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Abstract  

This paper deals with design of a failure 
tolerant control system where failures are 
identified using the normalized coprime 
factorization method. The identification method 
employed is a closed-loop one, which is also 
based on coprime factorization; therefore, the 
method is suitable to the robust control systems. 
The impact of failure on the closed-loop 
stability is evaluated by ν-gap metric obtained 
from the estimated plant. To illustrate the 
effectiveness of the control and identification 
method, a simple design example and simulation 
results are shown. 

1 Introduction 
This Future high performance aircraft require 
robust flight control that can maintain stability, 
controllability and mission attainability in the 
presence of failures, damages and so on, and the 
self-repairing function to reconfigure control 
systems by identifying damages. In the research 
on Self-Repairing Flight Control System 
(SRFCS) [1]-[6], we have designed a robust 
control law by using the normalized coprime 
factorization (NCF) method [7]-[9], and a 
reconfigurable law using damage information 
which is assumed to be known. In the first 
research we evaluated the laws by mathematical 
simulation [1], [2], and next we applied the 
design method to a dynamic wind tunnel test 
model (DWTTM), where real-time hardware-in-
the-loop simulation called dynamic wind tunnel 
test (DWTT) was performed under real 

aerodynamic environments in the wind tunnel, 
and the laws were evaluated [3]-[6]. 

In this paper, I deal with a problem of 
parameter identification for reconfigurable 
flight control systems which is a remaining 
research theme. Specifically I employed the 
coprime factorization (CF) method [10], which 
is a parameter identification method for closed-
loop systems. This method is suitable for the 
NCF method used for the design of the robust 
control law, and can estimate the plant 
parameters by using transfer functions of the 
nominal plant and the controller, and the input 
and output signals. 

In the next section, I explain how to 
incorporate a function of parameter 
identification into the SRFCS, based on the 
results of DWTT. In Section 3, I describe an 
outline of the NCF method [7]-[9] which is a 
design method of the robust control law, and I 
reinforce the explanation in Section 2 using the 
relationships between the robust stability margin 
[11]-[13] derived from the NCF method and the 
ν-gap metric [11]-[13] which is the index of the 
norm of the model error viewed from the 
controller. In Section 4, I describe an outline of 
the CF method [10] that is a parameter 
identification method for closed-loop systems 
and a procedure to apply the CF method to the 
closed-loop system which includes the 
controller designed by the NCF method. In 
Section 5, I simulate and evaluate the 
effectiveness of the control and identification 
methods applied to a simple second-order 
system. Finally I will give conclusions in 
Section 6. 
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2 Failure Tolerant Control Strategy 
From DWTT, the following results have been 
obtained [6]. 
⋅ The robust control law designed for expected 
model errors is sufficiently robustly stable 
against simulated damages. 
⋅ The robust control law degrades the 
performance for significant damages. But 
when the reconfigurable law is applied, the 
performance can be recovered. 
⋅ The damages for which the robust control law 
cannot guarantee the stability destabilize the 
system, even if the reconfigurable law is used. 
Therefore, I assume a limited role of 

parameter identification for SRFCS, as follows. 
⋅ Not an adaptive (reconfigurable) control law 
but a robust control law is used for less 
significant damages/failures. 
⋅ The ν-gap metric, which is the difference 
(model error) between the estimated plant 
obtained using the estimated parameters and 
the nominal plant used for the design of the 
controller, is calculated on line. 
⋅ If the ν-gap metric nears the robust stability 
margin, which will be defined in Section 3, the 
control law is changed to the reconfigurable 
law to recover the control performance. 
This procedure is shown in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Failure Tolerant Control System 

3 Normalized Coprime Factorization Method 
and Indexes of Model Error 

I describe NCF method [7]-[9], on which 
control system design and parameter estimation 
are based, and then I define robust stability 
margin [11]-[13] and ν-gap metric [11]-[13], 
which are the indexes of failure influence on 
stabilization. 

Let RH∞ be the set of stable proper transfer 
function matrices and let GH∞ be the set of 
stable proper transfer function matrices whose 
inverse matrices also belong to RH∞. 

3.1 Normalized Coprime Factorization 
Method 
NCF is a method to design a controller that 
guarantees the stability for model errors by 
making the H∞ norm of the closed-loop transfer 
function matrix as small as possible. 

Using NCF representation [12], [14], the 
nominal plant P0(s) and the perturbed plant P(s) 
can be expressed respectively as 

( ) ( ) ( )1
0P s M s N s−=                    (1) 

( ) ( )( ) ( )( )1
M NP s M s N s

−
= + ∆ + ∆       (2) 

where let ∆N and ∆M belong to the set defined as 
the following equation 

[ ]{ }| ,N MD RHδ δ∞ ∞
= ∆ = ∆ ∆ ∆∈ ∆ <  (3) 

for a positive constant δ. 
 

 
Fig.2. NCF Control System for a Perturbed Plant 
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In the control system of Fig.2, the maximum 
value εmax of model error with which P(s) can 
be stabilized by a controller C(s) for all ∆ ∈ Dδ 
is expressed as 

( ) 1

max inf zwC
Tε

−

∞
=                       (4) 

where 

( ) ( ) ( ) ( )( ) ( )1
0 0zw

C s
T s I P s C s P s I

I
− 

= +     
 

 (5) 

is the closed-loop transfer function matrix from 
the plant input/output signals [w1

T w2
T]T to the 

controller input/output signals [z1
T z2

T]T. We can 
design a controller by the NCF method after 
assigning admissible model error ε (≤ εmax ). 

3.2 Indexes of Model Error 

The model error ε admissible for the controller 
C(s) which is designed for the nominal plant 
P0(s) is defined as 

( ) 1

zwTε
−

∞
=                         (6) 

where ε is called robust stability margin. Let 
εmax be the maximum value of ε, which is the 
one determined from only the plant P0(s). If εmax 
is less than the ν-gap metric (defined below), 
the controller that makes the system with 
considerable model errors stable may not exist. 
So εmax can be an index which indicates the 
maximum value of admissible (stabilizable) 
model error. 

An index of the model errors viewed from the 
controller which stabilizes the nominal plant 
P0(s) is the one that indicates how easily the 
controller stabilizes the perturbed plant P(s). We 
can use the ν-gap metric as such an index. The 
ν-gap metric ν, which is a function of P0(s) and 
P(s), is defined as 

( ) ( ) ( ) ( )( )0 0( , ) ,P s P s P s P sνν δ
∞

= = Ψ      (7) 

( ) ( )( )
1 1

~ ~2 2( , )X Y I YY X Y I X X
− −

Ψ ≡ + − +  (8) 

If ε > ν, the controller is robustly stable for the 
perturbed plant [11]-[13]. Hence if we know ν 
and ε, we can estimate how critical the model 
error of the perturbed plant P(s) is for C(s) by 
comparing ν with ε. The relationship between 
the robust stability margin and ν-gap metric 

allows one to use ν as an effective index which 
expresses the degree of failure. 

If εmax is less than the ν-gap metric of an 
envisioned model error, we consider the 
augmented system W(s)P0(s)V(s) a new design 
plant where the compensators V(s) and W(s) 
loop-shape the open-loop transfer function 
matrix as shown in Fig.3. This manipulation can 
make εmax large. We design a controller C(s) for 
the augmented plant and make V(s)C(s)W(s) a 
controller (augmented controller) for the 
original plant P0(s). 
 

 
Fig.3. NCF Control System for an Augmented Plant 

4 Parameter Identification by Coprime 
Factorization 
I describe an outline of the CF method [10] that 
is a parameter identification method for closed-
loop systems. Inputs must generally be 
independent of outputs to identify parameters of 
a dynamic system. However, it is difficult to 
identify parameters of closed-loop systems, 
since inputs correlate with outputs through a 
feedback controller and inputs may not be 
independent of outputs [15]. Particularly, this 
problem is significant for a failure tolerant 
control system which needs to know dynamic 
characteristics of the (augmented) plant on line. 
Parameter identification method based on the 
CF method is one of the ways of closed-loop 
identification. 

4.1 Coprime Factorization Method 
When the nominal plant P0(s) is stabilized by 
the controller C(s), the following equations hold. 
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( ) ( ) ( )1
0 0 0l lP s D s N s−=                            (9) 

( ) ( ) ( ) ( ) ( )1 1
r r l lC s X s Y s Y s X s− −= =     (10) 

( ) ( ) ( ) ( ) ( )0 0l r l rN s X s D s Y s U s+ =       (11) 
where N0l(s), D0l(s), Xr(s), Yr(s), Xl(s), 
Yl(s)∈ RH∞ and U(s)∈ GH∞ are stable proper 
transfer function matrices. Eqs.(9) and (10) are 
called CF representation of P0(s) and C(s) 
respectively, and Eq.(11) is called the Bezout 
identity. Then all the perturbed plants P(s) that 
C(s) can stabilize are assumed to be expressed 
also as follows: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1
0

0

l l

l l

P s D s R s X s

N s R s Y s

−
= −

× +
            (12) 

where R(s) is an arbitrary stable proper transfer 
function matrix. 

Equation(12) is expressed by the block 
diagram in the dashed-line box in Fig.4. By 
solving Eq.(12) for R(s), 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )( ) ( )

0 0

1

0 0

1 1

l l

l l

l

l

R s D s P s N s

X s P s Y s

D s P s P s

C s P s I Y s

−

− −

= −

× +

= −

× +

            (13) 

is derived. From Eq.(13), we can see that the 
poles of R(s) include the ones of the closed-loop 
system and that the order of R(s) is generally 
more than the one of the closed-loop system. 
 

 
Fig.4. Control System for the Plant expressed by Eq.(12) 

 
 Let α and β be the inputs to R(s) and the 

outputs from R(s), respectively. From Fig.4, we 
have 

( ) ( )
( ) ( )0 0

l l

l l

X s r Y s d

D s y N s u

α

β

= +

= −
                       (14) 

where r represents reference signals and d 
external input signals. We can estimate the 
parameters of R(s) as those of the open-loop 
system β=R(s)α, since α is independent of β. 
Here the least squares method with upper and 
lower limited trace gain for discrete-time 
systems is used as a parameter estimation 
algorithm [16]. 

We define R(s) whose parameters are 
replaced with the estimated values as ( )R̂ s . If 
( )R̂ s  is obtained, from Eq.(12) we can estimate 

the transfer function matrix of the unknown 
perturbed plant ( )P̂ s  as follows: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1

0

0

ˆ ˆ

ˆ
l l

l l

P s D s R s X s

N s R s Y s

−
= −

× +
             (15) 

From Eq.(15), we can see that generally ( )P̂ s  
has the order more than the one of the original 
plant P(s), since ( )R̂ s  has the order more than 
the one of the closed-loop system. But if the ν-
gap metric between ( )P̂ s  and P(s) nearly equals 
zero, there is no problem for the robust control 
law. That is, we can decide that we do not have 
to reconfigure a control law for a failure tolerant 
control system in this case. This means that we 
can obtain significant information for a failure 
tolerant control system since we can estimate a 
degree of model error (that is, ν-gap metric) 
even if we cannot estimate accurate parameters 
of the plant using the parameter identification 
method based on the CF method. In practice, 
however, the estimated plant obtained by 
Eq.(15) can usually be reduced and we can 
obtain the true parameters of real plant if we can 
reduce the estimated plant to the system that has 
the same order as the real plant. We can 
reconfigure a control law using the estimated 
parameters if necessary in that case. 
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4.2 Application of CF Method to an NCF 
Augmented Controller 
I describe a procedure to apply the CF 
parameter identification method to a closed-loop 
system which includes an augmented controller 
designed by the NCF method described in 
Section 3. 

In Fig.3 suppose that a closed-loop system 
which includes a controller C(s) designed by the 
NCF method for an augmented plant 
Pa(s)=W(s)P0(s)V(s) is stabilized. Using NCF 
representations [12], [14] of a nominal plant 
P0(s) and an augmented controller 
Ca(s)=V(s)C(s)W(s), 

( ) ( ) ( )1
0 n nP s M s N s−=                   (16) 

( ) ( ) ( ) ( ) ( )1 1
a ar ar al alC s X s Y s Y s X s− −= =  (17) 

respectively, the following equation holds 
( ) ( ) ( ) ( ) ( )n ar n ar aM s Y s N s X s U s+ =      (18) 

where 
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

,

,

a

ar ar

n n

U s GH

W s Y s V s X s RH

N s V s M s W s RH

∞

−
∞

−
∞

∈

∈

∈

        (19) 

If we choose 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

0 0,

,

,

l n l n

r ar r ar

l al l al

a

N s N s D s M s

X s X s Y s Y s

X s Y s Y s X s

U s U s

= =

= =

= =

=

          (20) 

in Eqs.(9) and (10), the Eq.(20) satisfies Eq.(11) 
and we can estimate a perturbed plant by the 
method of Section 4.1. 

5 Simulation 

5.1 Case of SISO model 
For a simple SISO model which is a second-
order oscillation system with an unstable 
longitudinal short period mode, 

( )0 2

3 2
2

sP s
s s

+
=

− +
                    (21) 

we loop-shape P0(s) using a first order 
compensator 

( ) ( )2 1s
W s

s
+

=                      (22) 

to add a servo function to the system and to 
enlarge εmax of the system. And we design a 
controller by the NCF method for the 
augmented plant W(s)P0(s). As a result, the 
second order controller 

( )
2

2

1.316 0.9012 0.4925
1.617 0.6483

s sC s
s s

+ +
=

+ +
    (23) 

stabilizes the system with a robust stability 
margin ε of about 0.60. We obtain the 
augmented controller C(s)W(s) as follows. 

( ) ( )
( )( )

( )
2

2

2 1 1.316 0.9012 0.4925

1.617 0.6483

s s s
C s W s

s s s

+ + +
=

+ +
  (24) 

Using the normalized coprime factorization, 
we have NCF representations of the nominal 
plant P0(s) and the augmented controller 
C(s)W(s) as follows 

( )0 2

3 2
3.414 2.828l

sN s
s s

+
=

+ +
                (25) 

( )
2

0 2

2
3.414 2.828l
s sD s

s s
− +

=
+ +

                 (26) 

( ) ( )
( )( )2

3 2

2 1 1.316 0.9012 0.4925
1.708 1.061 0.3498

l rX s X s

s s s
s s s

=

+ + +
=

+ + +

 (27) 

( ) ( )
( )2

3 2

1.617 0.6483
1.708 1.061 0.3498

l rY s Y s

s s s
s s s

=

+ +
=

+ + +

           (28) 

Those transfer functions satisfy Eqs.(9) and (10). 
In fact, we have 

( ) ( ) ( ) ( )0 0

5 4 3 2

5 4 3 2

8.515 19.60 19.82 9.827 1.970
5.123 9.722 8.805 4.196 0.9894

l r l rN s X s D s Y s

s s s s s
s s s s s
GH∞

+

+ + + + +
=

+ + + + +
∈

(29) 

( ) ( )
( ) ( )

( ) ( ) ( )
( )( )

2

3 2

2
1

0 2

2 1 1.617 0.6483
1.708 1.061 0.3498

2

2 1 3.414 2.828

r

l

s s s
W s Y s RH

s s s
s s s

D s W s RH
s s s

∞

−
∞

+ + +
= ∈

+ + +
− +

= ∈
+ + +

 

(30) 
Equations (29) and (30) indicate that Eqs.(11), 
(18) and (19) hold. We can use the transfer 
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functions Eqs. (25), (26), (27), and (28) in 
Eq.(14), which generate α and β used to identify 
R(s). 

I will estimate an unknown perturbed plant 
P(s) and ν-gap metrics between ( )P̂ s  and P(s) 
or P0(s). For example, the real plant is assumed 
to be changed by influence of failure as follows. 

( ) 2

2 1
2 3

sP s
s s

+
=

− +
                    (31) 

By applying Eqs.(25), (26), (27), (28), and 
(31) to Eq.(13), the seventh order system 
( )

6 5 4 3 2

7 6 5 4 3 2

1.292 2.064 4.583 7.906 4.944 1.399
8.297 31.41 68.06 86.72 62.24 22.32 2.786

s s s s s sR s
s s s s s s s

− + + − − − −
=

+ + + + + + +

(32) 
is obtained. I will estimate R(s) as a seventh 
order system assuming that the perturbed plant 
is unknown but its order is the same as the one 
of the nominal plant, that is, the second order. 

Setting the reference signal r(t) = 1 and the 
external input signal d(t) = 0, the parameters of 
( )R̂ s  estimated using the new input α and 

output β (so-called generalized input and 
output) are shown in Fig.5. Although the 
estimated parameters are different from the ones 
of real R(s) in Eq.(32), the parameters obtained 
by reducing the estimated plant ( )P̂ s  (the 
twelfth order system) to a second order system 
are very close to the true values as shown in 
Fig.6. We can see that although the parameters 
of R(s) cannot be estimated, the model of P(s) 
can be estimated. 

The ν-gap metrics ν between the estimated 
plant ( )P̂ s  and the real plant P(s) are shown in 
Fig.7. From the estimated parameters, ν is 
calculated to be about 0.005. The plant model 
has successfully been estimated, since ν nearly 
equals 0. 

The ν-gap metrics ν0 between the augmented 
estimated plant W(s) ( )P̂ s  and the augmented 
nominal plant W(s)P0(s) are shown in Fig.8. For 
the estimated parameters, ν0 is calculated to be 
about 0.29 and nearly equals the true value 
(0.29). The estimation results allow us to expect 
that the closed-loop system is sufficiently 
robustly stable, since ε is much larger than ν0. 
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Fig.5a. Estimated Parameters (Denominator) 
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Fig.5b. Estimated Parameters (Numerator) 
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Fig.7. ν-Gap Metric (versus Real Plant) 
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Fig.8. ν-Gap Metrics (versus Original Plant with Weight) 

 
Next I will show that ν-gap metric can be a 

measure of norm of failure that gives a great 
influence for stability of closed-loop system. 

Assume that a real plant is changed by 
influence of failure as follows: 

( ) 2

3 2,
2

sP a s
s as

+
=

− +
                     (33) 

where ‘a’ is a parameter and when a = 1, the 
real plant equals the nominal plant. The relation 
of the ν-gap metrics between W(s)P0(s) and 
W(s)P(a, s), and the robust stability margin ε is 
shown in Fig.9. In Fig.9 the blue line with * 
indicates the ν-gap metrics of each perturbed 
plant when an integer from 0 to 10 is substituted 
for the perturbed parameter ‘a’. From Fig.9 we 
can see that ν-gap metric is effective as an index 
of model error, since the ν-gap metric gets 
larger as ‘a’ is changed apart from 1, that is, the 
change of the perturbed plant from the nominal 

plant gets larger. In Fig.9 the red line indicates 
the robust stability margin ε about the nominal 
plant and the stability of closed-loop system can 
be guaranteed if the ν-gap metric of a perturbed 
plant is smaller than ε. In Fig.9 the green line 
indicates a desirable margin from ε and the 
performance of closed-loop system can be 
guaranteed if the ν-gap metric is below the line. 
The ν-gap metric ν* of this line is decided as 
the robust stability margin about the perturbed 
plant calculated from the estimated plant is 
larger than a threshold value (setting 0.3), that is, 
the following equation holds [16]. 

( )1 1 *sin sin sin 0.3ε ν− −− ≥               (34) 
From Fig.9 it is shown that the closed-loop 
system is stable when ‘a’ is within 0 to 7 and 
that the closed-loop system satisfies the 
performance within 0 to 4. This is proved from 
the step response of each closed-loop system 
(Fig.10). We can prevent the vital degradation 
of the performance if we execute 
reconfiguration of the control law when the ν-
gap metric calculated from the estimated plant 
exceeds ν*. 

For example, when ‘a’ equals 5, we execute 
reconfiguration of the control law, since the ν-
gap metric calculated from the estimated plant 
( )P̂ s  exceeds ν* as shown in Fig.9. We 

calculate the estimated plant ( )P̂ s  and redesign 
the modified controller 

( )
2

2

2.173 0.6212 0.3301
1.754 0.7175new

s sC s
s s

+ +
=

+ +
      (35) 

by applying NCF method to W(s) ( )P̂ s , when 
the closed-loop system is still stable. We change 
the nominal controller C(s)W(s) to the modified 
augmented controller Cnew(s)W(s) after the 
transient response caused by the parameter 
perturbation converges. 

We show a chain of profile of the above 
events in Fig.11. The response during t = 0 ∼ 15 
(sec) shows the step response for the nominal 
plant P0(s) with the nominal controller C(s)W(s). 
It indicates that both the stability and the 
performance are desirable. When the plant is 
changed to P(5, s) by influence of failure at t = 
15 (sec) under the step input, the great transient 
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response occurs, but the response converges 
during about 10 secs for the robust stability 
possessed by C(s)W(s) as shown from the 
response during t = 15 ∼ 35 (sec). We estimate 
the perturbed plant by CF method the while. We 
put the input to zero again at t = 35 (sec). The 
response during t = 35 ∼ 60 (sec) shows the step 
response for the perturbed plant P(5, s) with 
C(s)W(s). It indicates that the damping is worse 
than the one in P0(s), that is, the performance is 
degraded. It is also proved from the fact that the 
ν-gap metric (≅0.45) calculated from the 
estimated plant exceeds ν* (=0.43). We execute 
redesign logic and obtain the redesign controller 
Cnew(s)W(s). We change C(s)W(s) to Cnew(s)W(s) 
at t = 60 (sec) and no transient response occurs 
as shown from the response during t = 60 ∼ 80 
(sec). The response during t = 80 ∼ 100 (sec) 
shows the step response for the perturbed plant 
P(5, s) with the redesign controller CnewW(s). It 
indicates that the damping is better than the one 
during t = 35 ∼ 60 (sec), that is, the performance 
is recovered. 
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Fig.9. ν-Gap Metric and Robust Stability Margin 
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Fig.10a. Step Responses (Perturbed Plant: a = 0 ∼ 4) 
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Fig.10b. Step Responses (Perturbed Plant: a = 5 ∼ 8) 
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Fig.11. Time Responses  

for a sequence of failure and reconfiguration steps 
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ROBUST CONTROL AND CLOSED-LOOP IDENTIFICATION BY 
NORMALIZED COPRIME FACTORIZATION 

5.2 Case of SITO model 
For another simple unstable model of SITO, 

( )
2

0

3 2
2

2
1

s
s sP s

s

+ 
 − +=  
 
 + 

                      (36) 

we design a controller which stabilizes the 
closed-loop system. As a result, the below 
controller is obtained. 

( )
2 2

2 2

1.4 2.5 0.37 0.41 0.50 0.054
1.7 1.0 1.7 1.0

s s s sC s
s s s s

 + + + +
=  + + + + 

 (37) 

which stabilizes the system with a robust 
stability margin ε of about 0.56. 

Using the normalized coprime factorization, 
we have NCF representations of the nominal 
plant P0(s) and the controller C(s) as follows 

( )

2

3 2

0 2

3 2

3.0 5.1 3.2
5.0 7.2 4.9

2.0 2.6 3.1
5.0 7.2 4.9

l

s s
s s sN s

s s
s s s

 + +
 + + + =

+ + 
 + + + 

              (38) 

( )

3 2 2

3 2 3 2

0 2 3 2

3 2 3 2

0.86 0.14 3.7 1.2 1.5 0.27
5.0 7.2 4.9 5.0 7.2 4.9

1.2 1.2 2.5 4.2 6.0 2.8
5.0 7.2 4.9 5.0 7.2 4.9

l

s s s s s
s s s s s sD s

s s s s s
s s s s s s

 + + + − − −
 + + + + + + =

− + − + + + 
 + + + + + + 

  (39) 

( )
2 2

2 2

1.4 2.5 0.37 0.41 0.50 0.054
1.8 0.62 1.8 0.62l

s s s sX s
s s s s

 + + + +
=  + + + + 

(40) 

( )
2

2

1.7 1.0
1.8 0.62l

s sY s
s s

+ +
=

+ +
                          (41) 

( )
2 2
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1.4 2.4 0.36 0.41 0.58 0.070
1.8 0.62 1.8 0.62r

s s s sX s
s s s s
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 (42) 
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s s s s
s s s sY s

s s s s
s s s s

 + + − − −
 + + + + =
− − − + + 
 + + + + 

 

(43) 
Those transfer functions satisfy Eqs.(9) and (10). 
In fact, we have 

( ) ( ) ( ) ( )0 0

2 2

2 2

2 2

2 2

1.1 1.9 1.0 0.21 0.25 0.014
1.8 0.62 1.8 0.62

0.21 1.3 0.33 1.7 2.7 0.66
1.8 0.62 1.8 0.62

l r l rN s X s D s Y s

s s s s
s s s s

s s s s
s s s s

GH∞

+

 + + − − −
 + + + + =
− + − + + 
 + + + + 

∈

     (44) 

Equation (44) indicates that Eq.(11) holds. We 
can use the transfer functions Eqs. (38), (39), 

(40), and (41) in Eq.(14), which generate α and 
β used to identify R(s). 

I will estimate an unknown perturbed plant 
P(s) and ν-gap metrics between ( )P̂ s  and P(s) 
or P0(s). For example, the real plant is assumed 
to be changed by influence of failure as follows. 

( )
2

2 1
2 3
4

5

s
s sP s

s

+ 
 − +=  
 
 + 

                   (45) 

By applying Eqs.(38), (39), (40), (41), and 
(45) to Eq.(13), the eighth order system 

( )

7 6 5 4 3 2

8 7 6 5 4 3 2

7 6 5 4 3 2

8 7 6 5 4 3 2

8.1 9.4 24 32 88 75 20
14 72 206 429 613 586 327 89
2 1.1 8.6 17 1.7 9.6 39 16

14 72 206 429 613 586 327 89

s s s s s s s
s s s s s s s sR s

s s s s s s s
s s s s s s s s

 − − + + − − − −
 + + + + + + + + =

+ − − − − − − 
 + + + + + + + + 

 

(46) 
is obtained. I will estimate R(s) as an eighth 
order system assuming that the perturbed plant 
is unknown but its order is the same as the one 
of the nominal plant. 

Setting the reference signal r(t) = 1 and the 
external input signal d(t) = 0, the parameters of 
( )R̂ s  are estimated using the new input α and 

output β. The parameters obtained by reducing 
the estimated plant ( )P̂ s  (the twentieth order 
system) to a second/first order system are very 
close to the true values as shown in Fig.12. We 
can see that the model of P(s) can be estimated. 

The ν-gap metric ν between the estimated 
plant ( )P̂ s  and the real plant P(s) converges 
about 0.002. The plant model has successfully 
been estimated, since ν nearly equals 0. 

The ν-gap metric ν0 between the estimated 
plant ( )P̂ s  and the nominal plant P0(s) 
converges about 0.55 and nearly equals the true 
value (0.55). The estimation results allow us to 
expect that the closed-loop system is robustly 
stable but degrades the performance, since ε is 
only a little larger than ν0. It is proved from the 
step responses of the closed-loop system in case 
of both the nominal plant P0(s) and the 
perturbed plant P(s) in Fig.13. 
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Fig.12. Calculated Plant Parameters 
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Fig.13. Step Responses 

6 Conclusions 

The identification method based on the 
coprime factorization proves to be effective for 
closed-loop identification of control systems 
designed by the normalized coprime 
factorization method. The method will work for 
failure detection and identification of a 
reconfigurable (self-repairing) FCS. 
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