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Abstract

This work describes the application of the output-
error method using the Levenberg-Marquardt op-
timization algorithm to the Flight Path Recon-
struction problem, which constitutes an impor-
tant preliminary step towards the aircraft param-
eter identification. This method is also applied
to obtain the aerodynamic and control deriva-
tives of a regional jet aircraft from flight test
data with measurement noise and bias. Exper-
imental results are reported, employing an EM-
BRAER aircraft, with flight test data acquired
by smart probes, inertial sensors (gyrometers and
accelerometers) and GPS receivers.

1 Introduction

Modeling and simulation has become an integral
part of the aeronautical industry design and eval-
uation processes. One of its major parts is sys-
tem identification and parameter estimation, ap-
plied to complex aerodynamic systems such as
airplane. System Identification is a general pro-
cedure to match the observed input-output re-
sponse of a dynamic system by a proper choice
of an input-output model and its physical param-
eters. From this point of view, the aircraft sys-
tem identification or inverse modelling comprises
proper choice of aerodynamic models, the de-
velopment of parameter estimation techniques by
optimization of the mismatch error between pre-

dicted and real aircraft response and the develop-
ment of proper tools for integration of the equa-
tions of motion within the system simulation and
correlated activities [3].

The problem of Flight Path Reconstruction
(FPR) arises naturally when the main goal is an
accurate identification of the aircraft parameters,
because, in this case, the proper characterization
of the sensors constitutes a fundamental prelim-
inary step. For example, if the bias of a certain
sensor is not adequately estimated, the accuracy
of the ensuing parameter identification may be
degraded.

The flight path reconstruction is specially
useful in the validation of the instruments applied
in a prototype. The interpretation of the results
can furnish important information with respect to
sources of problems. Additionally, it decreases
the uncertainties about the quality of data, which
is one of the main causes of poor flight tests re-
sults.

One of the first approaches for FPR may be
found in [5]. The authors employ the kinematic
model of an aircraft, with 6 degrees of freedom,
and then consider an augmented state vector, in-
corporating the parameters to be identified. This
procedure leads to a general problem of state es-
timation with nonlinear dynamics, solved by the
extended Kalman filter approach. A more de-
tailed investigation of the problem is conducted
by [9]. Experimental results are reported for the
approach based on extended Kalman filter, but
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the GPS readings are not used.
In this work, the FPR problem is investigated

by parametric identification of a nonlinear model,
based on output-error method and Levenberg-
Marquardt algorithm. The results are reported for
an EMBRAER aircraft, considering 28 parame-
ters and 6 outputs, and comparing the calibration
results obtained with those determined by tradi-
tional methods used by EMBRAER. The identi-
fication method used in this work, based on the
optimization algorithm of Levenberg-Marquardt
[6], is of the output-error type, which is suscep-
tible to process noise. However, this approach
is justified in the present case, since the noise is
not large and because the methods presented in
[5] and [9] could lead to incorrect results: the ex-
tended Kalman filter could mask instrumentation
errors (when operating under weak exciting sig-
nals), mainly those arising from inadequate com-
patibilization between the INS and GPS coordi-
nates.

The Levenberg-Marquardt algorithm is also
used here to determine the stationary aerody-
namic derivatives of the aircraft, using a lin-
earized lateral-directional model. The effective-
ness of the implemented parameter estimation
method was tested by matching real flight test
data with the predicted response of the aircraft.

This work is structured as follows: in the first
part, the kinematic model for FPR and the lateral-
directional model for parameter estimation are
presented. In section 3, the parametric estima-
tion method is described with special attention to
the Gauss-Newton and Levenberg-Marquardt al-
gorithms. The experimental results obtained in
the FPR problem and parameter estimation are
analyzed in section 4.

2 Aircraft Models

2.1 Kinematic model for FPR

The equations that constitute the kinematic
model of an aircraft can be grouped in 3 sets of
first-order differential equations, providing trans-
lational velocities, angular velocities and attitude
angles. Using the standard body-fixed reference

frameFB, the equations for the componentsu, v e
w of true air speedV along the body axesXB, YB

andZB are:

X = m(u̇+qw− rv)+mgsenθ
Y = m(v̇+ ru− pw)−mgcosθsenφ
Z = m(ẇ+ pv−qu)−mgcosθcosφ

(1)

wherep, q e r denote the rates of rotation about
the axes ofFB; θ andφ denote pitch and roll an-
gle, respectively;m denotes aircraft mass andg
denotes the local acceleration due to gravity.X,Y
andZ represent the components of thetotal aero-
dynamic force, including the aerodynamic effects
of propulsion systems.

For an aircraft with a geometrical plane of
symmetry, the rotational dynamics are given by

L = Ixṗ− (Ix− Iz)qr− Ixz(ṙ + pq)
M = Iyq̇− (Iz− Ix) rp− Izx(r2− p2)
N = Izṙ− (Ix− Iy) pq− Izx(ṗ+qr)

(2)

whereL, M, N denote thetotal aerodynamic mo-
ments, including any aerodynamic effects of the
propulsion system;Ix, Iy and Iz denote the mo-
ments of inertia andIxz the only non-zero product
of inertia inFB (due to symmetry).

The orientation ofFB with respect to the
earth-fixed vertical reference frameFE is gov-
erned by the following equations for the Euler
anglesφ, θ andψ,

φ̇ = p+qsenφ tanθ+ r cosφ tanθ
θ̇ = qcosφ− rsenφ
ψ̇ = qsenφsecθ+ r cosφsecθ

(3)

To integrate the equations (1) and (3), it is
necessary to determineX, Y, Z in (1). This is
done assuming that these accelerations are mea-
sured, giving

X = max

Y = may

Z = maz

(4)

in which ax, ay e az denote the specific aerody-
namic forces along the body axesXB, YB andZB,
respectively.

By replacing (4) into (1) and dividing bym
leads to

u̇ = ax− (qw− rv)−gsenθ
v̇ = ay− (ru− pw)+gcosθsenφ
ẇ = az− (pv−qu)+gcosθcosφ

(5)
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Once massm (or any other physical prop-
erties) has been eliminated from equations (5)
and (3), these equations can be integrated. More
precisely, the solution of these equations can
be obtained using the acceleration components
(ax, ay, az) and the angular rates(p, q, r) as in-
put variables, since they are measured by sensors
installed on the aircraft, which are part of the in-
ertial system. It is precisely the measure of these
components that allow the realization of the FPR
before the parameter identification of the aircraft
is carried out.

Aiming to use GPS readings (geographical
coordinates), we must characterize the position
of the aircraft relative to the earth-fixed reference
frame. To improve the quality of this signal, it
was used the differential technique, namely the
DGPS. This position is obtained from (5) and (3),
through the relation




ẋE

ẏE

żE


 = LEB




u
v
w


−




WXE

WYE

WZE


 (6)

whereLEB denotes an orthogonal matrix of ref-
erence frame transformation, determined by the
roll, pitch and yaw angles. The three vectors that
form this matrix are

v1 =




cosθcosψ
cosθsenψ
−senθ


 (7)

v2 =




senφsenθcosψ−cosφsenψ
senφsenθsenψ+cosφcosψ

senφcosθ


 (8)

v3 =




cosφsenθcosψ+senφsenψ
cosφsenθsenψ−senφcosψ

cosφcosθ


 (9)

WXE , WYE e WZE in (6) denotes the compo-
nents of a constant atmospheric wind vectorWE

along the axes ofFE.
To summarize, the aircraft motion can be de-

scribed by the nonlinear model (5), (3) and (6),
which can be rewritten in the form

ẋ(t) = f (x(t),u(t)) (10)

with state and input vectors given by

x =
[

u v w φ θ ψ xE yE zE
]T ∈ℜ9

u =
[

ax ay az p q r
]T ∈ℜ6

(11)
Basically, the observation models take the

form of nonlinear algebraic relations between the
observed variables and the state and input vector
components. In this work the models are derived
for observations of true air speedV, angle of at-
tack α, side slip angleβ and geographical posi-
tion measurements.

True air speedVT can be derived from differ-
ential and absolute barometric and temperature
transducers, resulting

VTm = KvVT +∆VT (12)

whereKv is a scale factor and∆VT the bias term.
By definition,VT is the absolute value of the re-
sultant of the air velocity componentsu, v e w
along the axes ofFB,i.e.,

VT =
√

u2 +v2 +w2 (13)

Also by definition, the angle of attack and the
side slip angle are given by, respectively,

α = arctan
(

w
u

)

β = arctan
(

v√
u2+w2

) (14)

These values differ from the measured angles,
due to many effects, like velocities induced by
aircraft rotational motion and modification of the
air flow due to disturbs of the air near the aircraft,
resulting the following measurement equations

αm = arctan
(w−xαq+yα p

u

)
+Kαα+Kβ

αβ+∆α
βm = arctan

(
v+xβr−zβ p

u

)
+Kββ+∆β

(15)
whereKα, Kβ

α andKβ are scale factors,∆α and∆β
denote bias terms and the parametersxα, xβ, yα
andzβ denote the position of the sensors. More
details can be found in [9].

Finally, the geographical coordinates are ob-
tained by DGPS. Therefore, the observation
model takes the form

xEm = xE +∆xE

yEm = yE +∆yE

hEm = zE +∆zE

(16)

3



LUIZ C. S. GÓES* , ELDER M. HEMERLY** , BENEDITO C. O. MACIEL*

where∆xE, ∆yE and∆zE denote bias terms.
Based in (12), (15) and (16), the observation

vector is defined as

y =
[

αm βm VTm xEm yEm zEm
] ∈ℜ6

(17)
From equations (5), (3), (6), (12), (15)-(17),

and adding bias terms in the measurements of ac-
celerations and angular velocities,∆ax, ∆ay, ∆az,
∆p, ∆q and∆r, the following dynamic model is
obtained:

state equations:

u̇=(axm−∆ax)−(qm−∆q)w+(rm−∆r)v−gsenθ
v̇=(aym−∆ay)−(rm−∆r)u+(pm−∆p)w+gcosθsenφ
ẇ=(azm−∆az)−(pm−∆p)v+(qm−∆q)u+gcosθcosφ

(18)
φ̇=(pm−∆p−ωp)+(qm−∆q−ωq)senφ tanθ
+(rm−∆r−ωr )cosφ tanθ
θ̇=(qm−∆q−ωq)cosφ−(rm−∆r−ωr )senφ
ψ̇=(qm−∆q−ωq)senφsecθ+(rm−∆r−ωr )cosφsecθ

(19)


ẋE

ẏE

żE


 = LEB




u
v
w


−




WXE

WYE

WZE


 (20)

control signals:

axm = ax +∆ax

aym = ax +∆ax

azm= ax +∆ax

pm = p+∆p
qm = q+∆q
rm = r +∆r

(21)

output signals:

αm = arctan
(w−xαq+yα p

u

)
+Kaαα+Kβαβ

+∆α+να

βm = arctan
(

v+xβr−zβ p
u

)
+Kββ+∆β+νβ

VTm = KvVT +∆VT +νV

xEm = xE +∆xE +νxE

yEm = yE +∆yE +νyE

zEm = zE +∆zE +νzE

(22)
where the last terms in (22) stand for sensor
noise.

In the dynamic model given by (20)-(22), the
parameter vectorΘ to be estimated is formed by

28 components, namely

Θ = [∆ax ∆ay ∆az ∆p ∆q ∆r ∆α ∆β Kα Kβ
α Kβ

∆VT KVT WxE WyE WzE ∆xE ∆yE ∆zE u(0) v(0)
w(0) φ(0) θ(0) ψ(0) xE(0) yE(0) zE(0)]T

(23)
where the last 9 terms in (23) denote initial con-
ditions of the state vector in (11).

Therefore, from equations (20)-(23) we con-
clude that the FPR constitutes a parametric iden-
tification problem applied to a dynamic system of
the form,

ẋ(t) = f (x,u,Θ), x(0) = g(Θ)
y(t) = h(x,u,Θ)+υ(t) (24)

wherex∈ℜ9, u∈ℜ6, y∈ℜ6 e Θ ∈ℜ28.

2.2 Dynamic model of lateral-directional
movement of aircraft

The aircraft dynamic system is described by a
stochastic nonlinear hybrid model in the form of
eq. (24). In this section the inverse problem
formulation is applied to the lateral-directional
movement of the aircraft, for which the linear
state and output equations can be written as [8],




β̇(t)

ṗ(t)

ṙ(t)

φ̇(t)


 =




Yβ sin(αe) −cos(αe) a14

L
′
β L

′
p L

′
r 0

N
′
β N

′
p N

′
r 0

0 1 a43 0







β(t)

p(t)

r(t)

φ(t)




+




Yδa Yδr

L
′
δa

L
′
δr

N
′
δa

N
′
δr

0 0




[
δa(t)

δr (t)

]




y1(t)

y2(t)

y3(t)

y4(t)

y5(t)




=




x1(t)+βbias

x2(t)

x3(t)

x4(t)

c51







β(t)

p(t)

r(t)

φ(t)

ay(t)




+υ(t)

(25)
wherea14=cos(φe)cos(θe).(g/V0), a43=cos(θe)tg(θe) and
c51=(V0/g).(Yβx1(t)+Yδaδa(t)+Yδr δr (t)); υ(t) represents
the measurement noise.

Equation (25) has 14 unknown parameters
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that need to be estimated, givingΘ ∈ R14, i.e.,

Θ = [Yβ L
′
β L

′
p L

′
r N

′
β N

′
p N

′
r

Yδa Yδr L
′
δa

L
′
δr

N
′
δa

N
′
δr

βbias]T
(26)

As usually formulated in the aeronautical lit-
erature [5, 6], the components of the vectorΘ,
are the dimensional aerodynamic derivatives, e.g.

Yβ = ρeSV2
e

2m CYβ, which in turn can be written in
term of nondimensional coefficients, e.g.CYβ,
by proper choice of flight parameters, such as
ρe,Ve,S,m, all assumed known a priori. More de-
tails about this conversion can be found in [1].

3 Parametric estimation method

In this section, the parametric identification, in
particular the parameter estimation applied to a
linear causal model of an aircraft, in space state
formulation according to eq. (24). The output-
error method is one of the most used estima-
tion methods in aircraft identification and aero-
dynamic parameter estimation [6], [7], [8]. It has
several desirable statistical properties, including
its application to nonlinear dynamical systems
and the proper accounting of measurements noise
[8].

The structure of the model is considered to
be known, and the identification process consists
in determining the parameter vectorΘ, which
gives the best prediction of the output signaly(t),
using some sort of optimization criteria. The
attainment of an estimate through optimization
of a cost function based on the prediction er-
ror of the plant requires, usually, the minimiza-
tion of a nonlinear function. Thus, the Lenberg-
Marquardt method is used here to estimate the
parameters in model (25). Therefore, the cost
function to be minimized involves the prediction
error,

e(k) = ŷ(k)−y(k) (27)

whereŷ(k) is the output prediction based on the
actual estimatêΘ of the parameter vectorΘ.

3.1 Maximum Likelihood Estimation crite-
ria

Consider a dynamic system, identifiable, with
model structureM(Θ) defined and outputy. Sup-
pose thatp(y|Θ) is the conditional probability
gaussian distribution of the random variabley
with dimensionm, meanf (Θ) and covarianceR,
with dimensionm×m. p(y|Θ) is known as the
likelihood functional, and in [2] the authors at-
tribute its name due to the fact that it is a measure
of the probability of occurrence of the observa-
tion y for a given parameterΘ. The Maximum
Likelihood Estimate is defined as the value ofΘ
which maximizes this functional, in such a way
that the best estimate ofΘ, according to the MLE
criteria is

Θ̂ = ArgMax p(y|Θ) (28)

Thus, the likelihood functional is

p(y|Θ) =
1

(2π)m/2|R|n/2
.

exp

{
−1

2

n

∑
k=1

[e(k,Θ)]T [R]−1[e(k,Θ)]

}
(29)

whose maximization is equivalent to the mini-
mization of

J(Θ) =
n

∑
k=1

1
2
{[e(k,Θ)]T [R]−1[e(k,Θ)]+ ln|R|}

(30)
since, in the optimization process,J(Θ) is equiv-
alent to−ln p(y|Θ), except for a constant term.

3.2 Minimization of the cost function by
Levenberg-Marquardt

The identification algorithms based on the Gauss-
Newton method is of second order. This method,
although complex, is suitable for a quadratic cost
function, and is expected to converge quickly.
First, we approximateJ(Θ) by a parabolic func-
tion JL(Θ) under the conditionΘL (retaining only
the 3 first Taylor series terms),

JL(Θ)∼= J(ΘL)+(Θ−ΘL)T∇T
ΘJ(ΘL)

+
1
2
(Θ−ΘL)T [∇2

ΘJ(ΘL)](Θ−ΘL) (31)
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The optimization condition is obtained when,

∇ΘJ(Θ∗) = 0 (32)

Applying (32) to equation (31), results, forΘ
close to the local minimaΘ∗,

∇ΘJL(Θ)∼= ∇ΘJ(ΘL)+(Θ−ΘL)T [∇2
ΘJ(ΘL)]= 0

(33)
which can be used to find the minima of the orig-
inal cost function through the recursion,

Θi+1 = Θi− [∇2
ΘJ(Θi)]−1∇T

Θ
J(Θi) (34)

The complexity in the calculation of the Hes-
sian matrix,∇2

ΘJ(ΘL) in (34), is avoided through
the Gauss-Newton method, which uses the ap-
proximation,

∇2
ΘJ(Θ)≈

n

∑
k=1

[∇Θŷk(Θ)]T
[
R̂
]−1 [∇Θŷk(Θ)]

(35)
where the terms involving the second derivative
are discarded. The gradient of the estimated out-
put,∇Θŷk(Θ), is calledSensibility Function.

The Levenberg-Marquardt algorithm is an ex-
tension of the Gauss-Newton [10]. The idea is to
modify (35) to

∇2
ΘJ(Θ)≈

n
∑

k=1
[∇Θŷk(Θ)]T

[
R̂
]−1

[∇Θŷk(Θ)]+ λI
(36)

and the inversion in (34) is not performed in an
explicit manner, i.e., tipically the original equa-
tion [

∇2
ΘJ(Θ)+λI

]
∆Θ̂ = ∇T

Θ
J(Θi) (37)

is solved via SVD.
The inclusion ofλI in (37) solves the prob-

lem of an ill conditioned approximated Hessian.
The Levenberg-Marquardt algorithm can be in-
terpreted in the following way: for small values
of λ it behaves like the Gauss-Newton algorithm,
while for high values ofλ it behaves like the gra-
dient method. More details about the Levenberg-
Marquardt method can be found in [11].

4 Experimental results

4.1 Flight path reconstruction

A flight test was performed and data was gath-
ered with sampling time T=0,09s. The input sig-
nals relative to this maneuver are shown in fig-
ures 1 and 2, containing the accelerations and an-
gular velocities, respectivaly. These signals are
referred to the control signalu in eq. (24). The
vertical scales are omitted.

Fig. 1 Acceleration measurements of the maneu-
ver employed. The horizontal scale is given in
multiples of sampling time T.

Fig. 2 Angular velocities measurements of the
maneuver employed. The horizontal scale is
given in multiples of sampling time T.
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Based on the input signals indicated in figures
1 and 2 and in the measured variables according
to the output vector (22), the identification algo-
rithm was used to determine the parameter vec-
tor containing the 28 parameters indicated in eq.
(23). The identification algorithm was executed
many times, aiming to investigate the influence
of the design parameters. The influence of the
integration method used to solve the state equa-
tion (20) was also investigated, concluding that
the Euler method is not suitable, but the 4th order
Runge-Kutta method produces adequate results.

After executing the identification, we must
evaluate its performance. The first quality mea-
sure is the mean square prediction error. The
plots of these errors in the present case indicate
small values, and these plots are omitted, except
for the air speed, which is shown in figure 3. The
relative vertical scale indicates a total range of 6
m/s. Hence, the difference between the measured
and the predicted values of air speed is small.

Fig. 3 True air speed: measurements and predic-
tion.

Next, it is considered the main performance
measure here, the comparison of the estimated
values with those obtained by EMBRAER via
traditional procedures. Two of these variables are
considered here: the angle of attack and the side
slip angle, respectively the variablesα andβ in
eq. (14).

In figures 4 are presented the relative values
of angle of attack. Three plots compose figure

4: the values measured by the aircraft sensors,
the values calibrated by Embraer through tradi-
tional procedures, and the values calibrated by
the method proposed in this paper. The vertical
scale omits the absolute values of the angles, but
presents the total variation.

Fig. 4 Measured and calibrated values for the
angle of attack.

Based on figure 4, we conclude that the pro-
cedure proposed here for the flight path recon-
struction presents results compatible with that
obtained via the techniques employed by EM-
BRAER.

Fig. 5 Measured and calibrated values for the
side slip angle.

Figure 5 presents results for the side slip an-
gle. This figure indicates that the method pro-
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posed for FPR presents calibrated values of the
side slip angle which are similar to those obtained
by EMBRAER traditional techniques.

4.2 Matching of flight test data for lateral-
directional movement

The aerodynamic derivatives associated with
the lateral-directional model, as shown in eq.
(25), were estimated by matching the real flight
test data with the model predicted simulation.
A dutch-roll maneuver of a regional transport
aircraft was used to investigate the effective-
ness of the discussed output-error method (the
Levenberg-Marquardt), applied to estimate the
aerodynamic parameter vector defined in eq.
(26).

The aircraft input signals are the aileronδa(t)
and rudder deflectionsδr(t), and the output sig-
nals are five attitude parameters: sideslip angle
β(t), roll ratep(t), yaw rater(t), bank angleφ(t),
and lateral accelerationay(t). The experimental
input signals are shown in fig. 6 and the output
signals are shown in figs. 7 to 11, represented by
the red lines.

The time history of the aircraft input-output
relationship was measured with a sampling time
of 0.0312 s, and the 914 measured points gives
an observation time window of approximately 28
s.

Table 1 shows the final values of the non-
dimensional aerodynamic derivatives obtained by
the Levenberg-Marquardt algorithm. We use
the values achieved by the Nelder-Mead method
to initialize the Levenberg-Marquardt algorithm,
since this method is more computationally de-
manding and a good initial estimate can speed
up its convergence. A maximum likelihood cost
was used, in which case the weighting factor was
the estimated covariance matrix associated to the
prediction errors.

Since the flight data employed to generate Ta-
ble 1 was obtained experimentally and no wind
tunnel tests are available, an indirect measure of
performance is used, based on the prediction er-
ror. So, the main focus of the present inverse
aerodynamic modeling is to check that this local

Table 1Estimation of the non-dimensional stabil-
ity and control derivatives.

Coefficient Initial values LM method
CYβ -0.0068 -0.0058
CL

′
β

-0.1861 -0.1514

CL′p
-0.3562 -0.4718

CL′r
-1.1700 1.4942

CN
′
β

0.0678 0.0415

CN′p
0.0616 -0.0275

CN′r
-2.7110 -0.6765

CYδa
0.0068 0.0052

CYδr
-0.0068 -0.0073

CL
′
δa

-0.0001 -0.0029

CL
′
δr

-0.0198 0.0704

CN
′
δa

0.0016 -0.0405

CN
′
δr

-0.2037 -0.1029

minimization procedure can provide good match-
ing to the experimental flight data and stable
input-output modeling for the aircraft. This pre-
diction capability, as obtained by the output-error
method, can be accessed from the model valida-
tion results shown in figs. 7 to 11, where the es-
timation error are small for most of the output
variables.
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Fig. 6 Aileron δa and rudderδr inputs for the
dutch-roll maneuver.
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Fig. 7 Measured side slip angleβ and estimated
values.
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Fig. 8 Measured roll velocityp and estimated
values.

5 Conclusions

Based on the small prediction error (as seen in
figure 3) and good agreement between the cali-
brated values (see figures 4 and 5), we can con-
clude that the proposed procedure for FPR, based
on parametric identification via optimization us-
ing the Levenberg-Marquardt method, exhibited
satisfactory performance. Thus, the proposed
procedure can be added to the repertory of FPR
techniques employed by EMBRAER, and consti-
tutes a relevant alternative for practical applica-
tions.
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Fig. 9 Measured yaw velocityr and estimated
values.
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Fig. 10 Measured bank angleφ and estimated
values.

This work also presented the estimation of
an aircraft linear aerodynamic derivatives, which
presented good convergence properties and good
matching to the experimental flight data. The
results obtained with the Levenberg-Marquardt
algorithm demonstrate the feasibility of the
method.
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