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1  Introduction  Abstract  

Network science, or the art of describing 
system structure, may be useful for the analysis 
and control of large, complex systems.  For 
example, networks exhibiting scale-free 
structure have been found to be particularly 
well suited to deal with environmental 
uncertainty and large demand growth.   

Changes in the demand for air transportation 
are inevitable, and indeed seem to be upon us.  
The National Airspace System (NAS) 
improvement initiatives currently being pursued 
are focused on incremental improvements in 
today’s Air Transportation System (ATS), but it 
is becoming clear these will not satisfy future 
demand.  In June of 2001, Federal Aviation 
Administration (FAA) spokesman William 
Shumann told the San Francisco Chronicle, 
“Even if the [FAA] plan attains the goal of a 30 
percent increase in air traffic, it will not 
completely close the gap between supply and 
demand... There is no obvious solution.”   More 
dramatically, Transportation Secretary Norm 
Minetta recently called for tripling the air traffic 
capacity of the United States in the next 15 to 
20 years because of growing demand in the 
airline sector and the introduction of new 
transportation modes such as jet taxies and 
unmanned aerial vehicles.  He stated, “The 
changes that are coming are too big, too 
fundamental for incremental adaptation of the 
infrastructure...  We need to modernize and 
transform our global transportation system, 
starting right now.”1 

The National Airspace System may be, at 
least in part, a scalable network.  In fact, the 
hub-and-spoke structure of the commercial 
segment of the NAS is an often-cited example of 
an existing scale-free network    After reviewing 
the nature and attributes of scale-free networks, 
this assertion is put to the test:  is commercial 
air carrier transportation in the United States 
well explained by this model? If so, are the 
positive attributes of these networks, e.g. those 
of efficiency, flexibility and robustness, fully 
realized, or could we effect substantial 
improvement?  

This paper first outlines attributes of various 
network types, then looks more closely at the 
common carrier air transportation network 
from perspectives of the traveler, the airlines, 
and Air Traffic Control (ATC).  Network models 
are applied within each paradigm, including 
discussion of implied strengths and weaknesses 
of each model.  Finally, known limitations of 
scalable networks are discussed.  With an eye 
towards NAS operations, utilizing the strengths 
and avoiding the weaknesses of scale-free 
networks are addressed. 

Unfortunately the revolutionary changes 
required to accommodate a large and rapid 
increase in capacity will be very difficult to 
implement, and the operational consequences of 
introducing the changes difficult to predict.  The 
ATS is a very large, complex “system-of-
systems” that evolved in response to powerful 
social, political, economic and technological 
pressures.  The technological infrastructure 
alone is enormous, and represents a substantial 
investment. 
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If researchers are to provide meaningful 
alternatives to policy makers regarding this 
urgent national problem, they will need methods 
to rapidly and reliably model the characteristics 
and performance of ATS innovations as they are 
developed.    The complexity of the task 
suggests that the system design and 
transformation will likely be iterative in nature, 
levying constraint on the investment of any 
single iteration, particularly in the early 
formative phases. However, researchers also 
need to rigorously verify that any suggested 
changes meet minimum criteria, such as safety 
and reliability. 2 

Traditional parametric modeling techniques 
meet the requirement for rigor, but they can be 
complex and costly to develop3 4. They are also 
inherently unable to predict dynamic and 
higher-order behaviors of complex systems 
unless all of those behaviors are fully 
understood and incorporated into the model5 6 7.  
Kutaka and Fursova assert “the complexity of 
real systems does not allow one to construct 
‘absolutely’ adequate [traditional] models." 8  
Even more importantly, these deterministic 
models can not, by themselves, be used for 
establishing sensitivity to uncertain demand, or 
generalizing behavior of a yet undefined future 
system.9 10 Given the complexity of the ATS, 
developing a sufficiently comprehensive model 
of all higher-order behaviors is unlikely.   

System engineering methods may be useful 
in this complex, multi-objective realm.  Daniel11 
suggests that, of the many systems modeling 
techniques described in the literature, soft 
systems methods are particularly well suited to 
context-rich, non-linear problems that can not 
be expressed by a single set of objectives or 
goals.  These methods have, however, been 
criticized for being unverifiable, non-
quantifiable, and lacking in rigor.12   

For a safety-critical system with minimum 
performance criteria, mental constructs (and the 
flexibility they provide as “controlling” 
qualities) are not sufficient.  In fact, Moss13 
goes so far as to say that neither “current social 
theory, nor any similar construct, will ever 
support an effective policy analysis.”  How then 
to address complex systems in both a rigorous 

but sufficiently realistic and tractable way?   
Moss provides a suggestion as he continues; 
“However, adaptive agent modeling is an 
effective substitute when embedded in a wider 
policy analysis procedure.”   

Bonabeau3 claims that Agent-Based 
Modeling (ABM) is “by its very nature the 
canonical approach to modeling emergent 
phenomena” of complex systems, necessary for 
analysis of nonlinear behaviors, localized 
phenomena, and heterogeneous populations. 
However, he also acknowledges difficulties in 
building ABMs of large systems because of the 
myriad low-level details and the “extremely 
computation intensive and therefore time 
consuming” model that results.   

While full-scale ABMs can be as complex 
and costly to develop as a large-scale parametric 
model, there may be a means of validating the 
model and educing a number of higher-order 
effects without constructing and running a full-
scale agent-based simulation:  Network 
analyses, developed in the field of network 
science (an extension of graph theory) could be 
applied to a network defined by the agents’ 
communications demands.  These may provide 
a relatively simple and reliable means of 
evaluating the aggregate performance of 
proposed ATS.   

For some time, network models have been 
recognized as valuable aids “in the analysis and 
synthesis of systems.”14  Whitehouse mentions 
the ease of model formation, the inclusion of 
communications between model elements, and a 
means of specifying data requirements and 
nominal system state as important attributes of 
the technique. By modeling the ATS as a 
network or series of networks, we may be able 
to elucidate complex system attributes, e.g. 
system dynamics and emergence without having 
to develop a full agent-based simulation. 

2 Network types and their attributes 

2.1 What is a Network?  
Networks are mathematical descriptions of 

systems using nodes (e.g. airports) and links to 
connect the nodes (e.g. routes).  All networks 
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are interconnected in some way or another, and 
are often categorized by their structure.  In turn, 
this structure imparts peculiar characteristics to 
both the system as a whole and to the individual 
nodes.  Following specific connectivity rules, 
some networks have some nodes that are highly 
connected while others have only a few 
connections. Other networks’ links are 
randomly formed, though they still obey 
statistically generalizable patterns.15 

Wuchty, et al state that all networks can be 
classified by some basic, quantifiable measures.  
These include their degree distribution, P(k), 
and the average clustering coefficient, C(k)16 as 
summarized in figure 1. 

Stemming from these basic metrics, 
networks often exhibit higher-order dynamic 
functions, thought to be associated with their 
unique structures.  These include robustness, 
fragility, percolation and searchability.  Due to 
the relatively small number of nodes in air 
traffic networks, nodal separation distance and 
searchability tend to be straightforward.  
However because of the criticality of the 
application, resilience to cascading failure, 
percolation, and congestion robustness are of 
utmost interest in the ATS. 

2.2 Random Networks 

As the name implies, random networks are 
those created by linking a collection of nodes 
together by random chance.  In a random 
network, the degree or average number of 
connections emanating from any single node, k, 
is determined by a probability p(k).  

Barabasi credits Erdos and Renya with first 
generalizing the behavior of such structures.  
They noted that as random networks become 
more highly connected, the average mean path 

length tended towards log(n), where n is the 
number of nodes.  It is also characteristic of 
such networks for their degree distribution to be  
Poisson distributed, centered about <k>.  Their 
clustering coefficient also tends to be very low, 
and independent of k, since each neighbor is 
linked to a random destination.  In Figure 2 we 
see two examples of very simple random 
networks, b derived from random “rewiring” of 
a.  Though b looks somewhat more organized, it 
still exhibits properties of a random network. 

Figure 1: Basic Network Features 
� Degree (Connectivity)  

¾ # of links (interactions) at each node n : k  
¾ Mean: <k> 
¾ Degree Distribution: P(k), to capture potential variation 

� Path length 
¾ Shortest path from node i to node j: ij 
¾ Mean: <ℓ> 

� Clustering Coefficient (measuring connected triangles) 
¾ Degree of click-ness for each neighbor: Ci 
¾ Mean for each node: <C> 
¾ Average clustering coefficient, denoting structure: C(k) 

L(p) = 2.18 
C(p) = 0.00 
Fig 2 a  Random Network

L(p) = 1.98
C(p) = 0.02

Fig 2 b

2.3 Regular Networks 

Regular networks are those whose nodes 
have "nearby" nodes designed with a uniform 
number of connections, thus exhibiting 
recurrent connectivity. By definition, "distant" 
nodes with larger degree have few or no direct 
connections (green relative to yellow, Fig. 3).  

Since they follow rigid rules, regular 
networks are difficult to generalize, as they can 
be designed with specific attributes.  But they 
are commonly highly clustered due to a high 
density of connections between nearby nodes, 
and in extensive networks, often have long path 
lengths due to a lack of 
short cuts to far-off 
system areas.   

These networks have 
an associated “scale” 
related to the relative size 
of nearby nodes vs. the 
entire network volume. L(p) = 1.43  C(p) = 0.50

Fig 3: Regular Network2.4 Scale-Free Networks  
Recently there has been an explosion of 

work in the area related to “scale-free” networks 
and their associated properties.  Much of this 
work has been related to internet expansion, but 
the properties of such networks have been 
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observed in biological as well as man made 
systems of many types.  Scale-free networks are 
special constructions that, unlike regular 
networks, do not have a single characteristic 
degree.  Networks having these particular 
attributes can be formed relatively easily from 
either random or regular networks by inclusion 
or rewiring of only a small fraction of 
connections complying with simple rules. 

observed in biological as well as man made 
systems of many types.  Scale-free networks are 
special constructions that, unlike regular 
networks, do not have a single characteristic 
degree.  Networks having these particular 
attributes can be formed relatively easily from 
either random or regular networks by inclusion 
or rewiring of only a small fraction of 
connections complying with simple rules. 

ATS

Airlines 

Payload ad AirportsAirports

ATCATC

The term scale-free was coined to highlight 
that, when magnified, smaller portions of this 
type of network resemble the whole.  This 
attribute goes hand-in-hand with multi-scale 
connectivity, i.e. having connectivity at all 
scales simultaneously (e.g. worker to worker as 
well as worker to president). Scale-free 
networks have “small world” properties in that 
they exhibit short typical path lengths and good 
searchability characteristics.  Additionally, they 
also have high clustering coefficients (not 
expected in random networks) and, by 
definition, a distribution of degree connectivity 
that follows a power law.5 In other words, scale-
free networks have a unique trait that N(k), the 
number of nodes with k links, follows ~k-γ. 
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Multi-scale is a meta-structural property that 
has been characterized in many natural and 
man-made systems. Dodds et al17 described its 
importance in susceptibility to cascading 
failures and congestion robustness. Callaway et 
al18 express caution due to potential network 
fragility and percolation mechanisms (non-
linear growth). Watts and Strogatz19, on the 
other hand, describe “small world dynamics” of 
such systems, including the speed of transport 
across a large network, and the ability to search 
the space for the shortest, most efficient paths.  
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3 Air Transport Networks 
and Complementarity 

3 Air Transport Networks 
and Complementarity 

Keating and Varela define a fundamental 
system concept of complementarity which 
acknowledges that different perceptions of a 
single system can exist simultaneously and be 
correct from each observer’s point of view20.   
We cannot assume any single network model of 
the ATS to be a wholly complete or accurate 

depiction of the environment from the various 
perspectives of all ATS participants.   
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As travelers, perhaps the most familiar ATS 
structural element is airlines’ route structures, 
though they are many others.  Airline routes are 
frequently (and almost exclusively) cited as an 
example of network structure within the ATS.  
They are a good starting point for investigating 
airline strategy and service coverage.  With 
some relatively simple analysis, it is possible to 
uncover fundamental mathematical differences 
in airline routing strategies.  
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However, one does not have to look too hard 
to uncover other network structures in the ATS.  
In fact from every participant’s vantage, one 
could argue for a functionally different network.  
To illustrate the variety and breadth of 
complementary 
network structures 
within the  ATS, a 
selection of 
observational 
points of view are 
described below. 
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Route maps are familiar to most people who 

have ever booked a flight on a commercial 
airline.  They graphically depict all cities served 
by an airline, its affiliates and, depending on the 
complexity of the route structure, the links as 
well.  Indeed, visual inspection of route maps 
alone may reveal different market strategies.  
While America West connects nearly all flights 
to either Las Vegas or Phoenix (more typical of 

Route maps are familiar to most people who 
have ever booked a flight on a commercial 
airline.  They graphically depict all cities served 
by an airline, its affiliates and, depending on the 
complexity of the route structure, the links as 
well.  Indeed, visual inspection of route maps 
alone may reveal different market strategies.  
While America West connects nearly all flights 
to either Las Vegas or Phoenix (more typical of 

Figure 4: Southwest Airlines 
Non-stop Routings (2003) 
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Often offered as an example of a point-to-
point (PtP) route structure, a large portion of the 
SWA route structure does follow scale-free 
principles: a few cities, such as Las Vegas and 
Phoenix, are highly connected by non-stop 
service, while many others are connected only 
to a few cities in the network.  Analysis of the 
aggregate route map shows the clustering 
coefficient, C(p), a measure of the 
connectedness of a node’s neighbors, is 
predictably high at 0.641 (compared to a 
predicted C(p) = 0.195 for a similar-scale 
random network), leading us away from a 
random network model. However, SWA does 
not have nearly as many singularly connected 
cities as a scale-free model predicts, as shown 
by Fig. 6 SWA’s degree distribution.  

a dual-centralized system than a scale free one), 
Southwest Airlines (SWA) has a different 
strategy, as evident by their destination map 
augmented with their non-stop routes (Fig 4). 

An analytical model, even one based on a 
relatively straightforward system depiction, 
requires operational context.  For example, 
concentrating on a particular airline’s own 
flights rather than all of those available to 
customers through code sharing or other 
contract carrier agreements will greatly affect 
the extent of the network.  (e.g. though the 
United Airlines (UA) route map shows over 650 
destinations worldwide, they themselves fly 
non-stop between only 104 cities21).  The 
“appropriate” nodes for analysis are dependent 
on the vantage point of the network user: e.g. 
for fleet and crew management, only UA 
destinations are relevant.  For customers, the 
entire accessible network plays a role (although 
not always seamlessly).  Because airlines trade 
routes cooperatively in some markets22 and 
compete amongst themselves in others, models 
developed for business planning purposes must 
selectively incorporate routes from code share 
partners and subsidiaries in addition to the 
airline’s own.  

Figure 6: Degree Distribution, SWA 2003
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Similarly, time segmentation of the schedule 
must be accounted for, because the network 
changes during the course of the day as a result 
of the intermittent nature of flights.  The red-
boxed areas in figure 5 show two different 
effective network structures in the same airline, 
dependent on the time of day considered.  Also 
evident is banking of flights. 

Jaillet et al23 studied the natural emergent 
tendency for hub-and-spoke (HaS) strategies 
and found that indeed they can be a preferred 
solution, but only under specific sets of demand 
conditions.  They concluded that for optimality, 
hub placement would be geographically driven.  
In fact, using Phoenix, Las Vegas and 
Albuquerque as hubs for airlines serving mainly 
the southwest United States as SWA does is 
supported by their results: these cities are near 
the geometric centers of their routings, and they 
have the additional benefits of reliable weather 
and little congestion.  Their results also support 
UA hubs at SFO and ORD despite their 
continuous weather and congestion problems 
(figure 7).  However, unlike SWA, little if any 
of UA’s degree distribution is well explained by 
a power law function.  In fact, it is more 
bimodal like America West, with cities either 
highly or modestly connected.   

Fig. 5: Network Nodes as a Function of Time of Day
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Figure 7: Degree Distribution, United Airlines 2003
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3.1.2 Business Case  
Of course, the airlines are in the business of 

transportation for profit, not connecting all cities 
to everywhere (the latter perhaps being a part of 
a strategy for the former).  The business case for 
airline operations is made with standard 
qualities of price of operations vs. cost as well 
as still-significant regulatory control and 
government subsidies of various kinds.  
Additionally, alliances among airlines greatly 
influence their ability to support their business 
case by affording access to larger markets and 
reducing direct operating costs for any single 
entity.  The network of alliances and contracts 
that represent these business entities is 
substantially different both in structure and 
function that that of the airlines’ route network, 
yet are closely related as Brueckner and others 
imply. 

Price/Demand 
Airline pricing is not a reflection primarily 

of cost, but rather a complex interplay of cost, 
competition, demand mix (time vs. cost 
sensitive passengers), and network strategy.  
The industry collectively refers to these pricing 
strategies as “yield management.”   Resulting in 
as much as a 1000% disparity in fares for the 
same class of service on the same flight, yield 
management strives to maximize the revenue 
generated per flight and guide route scheduling 
decisions.  In a series of articles, Barlow24 
reports that passengers have begun to spurn 
fully flexible, high cost fares in such numbers 
that yield management assumptions regarding 
people’s preferences are no longer valid, and 
that the full-fare business traveler is largely a 

thing of the past.  Other popular press suggests 
that the market is split: one segment that is still 
service/convenience oriented, the other that is 
extremely cost sensitive.25 26  Mann, an often-
quoted airline industry analyst, summarized this 
trend, saying, “The market . . . is simply not 
demanding an industry composed of hub-and-
spoke clones, certainly not as many as exist 
today.” 27  What then is the market looking for, 
and what airline topologies could it support?  

When demand is low from any one city to 
another, HaS makes sense, as the number of 
flights to connect a large number of cities is 
minimized.  However, when demand grows, 
HaS looses efficiency, as multiple flights to the 
hub are made when in actuality some passengers 
could be taken directly to their destination more 
efficiently.  Not only is the travel time shorter 
for direct routing, there are fewer connections 
(less hassle, better value) and less schedule risk, 
as point-to-point (PtP) flights avoid unnecessary 
traffic delays at the hub. There is no single 
equation as to when this crossover occurs, 
because it is dependent on the seat-revenue-cost 
of carrying passengers, the demand, the need to 
move equipment to more profitable routes, etc.  
Schedule profit optimization is a complex 
problem unto itself, but there is evidence that 
the market is aware of the advantages of PtP.   

Business literature is rife with articles 
regarding the vanishing business case for the 
HaS operational model.28 29  In fact, 
Brancatelli30 lists many reasons why he sees 
HaS as “frighteningly expensive to operate and 
prone to frequent mechanical and 
meteorological meltdown.”   

Though there is a large volume of research 
regarding yield management and its influence 
on the airlines, until recently, little attention has 
been paid to its effects on the NAS.  This is 
beginning to change, as evidenced by the recent 
de-banking of flights during rush periods at 
airports such as DFW.  These issues are 
beginning to be addressed together as a single 
optimization problem, as the airlines find it in 
their own interest to consider the NAS and the 
larger ATS.31 
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Subsidies and Deregulation 
Profit, not revenue is the goal of any 

industry.  Airlines, with extremely thin profit 
margins, large gross receipts, and very high 
operating costs32, are especially sensitive to 
government intervention: regulation and 
subsidy.   

Deregulation and Essential Air Service 
Deregulation and subsequent legislation has 

had a measurable effect on airline network 
structure.  TWA’s March/April 1976 route 
system was analyzed as a representative sample 
of routing before deregulating the industry in 
1978.  Interestingly, even in the heavily 
regulated environment of the time, this PtP 
schedule’s probability distribution function was 
highly correlated to a power law model 
(R2=0.926, Figure 8), and the measured 
clustering C(p)=0.47 is far from that of a 
random network.  As we saw above, the 
majority of today’s airlines do not exhibit these 
same scale-free attributes so clearly. 

The US DOT33 reports that at the time of 
deregulation, there was concern that smaller 
markets may lose service because of their 
relatively low traffic volume and the airlines’ 
concentration on more lucrative markets.  As 
part of the act, the Essential Air Service (EAS) 
program was formed to ensure a “minimum 
level of service” in each community.  Where 
necessary, EAS was to subsidize a carrier to 
provide connectivity to the rest of the airline 
network.  Though the intent of the program was 
to retain service levels (and degree 
distributions) near to those prior to deregulation, 
even roughly $50 million in yearly subsidies has 
proven insufficient to support roughly a third of 
those communities originally eligible.  

Currently, the airlines are guaranteed payment 
(in part) to fly to 105 otherwise presumably 
non-profitable communities. 

Civil Reserve Air Fleet 
Another source of financial guarantees 

available to the nation’s largest air carriers is 
participation in the Civil Reserve Air Fleet. As 
the name implies, some civilian air carriers are 
paid to operate a fleet with particular 
capabilities.  In return, they promise to provide 
military airlift service if called upon.  According 
to the General Accounting Office34, a major 
benefit of the CRAF program is that it provides 
up to half of the nation's strategic airlift 
capability without the government having to 
purchase additional aircraft, pay personnel 
costs, or fly and maintain the aircraft during 
peacetime.  They report that replacing the 
CRAF capability with military aircraft would 
have cost DOD about $1 to $3 billion annually 
over the past 30 years, implying a “win-win 
deal.”  For the airlines, this equates to financial 
support for a larger fleet, reducing the downside 
risk (net expenditures), thus supporting an 
extensive-route strategy such as HaS. 

Figure 8: Degree Distribution, TWA 1976
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Mail Contracts 
Additional sources of guaranteed airline 

income that influences route choices are  the  
U.S. mail contracts.  In 2001, commercial 
carriers were paid to carry 4,000,000+ tons of 
mail35 on existing but specific revenue flights. 

3.1.3 Complementarity within the Airlines 
These and other regulatory actions have a 

marked effect on route topology and therefore 
ATS operations.  For example, if EAS funds 
were grantable to on-demand air taxi providers, 
would this provide sufficient seed money to 
kick-start this service sector? Future policy and 
political climate will continue to influence both 
the business case (for the airlines as well as air 
taxi and general aviation interests) and the 
performance of the NAS (e.g. delays due to hub 
congestion). 

Addressing the network route structure vs. 
yield problem, Brueckner et al36 studied the 
relationship between routes, flight frequency, 
fares, aircraft choices and costs. He explains 
when and why HaS strategies can be preferred 
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over PtP networks from a purely static business 
case (e.g. avoiding issues of crew/fleet 
incompatibilities and maintenance of a diverse 
fleet). He stops short of including other network 
construction limitations, such as congestion or 
traffic constraints at the hubs.   

Envir

Figure 9: ATC Network of Functions 
Supporting a Flight 

Effects of these other system traits can be 
teased out by modeling other network 
structures, such as airline support and NAS 
infrastructure.  In that vein, even from the 
airlines’ perspective, other networks beyond the 
familiar route maps may be worthy of study. 

3.2  Air Traffic Control and the NAS 
Air Traffic Control (ATC) is a primary 

objective of the FAA In furtherance of this 
objective, the FAA seeks to “develop air traffic 
rules, assign the use of airspace, and control air 
traffic”.37 The FAA operates and maintains the 
NAS, but also “maintain other systems to 
support air navigation and air traffic control, 
including voice and data communications 
equipment, radar facilities, computer systems, 
and visual display equipment at flight service 
stations.” Together, these intertwined networks 
of operational facilities and technology 
infrastructure provide for ATC services.  What 
might a model of these services look like?  Each 
sub-component of ATC could in itself be 
modeled as a network, though some portions are 
more amenable to such a representation than 
others.  The FAA38 themselves recognize the 
“diversity and challenge” they have in 
improving the system due to complexity of this 
“collection of systems.”  

What is the NAS and how does it differ 
from the ATS? The United States Department of 
Transportation definition39 describes the NAS as 
technical infrastructure and facilities.  It does 
not encompass other aspects of the ATS, such as 
flight operations; regulatory procedures; over 
23,000 daily flights and their crews; and of 
course, the 600 million annual passengers and 
14.5 million tons of freight and mail that travel 
using air.  It is important that when considering 
changes to the NAS, we don’t become myopic 
and restrict our analysis to the infrastructure 
alone.  Improvements to the infrastructure for 

their own sake may have a limited, or even a 
negative impact on transportation quality.  

A functional rather than physical network 
model of the NAS can be generated by using 
nodes to represent required actions and links to 
represent communication requirements.  
Unfortunately, a static representation of this 
system does not provide an adequate picture.  
Aircraft carry integral components and perform 
various functions related to their operating 
conditions, equipment, etc. that change as a 
flight progresses.   A single aircraft can be in 
contact with many different ground and air 
targets along a flight, filling different rolls in 
each pair-wise encounter.  Also, all of the 
communication channels are dissimilar in their 
form and functions, making the dynamic (real-
time) behavior difficult to model. 

Figure 9 is offered as a model for flight 
operations within the ATC domain.  The shaded 
element represents the aircraft under control for 
analysis.  Other aircraft operating in the vicinity 
are shown as multiple elements that may or may 
not be from the same airline.  As example, one 
other airline’s function relative to this flight 
under study is included in the figure.   Typically 
there would be many other participatory airlines 
(The Collaborative Decision Making website40, 
where much of the NAS planning is 
coordinated, lists 37 airlines in the program).  
The weight of the links is meant to give rough 
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approximations of the relative communication 
bandwidth necessary to support the functions.  
A comprehensive functional model has not yet 
been completed, but from the initial model, the 
ATC functions indeed exhibit small world 
characteristics, L(p)=2.0 and a very high 
clustering coefficient of 0.86. However, a 
power-law degree distribution isn’t apparent.  
Perhaps this is an artificial artifact of the 
constraints already put in place to limit traffic at 
any ATC node (e.g. rerouting around busy 
sectors or ground delay programs). 

3.3  Payload: Passengers and Freight 
For passengers, flight routing is only part of 

the story.  Because of the proliferation of HaS 
networks, more and more passengers are 
required to make connections.  Though airline 
and ATC delays are well characterized, 
Barnhart and Bratu41 suggest that using these 
same data to draw conclusions regarding 
passenger service is misleading.  Among the 
issues they raise is that passenger delays can 
significantly outpace aircraft delays due to the 
increasing number of connecting passengers, 
more frequent flight cancellations, and 
increased load factors (more passenger delay for 
the same flight delay).  They suggest analyzing 
the network from the passengers’ perspective to 
assess in impact of network topology on 
passenger-centric metrics. 

Guimera et al42 recently characterized the 
worldwide airport network and the non-stop 
links that connect them.  Viewed en mass, they 
found that indeed this network of 3883 cities 
connected via 531,574 flights has small world 
properties, and has degree probability density 
functions following power law distributions.  
Interestingly, they also found that the most 
connected cities were not the most 
geographically “central” cities on this global 
scale, at odds with Jaillet’s condition for 
optimality.  They continue to say that network 
topology is dependent on many factors, 
including demand profile, distance between 
cities, and geo-political restrictions.  Their 
models demonstrate the substantial influence 
these factors can have on otherwise nominally 
optimal networks. This then leads one to 

conclude that other factors, perhaps some 
mentioned above such as the availability of 
ATC facilities, may also constrain the growth 
and operation of the air transport network.  
Indeed, Guimera et al postulate that the 
domestic multi-hub network is a compromise 
for a star (centralized) configuration that has 
adapted “to the loss of efficiency that arises due 
to overloading of the hubs.”  

Aggregate topology studies are critical to 
establish effects like “artificial” problems 
created by pseudo-hub locations related to 
politics rather than demand, and establish their 
effect in system growth and overall efficiency.  
However, it may also be useful to take a more 
local look at service provided for a particular 
community, and how this measures up to 
demand and compares to other communities of 
comparable size. 

3.4  Airports / Communities 
An analysis of a local network, even from a 

small hub like Norfolk, Virginia (ORF), reveals 
that, even restricting the network to non-stop 
and one-stop destinations, surprisingly good 
connectivity is possible (see  Fig 10). 24 cities, 
including 18 large and 6 medium size hubs are 
served from ORF with non-stop service at least 
once daily. An additional 75 international one-
stop connections are listed in their Flight 
Guide.43   After augmenting the ORF schedule 
with data from SABRE, a well-established air-
travel scheduling consortium, the clustering 
coefficient for ORF was found to be 0.928, 
meaning that the directly reachable cities out of 
ORF create a nearly-fully connected cluster.  

Figure 10: Non-stop and One-stop Cities from ORF, Norfolk, VA
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This is an important feature for a municipal 
airport because the airport’s value to the 
community is improved from the implicit full 
network access this clustering provides.  
However, for a particular passenger, the 
network may not be fully accessible due to the 
fare restrictions of their tickets regarding 
itinerary changes and transference to other 
airline connections.  For some communities, 
these restrictions can be very important, as there 
are many airports where a single carrier has the 
lion’s share of the business. 

Data show that when a single airline has a 
very large market share percentage in a 
particular city (a “fortress hub”) they can, and 
do, adjust prices more widely than in more 
demand-responsive markets. 44   Sometimes this 
means dramatically reducing fares to exclude 
competition success, or other times inflating 
prices for profit-taking in the face of limited 
competition. This can strongly limit the 
consumer choice for specific communities, 
effectively controlling the size and cost of 
access for the entire scheduled air transport 
network. 

4 ATS Network Models:  
Strengths and Weaknesses  

Using network depictions of ATS elements 
may prove to be a practical way to understand 
the system dynamics of the ATS, particularly 
under environmental stresses.  Since these 
models will largely generalize classes of system 
behaviors rather than mimic individual entities, 
the results will have to be used accordingly, to 
help set systemic policy regarding conflicts, 
shared resources, etc.  At this time, it is not 
plausible to expect network theory to aid with 
localized problems, as it is oriented towards 
regulating system-wide, conglomerate 
behaviors.  Of course, the system elemental 
models themselves must be validated, and their 
underlying assumptions must be understood.  

A critical issue related the use of networks 
in both air traffic system modeling and 
operation is that of constructing a distributed, 
safety-critical real-time control system.  Though 

today’s system has some shared functional 
responsibilities, there is still substantial central 
planning authority and clear roll delineation.  
Short of these, the skies are still relatively 
empty, putting little stress on the system.  As 
demand grows, safety attributes will be tested or 
traded for capacity as the probability of air-to-
air and ground resource conflict rise.  We can 
look to the work of Nicholson45 and others46 for 
answers regarding the use of non-deterministic 
systems in safety-critical applications.  The 
implication is, with careful system structuring 
and judicious data demand, much of the safety 
application issue can be averted. 

On the other hand, the robustness to 
localized failures is a general strength of many 
network constructions.  Some operational 
models are able to deal with issues such as 
airport weather closures better because they are 
more flexible and can utilize alternate links in 
their network.  Some of this flexibility is 
inherent in a multi-hub operation, where 
passengers can be re-routed away from problem 
areas.  Nevertheless, without an ability to also 
adjust resources across routes, the flexibility of 
extensive networks operating at near-full 
capacity is limited.   

The downside to such constructions is 
vulnerability to disruption.  Networks with hubs 
that have a high probability of experiencing 
problems also have a high probability of 
proliferating those problems across the entire 
network.  Particularly in the area of air traffic 
management, where the hubs are largely 
constructions of the operational control 
mechanisms (e.g. multiple aircraft to a 
controller), diversification of the control task 
could lower the vulnerability to a disruption.  

The effect of the partite nature of the nodes 
(e.g. as sets or communities) in these model 
constructions needs to be explored.   Strogatz 
warns that a uni-partite representation (treating 
all nodes as members of the same set) of a 
multi-partite system may suppress important 
information and conflate different structures.47 
For example, functions of the various ATS 
participants may have unique properties (ATC, 
pilot, airline company, etc.) that are potentially 
essential to understanding the system dynamics.  
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Since air traffic management, the needs of 
passengers, and running a cost-competitive 
airline are such different, yet clearly intertwined 
aspects of the ATS, it is likely that a uni-partite 
functional network model can not properly 
capture the dynamics of  the system. 

5 Conclusion 
In 1999 Eric Scigliano48 stated, “Five years 

ago the FAA set out to revolutionize air traffic 
control.  Its comprehensive plan failed…” A 
contributing factor may have been that they had 
no reasonable way of predicting the impact of 
large-scale, revolutionary procedural changes.  
It may also be argued that the changes that were 
implemented could not affect radical change 
within the context of the ATS political, 
economic and regulatory environment. Though 
there has been progress in setting some 
technology standards in recent years, we are not 
much closer to implementing truly radically 
new operations such as user-preferred routing or 
self-separation. Possibly we have habitually 
taken49, and continue to take, too narrow a view 
of research and development in air transport.  

A fully system-wide model of the ATS 
seems to be what is called for, but where do you 
draw the system boundary, and how to develop 
a comprehensive, dynamic model?  Using 
appropriately selected idealized network models 
may be an affordable way to build tractable, 
understandable models that can still provide 
insight regarding this large, complex system. 

Scale free networks have been suggested as 
useful models of the commercial air 
transportation system.  At first blush, airline 
route maps appear to have this structure, and 
indeed, systemic scale-free behavior has been 
quantified.  After some investigation within the 
context of specific observers, however, it 
becomes clear that scale-free structure is not as 
ubiquitous as implied.   

Though other topologies may better explain 
portions of the system, the general notion of 
network characterization used to identify 
systemic properties that scale-free models bring 
to the forefront appears quite powerful.  The 

ATS may be best characterized as a system-of-
systems, each with their own goals.  All ATS 
components interact to a large degree, so 
interconnections between elements and their 
representations appear to be critical to 
uncovering dynamic behaviors. Exploiting 
network science may facilitate sufficiently 
comprehensive yet tractable models to provide 
insight into the ability of the NAS to deal with a 
likely future ATS robustly, and provide an 
attainable basis for governmental NAS/ATS 
policy decisions. 
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