi(v),
9( ) U <k2+4ﬂ_25_22>5/6 ( )

—00 <V < 0. (25)
4 Wing Structure Response

We can now formulate the structure response
to the aerodynamic gust loads. We use the
uniform cantilever beam model of Goland [3],
endowed with two degrees of freedom: bending
and torsion — or in aeroelastic terms, plung-
ing (displacement in Z-axis) and pitching, the

pitching axis as shown in Figure 1. Referring
to [5] for more details on this, let

h(t, s)

x(t,s) = o, 5)

, 0<t, 0<s</

where h(-,+) is the bending displacement
(plunge) and 6(-, -) the pitch angle. Then the
structural dynamics equations are given by:

Msi(t, s) + Dgi(t, s)

84
BI 27 0

+ x(t, s)

82
0 -GJ 2

t b
= / / H(t—o,z)we(o,x,s) do + Ngy(t,s)
0 J-b
(26)
where the structure normal velocity
we(t, z, s)

= —h(t,s) — (m—a)é(t,s) — Ucosaf(t,s)

) = | o |
F,(t,s
w) = |

where Mg, Dg are the structure mass/mo-
ment of inertial and damping (if known)
matrices. With the cantilever end conditions:

h0,t) = K(0,t) = 0 = 6(0,¢)

o', t) = 0 = n'(6,t) = h"(L,t)

(see [7] for modification if self-straining con-
troller action is to be included). Since we are
only dealing with linear dynamics, we begin by
taking Laplace transforms treating N,(t, s) as
a deterministic input. Our primary interest is
in developing the system “Transfer Function.”
Then using the notation

(N, s) = /O.OO e Ma(t,s) dt, Rel>0

~

N,(\s) = Q/Oooe’\tNg(t,s) di



and, taking transforms in (26), assuming zero
initial conditions, we obtain:

where wq(+), wa(+), ws(+), wy(+) are given in [5].
We note that (26) with the boundary condi-
tions is a two-point boundary-value problem,
to solve which we define (keeping A fixed)

Then (27) becomes:

Y'(s) = AN Y(s) + BgaNy(s), 0<s</?
(28)
where
0O 1 0 0 0 0
0O 0 1 0 0 0
0O 0 0O 1 0 o0
AN =
w1 0 0 O W2 0
O 0 0 0 o0 1
wg 0 0 0 wy O
0 0
0 0
0 0
Bgy = 1
5 0
0 0
0o 2
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Fy(X\,s)
Ny(s) = - '
My(X,s)
And (27) has the solution:
h(),s) '
= CyY(s)
a(\, s)

v / ANE=) Boy N, (o) do.
0
(29)
The next step is to satisfy the boundary con-

ditions. Let
0 01 0 0 O
P =10 0 0 1 0 0
0 0 00 0 1

Then

Y(@ — eA()\)f P3*6 h"

(30)
and we require that
PyY(l) = 0

or

W'(\, 0
Ds(A)| h"(),

&' (A,

+ Py / AN B N, (0) do = 0

where |
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which is an entire function with a count-
able number of zeros which are the aeroelas-
tic modes. Hence, omitting this sequence, we
have

Y(s) = e (=1)Pg Ds(N) !
g4
. / P36 BA(A)(Z_J) B62 Ng(O') do
J0
+ / ANE=9) Bo, N, (o) do.
0

Hence the solution of (26) satisfying the end
conditions is given by (the inverse transforms

of):
N=9) Bey N, (0) do
P Dy(\) !
. /0 Py AN B N,(o) do
which can be expressed as:
- /;G(A,s,o—) N,(0) do, 0<s<{ (32)
where G(), -, -) is the Green’s Function

G(Au S, U) = 026 eA M(s=o) BGQ

— 0266 P* Dg()\)
- Psg AN (f=0) Bgs
O<o<s

= —COy ™™ Py Dy(N) !
+ Py M) By
s< o</t
Note that
G(\0,0) =0, 0<o</.

Denoting now the inverse Laplace transform

of G(\, s,0) by
Wi(t,s, o)

we have that the steady-state time-domain
gust response satisfying (4.1) is given by:

/da/ (7,5,0)

Ny(t — 7, o) dr. (33)

Hence the temporal covariance

E[x(t, s)z(ta, s)"]

=L

B[ Ny(ty =71, 01) Nylta =7, 09)" ]
J W(TQ, S, 0'2)* dTl dTl d0'1 dO’Q

7_1 y Sy Ul)

which using

E[Ny(ti—11, 01) Ny(to—7, 02)" |

o0 o0
— / / 627ril/1(t27t1)+27r2'l/2(0'270'1)
J—00 J—00

. PQ(Vl, Vg) dl/1 dVQ

becomes

> 2mivyt
— / e 2min1 dVl
J—o00

. / G(2mivy | s, 2mivy)

—00

- Py(vy, o) @(2m'1/1, s, 2mivy)* diy

where

A ¢ .

G(2miv, s, 2mive) = /672”“’2”(?(%5,0) do.
Jo

Hence the temporal spectral density of the
process x(t, s) at s is given by

P(v) = /oo G(2miv, s, 2mivy)

« Py(v,15) G(2miv, s, 2mivy)* dus

—00 <V < Q.

We can take advantage of the fact that (cf.
(23)):
b (1)

PQ(Vl s 1/2) = 2
(2 7 (3 +8)

1
U 4/3 -

Hence we can express Ps(+) as:
P(v) = / g(2miv, s, 2mivs)

J =00

- Pi(v) g(2miv, s, 2mive)* dvy  (34)



where

1 G(2miv, s, 2mivs)

U 4/3 "
<k + 2miy/ +y§>

9(2miv, s, 2mivy) =

Also
G(2miv, s, 2mivy)
¢, .
= / G(2miv, s, 0) e ™7 do
Jo

= Oy

pARmiv)s <[ _ e—(A(27ri1/)+27riV2)s>

- (AQ2miv) + 2mived )~
— 6A(27riu)s <P§6D3<27T2'V)71P36)

. eAQmiv)e <] B ef(A(zmu)Hng)e)

- (A(2wiv) + 27ivel )" | Bes.

4.1 Accelerometer Output

The displacement at (x,s), where = is the
chordwise coordinate and s the spanwise co-
ordinate is given by

z(t,x,s) = h(t,s) + x0(t,s)
and the acceleration at (z,s) is therefore

i(t,x,s) = h(t,s) + x0(t,s).
The corresponding spectral density is

1

V1, z] P(v) , 00< V<00

This is zero at s = 0, and we expect the inten-
sity to increase with s at x = 0.

5 Numerical Results

We begin with the spectra of the aerodynamic
loads since they do not require the structure
parameters. The aerodynamic Transfer Func-
tions Hp(iv,iv) and Hy(iv,iv) depend on M
and we select M =0 and M =1 as typical of
subsonic (small M) and transonic (large M).
Using the closed form solutions of the Pos-
sio Equation given in [4], we can calculate:
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For M =0

Hp(iv,iv)

2mivb

= pU2rh [C < ) (Jo(27bv) + i.Jy (27bv))

+ % J1(27rbu)] (35)

(named as the Kiissner function in [1]) where
C'(+) is the Theodorsen function:

Ky (k)

Cth) = Ko(k) + Kq(k)

B 2mivb
U

~

Hy (iv,iv)

2mwivb

= pUb [(1 . (1+2a)C< ) 7(Jo(2m0b)

Amiav 2) J1(27vb)
U 2v

b iy (2mub)) + (

-7 J2(27r1/b)1 : (36)

2

— e U1+ U)\/— (1+2U)v2

2miby

- Erf \/47m'b7ry + (37)

The moment loading transfer function

HM<iV, ZV)
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turns out to be rather complex. We have for
a=0:

HM<iV7 ZV)

/7 2k3
VE

P2 p—2ibmv (_ 2eF + (1-k) Erf[ﬂ])

— <4b2e“ibw <—2(k + 4ibrv)

+ ektaibmy ok + dibrv Erf [V + 4ibry }> >/
<\/ﬁ\/7_r(k + 4ib7w)2>

— <e_k_2ib7”’ <ek(k: + 4ibrv)? Erf [VE]
+ V& <4b\/7_r v(ik — 4brv)

— M /L 4 dibry
- (k — 4ibkmv + 2bmv(3i+8bmv))

Bt E T ] ) /
(2672 (k + 4ibrv)?)

(38)
And for a # 0,

= (38) — a(37)

Plots of the power density spectra for lift
and moment

10log |Hp(iv,iv)|*P(v)

101og |H s (iv, iv)|* P(v)

where
1 1
Plv) = =
U (/iz I 47;]22”2> /6
with -
T 1000

are given in Figures 2 and 3 for M = 0 and
M = 1 as well as various values of U with
=1.

Finally as may be expected the bend-
ing/torsion wing response spectra depend
heavily on the specific parameters of the wing
and are not included here; a representative
case will be presented at the Conference.
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Fig.1. Wing Structure Beam Model
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Fig.2. Aerodynamic Loading: Lift Spectra
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Fig.3. Aerodynamic Loading: Moment Spectra
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