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Abstract

This paper proposes a numerical controller de-
sign methodology applicable to given explicit
models which eider can represent a physical
model or are just the outcome of black-box iden-
tification (e.g. neural net model). The design
method is capable of considering various advan-
tageous control specifications.

The paper presents an example with numeri-
cal simulations to provide empirical validation of
the proposed control design methodology. In this
example a controller is derived for the prototypi-
cal aeroelastic wing section.

1 Introduction

This paper proposes a control design methodol-
ogy that starts with a parameter-varying (where
the parameters may also include the elements of
the sate vector) state-space model, which is as-
sumed to be linear in the inputs, and is given by
either explicit analytic forms or soft-computing
techniques, and then transforms the given model
by TP (Tensor Product) model transformation
[1, 2] into convex state-space TP model, then
uses Parallel Distributed Compensation (PDC)
framework [8] to reformulate the resulting TP
model into Linear Matrix Inequalities (LMI) se-
lected according to desired control specifications.
The controller is resulted by solving the LMIs.
All these steps can readily be executed numeri-
cally by computers in acceptable time [3].

As a result of the dramatic and continuing
growth in computer power, and the advent of
very powerful algorithms (and associated the-
ory) for convex optimization, we can now solve
very rapidly many convex optimization problems
involving LMIs [4]. Many control problems
and design specifications have LMI formulations
[5, 6] that comes from the fact that LMI formu-
lations have the ability to readily combine vari-
ous design constrains or objectives in a numeri-
cal tractable manner. This is especially true for
Lyapunov-based analysis and design. A great
list of control problems which can be solved via
LMIs is addressed in [3] and [7]. There are pa-
pers [5] who claim that once a control problem is
formulated in terms of LMIs then the problem is
solved; and point on the fact that the LMI based
controller design leads to solution even in case
when analytic solution does not exist (multiple
Riccati equations can not be solved analytically
in general). Further developments of LMIs for
the above design problems are in an area of ac-
tive research. Commercialized softwares for LMI
based designs are available for engineering prac-
tices [3].

The TP model describes dynamic models by
the parameter varying convex combination of LTI
(Linear Time Invariant) systems. By the help of
the PDC framework the convex TP model can
readily be reformulated in terms of LMIs accord-
ing to various control design specifications [8].

The main difficulties of having the TP model
of a system is that the identification techniques do
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not result in TP model form in most cases. There-
fore, it is desired to find a transformation tech-
nique capable of transforming identified models
into TP model form. There are analytic trans-
formation techniques which can be applied to a
class of analytically given models, for instance
see chapter 2 of [8]. Analytic techniques, how-
ever, need problem dependent human intuition,
and cannot easily be solved in many cases.

The aim of this paper is to introduce a numer-
ical TP model transformation method that can be
executed with the LMIs by computers automat-
ically even in case when the given model is not
known analytically, but is resulted by a black-box
identification. If we achieve this aim we are then
capable of identifying and updating models and
determining and updating controllers automati-
cally for a class of control problems in real time
operations.

2 Nomenclature

This section is devoted to introduce the notations
being used in this paper: {a,b, . . .}: scalar val-
ues. {a,b, . . .}: vectors. {A,B, . . .}: matrices.
{A ,B, . . .}: tensors. R

I1×I2×···×IN :vector space
of real valued (I1 × I2 × ·· · × IN)-tensors. Sub-
script defines lower order: for example, an el-
ement of matrix A at row-column number i, j
is symbolized as (A)i, j = ai, j. Systematically,
the ith column vector of A is denoted as ai,
i.e. A =

[
a1 a2 · · ·]. �i, j,n, . . .: are indices.

�I,J,N , . . .: index upper bound: for example: i =
1..I, j = 1..J, n = 1..N or in = 1..In. A(n): n-mode
matrix of tensor A ∈ R

I1×I2×···×IN . A ×n U: n-
mode matrix-tensor product. A⊗n Un: multiple
product as A ×1 U1 ×2 U2 ×3 ..×N UN . Detailed
discussion of tensor notations and operations is
given in [9].

3 Preliminaries

This section is intended to define some basic con-
cepts.

3.1 Parameter-varying state-space model

Consider parameter-varying state-space model:

sx(t) = A(p(t))x(t)+B(p(t))u(t) (1)

y(t) = C(p(t))x(t)+D(p(t))u(t),

with input u(t), output y(t) and state vector x(t).
The system matrix

S(p(t)) =
(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ R

O×I (2)

is a parameter-varying object, where p(t) ∈ Ω is
time varying N−dimensional parameter vector,
where Ω= [a1,b1]× [a2,b2]× ..× [aN,bN ] ⊂ R

N

is a closed hypercube. p(t) can also include el-
ements of x(t). The control design method pre-
sented in this paper is restricted to cases when
vector p(t) does not contain elements of u(t).
Further, for a continuous-time system sx(t) =
ẋ(t); and for a discrete-time system sx(k) = x(k+
1) holds.

3.2 Convex state-space TP model

Equ. (2) can be approximated for any parameter
p(t) as a convex combination of the R LTI sys-
tem matrices Sr, r = 1..R. Matrices Sr are also
termed as vertex system matrices. Therefore, one
can define basis functions wr(p(t)) ∈ [0,1] ⊂ R

such that matrix S(p(t)) belongs to the convex
hull of Sr as S(p(t)) = co{S1,S2, ..,SR}w(p(t)),
where vector w(p(t)) contains the basis functions
wr(p(t)) of the convex combination. The control
design methodology, to be introduced in this pa-
per, applies univariate basis functions. Thus, the
explicit form of the convex combination in terms
of tensor product becomes:(

sx(t)
y(t)

)
≈ (3)

(
I1

∑
i1=1

..
IN

∑
iN=1

N

∏
n=1

wn,in(pn(t))Si1,i2,..,iN

)(
x(t)
u(t)

)
.

(3) is termed as TP model in this paper. Func-
tion wn, j(pn(t)) ∈ [0,1] is the j-th univariate
basis function defined on the n-th dimension
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of Ω, and pn(t) is the n-th element of vector
p(t). In (n=1,...,N) is the number of univari-
ate basis functions used in the n-th dimension of
the parameter vector p(t). The multiple index
(i1, i2, ..., iN) refers to the LTI system correspond-
ing to the in−th basis function in the n-th dimen-
sion. Hence, the number of LTI vertex systems
Si1,i2,..,iN is obviously R =∏n In. One can rewrite
(3) in the concise TP form as:(

sx(t)
y(t)

)
≈S

N⊗
n=1

wn(pn(t))
(

x(t)
u(t)

)
, (4)

that is S(p(t))≈εS⊗N
n=1 wn(pn(t)).

Here, ε represents the approximation error,
row vector wn(pn) ∈ R

In contains the basis func-
tions wn,in(pn), the N + 2 -dimensional coeffi-
cient tensor S ∈ R

I1×I2×···×IN×O×I is constructed
from the LTI vertex system matrices Si1,i2,...,iN ∈
R

O×I . The first N dimensions of S are assigned
to the dimensions of Ω. The convex combination
of the LTI vertex systems is ensured by the con-
ditions:

Definition 1 The TP model (4) is convex if:

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0,1]; (5)

∀n, pn(t) :
In

∑
i=1

wn,i(pn(t)) = 1. (6)

This simply means that S(p(t)) is within the
convex hull of LTI vertex systems Si1,i2,..,iN for
any p(t) ∈Ω.

Remark 1 S(p(t)) has finite TP model represen-
tation in many cases (ε= 0 in (4)). However, one
should face that exact finite element TP model
representation does not exist in general (ε > 0 in
(4)), see [10]. In this case ε �→ 0, when the num-
ber of LTI systems involved in the TP model goes
to ∞. This fact leads to complexity trade-off in
case of numerical computation.

3.3 LMI based controller design under PDC
framework

The PDC design techniques determine one LTI
feedback gain to each LTI vertex systems in-
cluded in the TP model. The framework starts

with the LTI vertex systems S , and results in the
vertex LTI gains K of the controller. The K is
computed by the LMI based stability theorems.
Having the K the control value is determined by
the help of the same basis functions as used in
(4):

u(t) = −
(
K

N⊗
n=1

wn(pn(t))
)

x(t). (7)

Observe that equation (7) restricts the design
to parameter-varying models where vector p(t)
does not contains any elements of u(t). The LMI
theorems, to be solved under the PDC frame-
work, are selected according to the stability crite-
ria and the desired control performance. For in-
stance, the speed of response, constraints on the
state vector or on the control value can be con-
sidered via properly selected LMI based stability
theorems. The example, discussed in Section 5 of
this paper, applies one of the most basic LMI the-
orems to achieve global asymptotic stability for a
given dynamic system. In order to complete the
paper let us recall briefly this theorem here:

Method 1 (Global and asymptotic stabilization
of convex TP model (4))

Assume a given state-space model in TP form (4)
with conditions (5) and (6). In order to have a
direct link between the TP model (4) and the typ-
ical form of LMI theorems under the PDC frame-
works, let the following indexing be defined:

Sr =
(

Ar Br

Cr Dr

)
= Si1,i2,..,iN ,

where r = ordering(i1, i2, .., iN) (r = 1..R =
∏n In). The function "ordering" results in the lin-
ear index equivalent of an N dimensional array’s
index i1, i2, .., iN , when the size of the array is
I1 × I2 × ..× IN . Let the basis functions be de-
fined according to the sequence of r:

wr(p(t)) =∏
n

wn,in(pn(t)).

Then the controller design can be derived from
the Lyapunov stability theorems for global and
asymptotic stability as shown in [7, 8]:
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Find X > 0 and Mr satisfying equ.

−XAT
r −ArX+MT

r BT
r +BrMr > 0 (8)

for all r and

−XAT
r −ArX−XAT

s −AsX+ (9)

+MT
s BT

r +BrMs +MT
r BT

s +BsMr ≥ 0.

for r < s ≤ R, except the pairs (r,s) such that
wr(p(t))ws(p(t)) = 0,∀p(t).

Since the above conditions (8) and (9) are
LMI’s with respect to variables X and Mr, we
can find a positive definite matrix X and matrix
Mr or determine that no such matrices exist. This
is a convex feasibility problem. Numerically, this
problem can be solved very efficiently by means
of the most powerful tools available in the mathe-
matical programming literature e.g. MATLAB-
LMI toolbox [3]. The feedback gains can be ob-
tained form the solutions X and Mr as

Kr = MrX−1. (10)

Then, by the help of r = ordering(i1, i2, .., iN) one
can define feedbacks Ki1,i2,..,iN from Kr obtained
in (10) and store into tensor K of (7).

4 TP model transformation for PDC design
frameworks

4.1 TP model transformation

Detailed description of the TP model transfor-
mation is given in recent papers [1, 2, 11]. The
goal of the TP model transformation is to trans-
form a given state-space model (1) into convex
TP model (4) and solve the complexity trade-off
if necessary, see Remark 1. It is important to
emphasize here that, in order to start with the
TP model transformation, one needs an explicit
model, such that the system matrix S(p(t)) can be
sampled for all possible values of the parameters
p(t) ∈ Ω. Whether S(p(t)) is a physical model,
or are just the outcome of black-box identifica-
tion is irrelevant.

The TP model transformation is a numerical
method and has three key steps. The first step

is the discreatisation of the given S(p(t)) via the
sampling of S(p(t)) over a huge number of points
p ∈ Ω. The sampling points are defined by a
dense hyper rectangular grid. In order to loose
minimal information during the discretisation we
apply as dense grid as possible. The second step
extracts the LTI vertex systems from the sampled
systems. This step is specialized to find the min-
imal number of LTI vertex systems as the vertex
points of the tight convex hull of the sampled sys-
tems. The third step defines the continuous basis
functions to the LTI vertex systems.

Method 2 TP model transformation

Step 1) Discretisation
a) Define the transformation space Ω as:

p(t) ∈Ω : [a1,b1]× [a2,b2]× ..× [aN ,bN ].
b) Define a hyper rectangular grid by equidis-

tantly located grid-lines: gn,mn = an+ bn−an
Mn−1 (mn−

1), mn = 1..Mn. The numbers of the grid lines in
the dimensions are Mn.

c) Sample the given function S(p(t)) over the
grid-points:

Ss
m1,m2,..,mN

= S(pm1,m2,..,mN) ∈ R
O×I,

where pm1,m2,..,mN =
(
g1,m1 g2,m2 .. gN,mN

)
.

Superscript "s" means "sampled".
d) Store the sampled matrices Ss

m1,m2,..,mN
into

the tensor S s ∈ R
M1×M2×..×MN×O×I .

Step 2) Extracting the LTI vertex systems
This step uses Higher Order Singular Value

Decomposition (HOSVD), extended with trans-
formations NN, SN and NO. The studies of
HOSVD can be found in a large varieties of pub-
lications. This paper uses the concept and ten-
sor notation of HOSVD as discussed in [9]. The
HOSVD extended with SN, NN and NO transfor-
mations are introduced in [12] and [13].

This step executes this extended HOSVD on
the first N dimensions of tensor S s. During per-
forming the extended HOSVD we discard all
zero or small singular values σk and their corre-
sponding singular vectors in all dimensions. As a
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result we have

S s≈
γ
S⊗

n
Un,

where the error γ is bounded as:

γ =
(
‖S s−S⊗

n
Un‖L2

)2

≤∑
k

σ2
k. (11)

The resulting tensor S , with the size of (I1× I2×
..× IN ×O× I), where ∀n : In ≤ Mn, contains the
LTI vertex systems, and is immediately substi-
tutable into (4). The NN and SN transformations
guarantee (5) and (6). The transformation NO en-
sures that the resulting LTI systems form the tight
convex hull of the sampled systems.

The software implementation of the extended
HOSVD is rather simple, for instance, in MAT-
LAB programming.

Step 3) Constructing continuous basis
functions

a) One can determine the discretised points
of the basis easily from matrices Un. The
in-th column vector un,in=1..In of matrix Un ∈
R

Mn×In determines one discretised basis function
wn,in(pn(t)) of variable pn(t). The values un,mn,in
of column in define the values of the basis func-
tion wn,in(pn(t)) over the grid-lines pn(t) = gn,mn:

wn,in(gn,mn) = un,mn,in.

b) The basis functions can be determined
over any points by the help of the given S(p(t)).
In order to determine the basis functions in vector
wd(pd(t)), let pk(t) be fixed to the grid-lines as:

pk = gk,1 k = 1..N, k �= d.

Then for pd:

wd(pd) = (S(p))(3)

((
S⊗

k
uk,1

)
(n)

)+

,

where vector p consists of elements pk and pd

as p =
(
g1,1 g2,1 ... pd ... gN,1

)
, and su-

perscript "+" denotes pseudo inverse and uk,1 is
the first row vector of Uk. The third mode matrix

(S(p))(3) of matrix S(p) is understood such that
matrix S(p) is considered as a three dimensional
tensor, where the length of the third dimension is
one. This practically means that the matrix S(p)
is stored into one row vector by placing the rows
of S(p) next to each other, respectively.

Property 1 Exact transformation: The TP
model transformation is capable of finding the fi-
nite TP model form if it exists (for instance see
the example in Section 5.).

Property 2 non-exact transformation and
complexity trade-off: If finite TP model form
of the original model does not exist, then the TP
model transformation results in a TP model that
is an approximation of the given model. The di-
rect sampling and finding a tensor product based
approximation by the help of identification tech-
niques may lead to large-sized problems which
are not possible (or difficult) to handle with stan-
dard solvers or use the result in real time ap-
plications. Therefore, the proposed TP model
transformation involves complexity trade-off that
leads to a tractable LMI problems with well-
preserved dynamical behavior of the controlled
system. The approximation accuracy can be im-
proved by discarding as small number of non-
zero singular values as possible. This, however
leads to a complexity problem soon. The error
bound in (11) helps us with the complexity trade-
off.

Whatever we estimate for the error bound
during the complexity trade-off, the final error
of the resulting TP model can always be sim-
ply checked numerically. We can select a huge
number of points in Ω and evaluate the error be-
tween the original model and the resulting TP
model over the selected set. Then one can define
wether the model is acceptable or the increase of
the number of resulting LTI systems is necessary.

4.2 Summary: control design based on the
TP model transformation

The previous subsection shows how we can trans-
form a given model into TP model form. The TP
model transformation starts with S(p(t)) and Ω
and results in wn=1..N(pn(t)) and S . S(p(t)) ∈
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R
O×I is from (2), and Ω ⊂ R

N denotes the
bounded domain which the transformation is per-
formed over. Vectors wn(pn(t)) ∈ R

In and tensor
S are defined at (4). If we find that the result-
ing TP model is not exact then we can check the
accuracy of the resulting TP model numerically
as discussed at Property 2. If we accept the TP
model then we can apply LMI based control de-
sign under PDC framework as discussed in sub-
section 3.3. As a result we have the LTI feedback
systems in K for (7). The control value is com-
puted by (7). The basis functions in wn(pn(t))
are computed by the 3th step of the TP model
transformation for the actual p(t).

5 Validation of the TP model transformation
in the control design of the prototypical
aeroelastic wing section

The example treats the question of state variable
feedback control of prototypical aeroelastic wing
section. This type of model has been tradition-
ally used for the theoretical as well as experi-
mental analysis of two- dimensional aeroelastic
behavior. The model investigated in the example
describes the nonlinear plunge and pitch motion
of a wing, and incorporates essential and well-
characterized structural non-linearities that yields
limit cycle oscillation at low speeds. This sec-
tion derives a controller capable of globally and
asymptotically stabilizing the aeroelastic wing
section via single control surface. This case study
has been detailed in recent papers, for instance in
[11]. In these papers the control results are com-
pared with former control solutions as well.

5.1 Background

In the past few years various studies of aeroelas-
tic systems have emerged. [14] presents a de-
tailed background and refers to a number of pa-
pers dealing with the modelling and control of
aeroelastic systems. The following provides a
brief summary of this background.

Regarding the properties of aeroelastic sys-
tems one can find the study of free-play non-
linearity by Tang and Dowell in [15, 16], by Price

et al. in [17] and [18], by Lee et al. in [19], and
a complete study of a class of non-linearities is
in [20], [18]. O’Neil et al. [21] examined the
continuous structural non-linearity of aeroelastic
systems. These papers conclude that an aerole-
satic system may exhibit a variety of control phe-
nomena such as limit cycle oscillation, flutter and
even chaotic vibrations.

Control strategies have been derived for pro-
totypical aeroelastic wing section, for instance,
in papers [22, 23, 14]. It has been shown that by
applying an additional control surface global sta-
bilization can be achieved. For instance, adap-
tive feedback linearization [24] and the global
feedback linearization technique were introduced
with two control actuators in the work of [14].

5.2 Equations of motion

In this paper, we consider the problem of flutter
suppression for the prototypical aeroelastic wing
section as shown in Figure 1. The aerofoil is
constrained to have two degrees of freedom, the
plunge h and pitch α. The equations of motion
of the system have been derived in many refer-
ences (for example, see [25], and [26]), and can
be written as

 
 
 
 

M 

α 
h L 

c.g. kα 

U 
xα 

kh 

c=2*b 

b 

a*b midchord elastic axis 

β 

h 

Fig. 1 Aeroelastic model

(
m mxαb

mxαb Ial pha

)(
ḧ
α̈

)
+

(
ch 0
0 cα

)(
ḣ
α̇

)
+

(12)
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+
(

kh 0
0 kα(α)

)(
h
α

)
=

(−L
M

)
,

where

L = ρU2bclα

(
α+

ḣ
U

+
(

1
2
−a

)
b
α̇
U

)
+ (13)

+ρU2bclββ,

M = ρU2b2cmα

(
α+

ḣ
U

+
(

1
2
−a

)
b
α̇
U

)
+

+ρU2bcmββ,

and where xα is the non-dimensional distance be-
tween elastic axis and the centre of mass; m is
the mass of the wing; Iα is the mass moment of
inertia; b is semi-chord of the wing, and cα and
ch respectively are the pitch and plunge struc-
tural damping coefficients, and kh is the plunge
structural spring constant. Traditionally, there
have been many ways to represent the aerody-
namic force L and moment M, including steady,
quasi-steady, unsteady and non-linear aerody-
namic models. In this paper we assume the quasi-
steady aerodynamic force and moment, see work
[25]. It is assumed that L and M are accurate for
the class of low velocities concerned. Wind tun-
nel experiments are carried out in [27]. In the
above equation ρ is the air density, U is the free
stream velocity, clα and cmα respectively, are lift
and moment coefficients per angle of attack, and
clβ and cmβ , respectively are lift and moment co-
efficients per control surface deflection, and a is
non-dimensional distance from the mid-chord to
the elastic axis. β is the control surface deflec-
tion.

Several classes of non-linear stiffness contri-
butions kα(α) have been studied in papers treat-
ing the open-loop dynamics of aeroelastic sys-
tems [15, 20, 28, 29]. For the purpose of il-
lustration, we now introduce the use of poly-
nomial non-linearities. The non-linear stiffness
term kα(α) is obtained by curve-fitting the mea-
sured displacement-moment data for non-linear
spring as [30]:

kα(α) = 2.82(1−22.1α+1315.5α2+

+8580α3 +17289.7α4).

The equations of motion derived above exhibit
limit cycle oscillation, as well as other non-linear
response regimes including chaotic response [20,
28, 30]. The system parameters to be used in
this paper are given in [1] and are obtained from
experimental models described in full detail in
works [14, 30].

With the flow velocity u = 15(m/s) and
the initial conditions of α = 0.1(rad) and h =
0.01(m), the resulting time response of the non-
linear system exhibits limit cycle oscillation, in
good qualitative agreement with the behaviour
expected in this class of systems. Papers [21, 30]
have shown the relations between limit cycle os-
cillation, magnitudes and initial conditions or
flow velocities.

Let the equations (12) and (13) be combined
and reformulated into state-space model form:
x(t) =

(
x1 x2 x3 x4

)T =
(
h α ḣ α̇

)T
and

u(t) = β.
Then we have:

ẋ(t) = (14)

= A(p(t))x(t)+B(p(t))u(t) = S(p(t))
(

x(t)
u(t)

)
,

where
A(p(t)) =

=

⎛
⎜⎜⎝

x3

x4

−k1x1− (k2U2 + p(x2))x2− c1x3− c2x4

−k3x1− (k4U2 +q(x2))x2− c3x3− c4x4

⎞
⎟⎟⎠

B(p(t)) =
(
0 0 g3U2 g4U2

)T
,

where p(t) ∈ R
N=2 contains values x2 and U .

The new variables are tabulated in Table 1. One
should note that the equations of motion are also
dependent upon the elastic axis location a.

5.3 Controller design by the proposed
methodology

5.3.1 TP model transformation

The values of the parameters in (13) are given
in [14]. First of all, according to Method 2, let
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Table 1 System variables
d = m(Iα−mx2

αb2)
k1 = Iαkh

d

k2 = Iαρbclα+mxαb3ρcmα
d

k3 = −mxαbkh
d

k4 = −mxαb2ρclα−mρb2cmα
d

p(α) = −mxαb
d kα(α)

q(α) = m
d kα(α)

c1(U) = Iα(ch+ρUbclα)+mxαρU3cmα
d

c2(U) = IαρUb2clα( 1
2−a)−mxαbcα+mxαρUb4cmα( 1

2−a)
d

c3(U) = −mxαbch−mxαρUb2clα−mρUb2cmα
d

c4(U) = mcα−mxαρUb3clα( 1
2−a)−mρUb3cmα( 1

2−a)
d

g3 = 1
d (−Iαρbclβ −mxαb3ρcmβ)

g4 = 1
d (mxαb2ρclβ +mρb2cmβ)

us define the transformation space Ω. We are
interested in the interval U ∈ [14,25](m/s) and
we presume that the interval α∈ [−0.1,0.1](rad)
is sufficiently large enough. Therefore, let: Ω :
[14,25]× [−0.1,0.1] in the present example (note
that these intervals can arbitrarily be defined).
Let the grid density be defined as M1×M2, M1 =
300 and M2 = 300. The resulting basis functions
w1,i(U) and w2, j(α) are shown on Figure 2.

In conclusion, the analytic dynamic model
(14) can be described exactly in finite convex TP
form of 6 vertex LTI models. Note that, one may
try to derive the basis functions analytically from
(14). The basis functions of α can be extracted
from kα(α). Finding the basis functions of U ,
however, seems to be rather complicated. In spite
of this, the computation of the TP model transfor-
mation takes a few seconds.

5.3.2 LMI based controller design under PDC
frameworks

Let the above obtained LTI vertex systems be
substituted into Method 1. The LMI solvers
shows that equ. (8) and (9) are feasible in the
present case. Equ. (10) yields 6 linear feedback
systems ki, j. Then the control value is computed
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Fig. 2 Basis functions on the dimensions U and
α.

by (7):

u(t) = −
(

3

∑
i=1

2

∑
j=1

w1,i(U)w2, j(α)ki, j

)
x(t).

5.4 Control results

To demonstrate the performance of the controlled
system, numerical experiments are presented in
this subsection. In order to be comparable to
other published results, for instance to [14], the
numerical examples are performed with a =−0.4
and with free stream velocity U = 15m/s and
for initials h = 0.01m and α = 0.1rad. Figure 3
shows the time response of the controlled system.
The system is stabilized asymptotically. Note
that we did not define any specific control per-
formances, except global asymptotic stability, in
the design process. We applied one of the basic
LMI theorems. If the design requirements extend
beyond stability, various performance specifica-
tions can be readily ensured by selecting proper
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LMI design theorems.
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Fig. 3 Time response of derived controller for
U = 15m/s and a = −0.4.

6 Conclusion

This paper proposed a numerical TP model trans-
formation capable of transforming a given state-
space model to the TP model form whereupon the
PDC controller design frameworks can be imme-
diately executed. The TP model transformation
is executable on explicit models, such that the
behaviour of the system can be sampled for all
possible values of the parameters. Whether these
models represent a physical model, or are just the
outcome of black-box identification (e.g. neural
net model) is irrelevant. The TP model transfor-
mation can hence be viewed as a uniform gate-
way between various identification techniques
and LMI based analysis and design.
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