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Abstract  

The present paper proposes a method for 
controlling an aerial vehicle inside a corridor 
without leaving it, the dynamics of the vehicle 
being subject to bound constraints on the 
control variables. Such a control method is 
necessary when the system under control does 
not need to follow exactly a curvilinear 
reference trajectory. Therefore, what is in fact 
required from such a system  is to maintain the 
trajectory close to some nominal reference 
within a certain admissible tolerance. Based on 
the known initial and terminal positions of the 
system, a sequence of waypoints is chosen in 
such a way that the segment joining two 
consecutive waypoints remain fully inside the 
control corridor. Then a predictive control law 
is designed to control the system from a 
waypoint to the next until the specified terminal 
position is reached. An application dealing with 
orbital control illustrates the method and 
reveals its potentials for handling the control of 
complex systems even in case of unknown 
measurement noise.  
 
 
1 Introduction  
 
The present paper deals with the problem of 
driving an aerial vehicle from an initial state x0 
to a final state xf such that its state trajectory 
remains within a given corridor K assumed to be 
compact (that is: closed and bounded), with x0 
and xf in K as illustrated by Fig. 1. The 

dynamics of the vehicle is subject to bound-
constrained controls.  
 

There are many reasons to consider such 
control problems for which the references are 
not single values or line curves, but rather tubes 
within which the controlled variables should 
remain. Following reliably a real-valued 
trajectory, known as a nominal trajectory, is not 
necessary at all. Indeed, in existing online 
trajectory control applications, one tries to 
follow a prescribed trajectory as close as 
possible, which simply means that the system 
under control does not need to follow exactly 
the reference curvilinear trajectory. Therefore, 
what is in fact required to a control system in an 
application is mainly to maintain controlled 
variables close to some nominal reference 
within  acceptable tolerance bounds. This is the 
case for instance for aircraft control at takeoff or 
landing, spacecraft orbit control, and aircraft 
collision avoidance in the context of air traffic 
control [3].  From the standpoint of actuation, it 
is interesting to mention that no control 
alteration is necessary as long as the controlled  
variables remain within the tolerance bounds. 
While curvilinear trajectory control has been 
dealt with in aeronautical and astronautical 
engineering, work about set-based trajectory 
control is inexistent and the present paper is an 
attempt to exploit viability theory [1] to devise 
methods for coping with the problem. 
 
 In section 2 is stated the problem that we 
intend to solve. Section 3 proposes a solution, 
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and we deal with an application to orbital 
control in section 4. 
 
 
2 Problement Statement   
 
Let us consider an aerial vehicle whose 
dynamics is modeled as: 
 
 ( ))(),()( tutxftx =&    (1) 

Utu ∈)(     (2) 
 
where nx ℜ∈  and mu ℜ∈  are respectively the 
state and the control vectors, f  is a nonlinear 
vector function, U  is the control domain 
assumed to be bounded and convex.  
 
 
 
      initial point x0           terminal point xf 
  corridor boundary 

 
 

Fig. 1: Navigation corridor  
 
 
Let nK ℜ⊂  be a domain of the state space, and 
two different states 0x  and fx laying in K . The 
problem to be solved is to find a control map v  
such that the solution of the following vector 
differential equation: 
 

( ))(),()( tvtxftx =&    (3) 
  
with initial state condition 00)( xtx = and final 

state condition ff xtx =)(  remain fully in K  

(never leave K ) from time 0t  to time ft .  
  
Some considerations are to be taken into 
account:  

• The initial time 0t  is given, but the final 

time ft  is not (free terminal time). 

• The domain K  is not necessarily smooth  
nor convex.  

• The control map which is sought should 
not be too oscillatory.  

 
Domain K  may be modelled as a vector 

inequation of the form: 
 
 0)( ≤xg     (4) 
 
where g  is a vector function defined on the 
state space 
 

Two main reasons sustain the fact that 
control map should not be too oscillatory: first, 
too many oscillations of the control can impart 
an uncomfortable state dynamics of the system 
under control; secondly, the oscillations can 
reduce the actuator performances.   

 
 

3 Theoretical Development  
 
3.1 General concepts 
 
We can obtain the non-too-oscillatory viable 
control solutions by setting a bound on the 
growth of the control. For that purpose, we shall 
constrain the control system by adjoining a 
control-dependent constraint as: 
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where ia  and ib  are constant real numbers. 
Therefore, the model of the vehicle becomes:  
  
 ( ))(),()( tutxftx =&    (6) 
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Utu ∈)(     (8) 
 



 

3  

VIABLE FEEDBACK SPACE TRAJECTORY CONTROL 

A solution x  of equation (Eq. 1) is said to be 
viable in K from the initial condition 00)( xtx =  

if for each 0tt ≥  .)( Ktx ∈  A control u  which 
enables the system to have viable solutions in 
K  from time 0t  to time ft  is called a viable 

control [1] in K  from 0t  to ft  since it 
maintains the trajectory of the system under 
control in domain K  between the specified 
initial and final states. 
 

The model of the control system described 
by (Eq. 1-2) is equivalent to the following 
differential inclusion [1]: 

 
( ) ( ){ },)(:)(),()()( UtututxftxFtx ∈=∈&   (9) 

for fttt ≤≤0    
 

For a general purpose set K , we introduce 
the notion of contingent cone )(xTK  to K  at a 
point Kx ∈ , which is a closed cone of elements 
y  such that: 
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           (10) 

 
where wzzd

KwK −=
∈

inf)(  is the distance from z  

to set K . 
 

It proven in [1] that for the solution of 
(Eq. 9) to be viable in K , it is necessary and 
sufficient that the solution meet the following 
condition: 
 
 0)()( ≠∩ xTxF K            (11) 
  

However, the case dealt with in the 
present paper rather uses the equation of set K  
as given in (Eq. 4). Indeed, the viable control 
will be sought so that the viable solution x  
satisfy the following: 
 
For any t  such that: ,0 fttt ≤≤   

0))(( ≤txg              (12) 
 

To find a viable control from computational 
point of view, it is necessary to transform the 
differential inclusion (Eq. 9) into a difference 
inclusion. Using a numerical integration scheme 
one rather obtains a discrete model of 
differential equation ( ))(),()( tutxftx =&  under 
the form: 
 

,...2,1,0),,(
~ )()()1( ==+ kuxfx kkk              (13) 

 
where: 
 

)(),( )()(
k

k
k

k tuutxx ≡≡ , with tkttk ∆+= .0 , 

and kk ttt −=∆ +1  is the integration stepsize.  
 
 
 Howe [4] developed real-time simulation 
algorithms for ordinary differential equations, 
which is a variation the classical explicit 
Adams-Moulton predictor-corrector methods. 
Unlike the Adams methods, the algorithms of 
Howe best suit online nonlinear control 
problems as the one we are dealing with here. 
Howe devised a two-pass and a three-pass real-
time predictor-corrector  algorithms. For 
instance, the two-pass algorithm is described as: 
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where: 
 
     )( 21

)21(
+

+ ≡ k
k tuu , with 221 ttt kk ∆+=+ . 

 
 
 As may be noticed, the first pass uses an 
Adams-Bashforth type of predictor algorithm to 
compute an estimate of the state at time 21+kt  

instead of time 1+kt  as usual. That estimate is 
then used to compute the derivative at time 

21+kt  which, along with derivatives at time 
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,...,, 21 −− kkk ttt  is used to compute the state at 

time 1+kt . Taking a linear approximation of the 

control between times kt  and 1+kt , the control in 

midway (at 21+kt ) as it appears in (Eq. 14) may 
be computed as: 
 

2
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kk
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uu             (15) 

 
 
 We have clearly Uu k ∈)(  since the 
control domain U is assumed to be convex 
(section 2). By the Howe integration algorithm 
above, (Eq. 13) will rather be written as: 
 
 ),(

~ )()()1( kkk uxfx =+              (16)  
 
 
The midway control )(ku , at 21+kt , is used in 

(Eq. 13) instead of )(ku , and function f
~

 is 
defined as: 
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 The admissible control dynamics as 
described through (Eq. 7) needs to be 
discretized so that an estimate of the control 
domain at each time time interval may be 
computed. Since the righthand side of (Eq. 7) is 
constant, the Euler integration scheme yields the 
exact solution. Indeed, kV , the admissible 

control domain at kt , is obtained as the 
following set: 
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 In the control algorithm which will be 
described later, )1( −ku  will be the actual value of 
the control at .1−kt  
 

 
3.2 Waypoint Design 
 
Waypoints are reference points used for 
trajectory check up in navigation. They allow 
the navigator to assess drift from nominal track 
and to estimate delays and distances with 
respect to a flight plan. To fly from initial point 

0x  to final point fx  without leaving domain K , 

it is suitable to choose waypoints in K .  
 
 Let x  be a state of the vehicle in K . State 
x  is said to be between waypoints )( jw  and 

)1( +jw  for any 1,...,1,0 −= Nj , if:  
 

)1()(,,...,2,1 +≤≤=∀ j
ii

j
i wxwni             (19) 

 
where ix  denotes the thi coordinate of vector x  

in the state space, numbers )( j
iw  and )1( +j

iw  are 
defined accordingly, and ""≤  is considered 
componentwise.  
  
 Assume the state x  of the vehicle to be 
between waypoints )( jw  and )1( +jw . Then, the 
waypoint )( jw  is called the backward waypoint  
and )1( +jw  the  forward waypoint for state x .  
 
 Since K  may be nonconvex, the 
waypoints have to be chosen in such a way that 
the  segment joining two consecutive waypoints 
be fully in K  and that the line joining a state in 
K  to its forward waypoint be fully in K  as 
well. Formally, let )()1()1()0( ,,...,, NN wwww −  be 
the sequence of waypoints which are chosen for 
navigating from the initial point 0x  to the final 

point fx , with 0
)0( xw ≡ , and f

N xw ≡)( , then, 

for any 1,...,1,0 −= Nj , the waypoints )( jw  and 
)1( +jw  must meet the following two constraints: 

  
1. [ ] ( ) Kwrwrr jj ∈−+∈∀ + )1()( ).1(.,1,0   (20) 
 
2. For any state Ky ∈  which is between )( jw  

and )1( +jw  the following holds: 
 [ ] ( ) Kwryrr j ∈−+∈∀ + )1().1(.,1,0       (21) 
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3.3 Control Algorithm 
 
Based on the choice of the waypoints as 
explained above, the idea of the control 
methodology can now be described: 
 
From the current position of the vehicle, one 
first needs to determine the forward waypoint 

nextw  of the current position *x  as a guide to 
where to go. From the knowledge of the current 
control vector *u , the control domain for the 
next move has to be computed. The following 
considerations are made and taken into account 
in determining the viable control: 
 

• The control for the next move should be 
such that the remaining distance up to 
the forward waypoint be minimized. 

• The change in the control for the next 
move needs to be minimized so that it 
can be without high increase.  

• There may be many control vectors 
which fulfill the two previous 
requirements, therefore,  it is clear that 
it would be better for the sake of control 
performance to choose the control 
vector with minimum norm. 

 
 
These considerations lead to consider the 
following criterion: 

 

( ) ( )
( ) ( ) 2**

)()()(

uuuRuu
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−−=
        (22) 

 
where )(kx  is the predicted state at the next 
time instant kt , and Q  and R  are positive 
definite matrices. The predicted state is 
computed using the Howe algorithm 
described above from the current actual 
state which corresponds to the state at time 

1−kt . The full control algorithm is given 
below: 
 

0. Set the initial control 0u  to an 
appropriate vector, and the iteration 
variable t  to 1. 

1. Determine the current actual position *x  
(with navigation sensors) and the current 
actual control vector *u of the vehicle. If 

ε≤− fxx*  then stop. /* ε  is the  

required precision. */       
2. Determine the forward waypoint nextw  of 

*x . 

3. Compute: [ ]∏
=

∆∆+=
m

i
ii btatuV

1

* .,. . 

4. Find )(ku  as a solution to the following 
constrained minimization problem: 
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subject to: ),(
~ * uxfx = ,  0)( ≤xg , Uu ∈ ,  

and Vu ∈ , with 2)( * uuu += . 
 
5. Control the vehicle from time 1−kt  to kt  

using the control vector u  defined for 

kk ttt ≤≤−1  as: 
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6. Update 1+= kk  and go to 1. 

 
  
 
4 Application: Viable Orbital Control  
 
Various forces continually change the 
characteristics of the satellite orbit with respect 
to the reference one [2, 5]: 
 

• atmospheric drag, caused by the earth’s 
residual atmosphere at the satellite’s 
altitude effectively slows down the 
satellite. The atmospheric drag depends 
on solar activity and varies periodically 
on eleven-year basis. 



K. BOUSSON 

6 

• the combined gravitational attraction of 
the sun and the moon, which reduces  
inclination of the orbital plane. 

• The solar radiation pressure. 
• The earth’s gravitational potentials. 

 
Due to these disturbances, the satellite may drift 
from the optimal orbit, giving rise to an actual 
trajectory that may be above/below or at the 
left/right side of the reference orbit. Therefore, 
orbital control aims at maintaining the satellite 
on the same reference orbit characteristics so 
that it can fulfill its mission. This simply means 
the drifts from the nominal orbit have to be 
monitored and corrected. When the 
perturbations are well known, then the orbital 
control law is designed based on the 
atmospheric drag. Indeed, the satellite trajectory 
is intentionally drifted by the control, so that the 
effect of the atmospheric drag cancels out this 
drift and brings the satellite to the reference 
orbit.  
 
Considering only the disturbing acceleration due 
to the earth’s gravitational potentials, the 
equations of motion for a satellite in the earth’s 
spherical gravitational field can be expressed in 
an inertial spherical reference as:  
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where 0010826.02 =J , ea  is the earth’s 
equatorial radius, r  is the radial distance from 
the earth center to the satellite, θ  is the angle 
counted from the x-axis in the xy-plane to the 
projection of r

r
 onto the xy-plane, φ  is the 

angle measured from the z-axis to vector r
r

, and 

θuur ,  and φu  are the thrust acceleration 

components related to the spherical reference. 
 
By setting:  
 

φθφθ &&& ====== 654321 ,,,,, xxrxxxrx , 

[ ] Txxxxxxx 654321 ,,,,,= ,  

[ ]T
r uuuu φθ ,,= , 

 
then (Eq. 23) may be written as (Eq. 1). 
 
 
The differential inclusions modeling the control 
change are: 
 

 

5252

2727

6565

≤≤−
≤≤−
≤≤−

φ

θ

u

u

ur

&

&

&

 

 
The control domain U  is defined through the 
following inequalities: 
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The problem copes with a satellite on an 
elliptical orbit with a 55º inclination with 
respect to the equatorial plane, a semi-minor 
axis of 5500 nautical miles and a semi-major 
axis of 6000 nautical miles. The application 
deals with controlling the satellite on its orbit 
within a virtual corridor around the nominal 
orbit, starting from lowest edge of the orbit. The 
orthogonal section of the orbit corridor is 
assumed to be circular of radius 5 nautical 
miles.  
 
For the validation the method presented above, 
the computed state at each time-step, based on 
the Howe algorithm, is corrupted with 10% 
gaussian random noise, which made the signal-
to-noise ratio 10-to-1 for each simulated state 
measurement. This noise injection mimicks the 
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other disturbances (sun and moon gravity, solar 
radiation pressure, atmospheric drag) not 
accounted for in the satellite motion model 
described by (Eq. 23). Therefore, the simulated 
and corrupted state at each time-step is 
considered as the actual position referred to in 
step 1 of the control algorithm in the previous 
section. The result of the simulation is depicted 
by fig. 2, where the viable orbit trajectory is 
represented in the orbital plane coordinate 
reference system. The inner circle represents 
earth and the controlled trajectory is inside the 
corridor represented by the two outer ellipses.   
 
 
 

 
Fig. 2: Viable orbital trajectory 

 
 
5 Conclusion 
 
A newly developed method for viable trajectory 
control inside a corridor is presented in the 
present paper. Such a control method is 
necessary when the system under control does 
not necessarily need to follow exactly a 
curvilinear reference trajectory. Therefore, what 
is in fact required from such a system  is to 
maintain the trajectory close to some ideal 
reference within a certain acceptable tolerance. 
Based on the known initial and terminal 
positions of the system, a sequence of 
waypoints is chosen in such a way that the 

segment joining two consecutive waypoints 
remain fully inside the control corridor. Then a 
predictive control law is designed to control the 
system from a waypoint to the next until the 
specified terminal position. An application 
dealing with orbital control illustrates the 
method and reveals its potentials for handling 
the control of complex systems even in case of 
unknown measurement noise. 
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