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Abstract  

Numerical analysis of damping oscillation of a 
cantilever beam with shape memory alloy 
(SMA) foils bonded was performed, as a 
fundamental study on damping enhancement of 
a structure using SMA. A constitutive model of 
SMA we proposed was applied, which can 
capture small strain cycles and effects of strain 
rates in stress-strain-temperature relationship 
quantitatively. Beams with SMA bonded were 
also actually manufactured and their damping 
performance was measured. It was seen from 
both the numerical simulation and the 
experiment that bonding SMA was useful for the 
damping enhancement in some cases. Moreover, 
the numerical result showed that proper 
mechanical or/and thermal treatment of SMA 
may make the damping performance higher.  

1  Introduction  
Recently a concept of so-called smart structures 
was proposed, where the smart structure has 
functions of sensors, actuators, and processors 
as well, and can change its shape and 
mechanical properties by itself for a change in 
its surroundings or internal condition. This 
smart structure concept is expected to make 
structures with lighter weight, higher 
performance, and higher reliability, so that 
studies on smart structures and materials have 
been carried out in many aerospace, 
architectural, and material engineering 
laboratories and universities in Japan, U.S.A., 
and Europe. 

Among the smart materials composing the 
smart structures, SMA is one of the most 
promising materials because it has functions as 
an actuator and a sensor based on shape 
memory effect and pseudoelasticity as well as 
enough strength and stiffness as a structural 
element. Moreover it is expected to be used as a 
damping material because of a large hysteresis 
loop in stress-strain relationship. Thomson et al. 
[1], Gandhi and Chapuis [2], and Boller et al. 
[3] showed the damping of a beam increased 
significantly with SMA wires by measurement 
and numerical simulation. In their research 
SMA wires were connected to the beam with an 
angle such that they vibrate with a large strain 
amplitude. In real situation, however, SMA may 
be often bonded on or embedded into a 
structural element, where the strain amplitude is 
much smaller than the previously mentioned 
cases. Hence we focus on the latter situation, 
that is, the damping enhancement of structural 
elements using SMA bonded on or embedded 
into. In particular, in this paper, we examine the 
damping performance of SMA foils bonded on a 
base structure. 

In the next section, first, the constitutive 
model of SMA to be used is briefly shown and 
dynamic behavior of the cantilevered beam with 
a tip mass and bonded SMA foils is formulated.  
In section 3, the validity of the constitutive 
model is shown by comparing the stress-strain 
relationships of a SMA wire measured and 
predicted by the model, and then the 
effectiveness of bonding SMA on the damping 
enhancement is examined by both the 
experiment and the numerical simulation. 

NUMERICAL ANALYSIS OF DAMPING 
ENHANCEMENT OF A BEAM WITH SHAPE MEMORY 

ALLOY FOILS BONDED 
 

Tadashige Ikeda, Hidetaka Hattori, Yuji Matsuzaki  
Department of Aerospace Engineering, Nagoya University 

 
Keywords: shape memory alloys, constitutive equations, damping enhancement, numerical 

simulation. 



IKEDA, HATTORI, MATSUZAKI  

2 

2  Modeling Beam with a Tip Mass and SMA 
Foils Bonded 

2.1 Constitutive Model of SMA 
Deformation behavior of SMA is based on 
phase transformation and it changes 
significantly due to a change in 
thermomechanical parameters. Therefore to 
apply SMA to the smart structural element we 
must understand its behavior and present a 
simple yet accurate theoretical model for 
optimal design. When we use SMA bonded on 
or embedded into a base material as a damping 
material, effects of strain rate and small strain 
cycles are important, because the 
eigenfrequency of the structure depends on its 
stiffness and configuration and that the strain 
range of the base material is usually less than 
1 %, which is much smaller than the strain 
range of SMA. 

After investigating the published models 
with respect to the strain rate effects and the 
small strain cycles, we found there were few 
available models. Therefore we proposed a new 
constitutive model of SMA which can treat the 
strain rate effects and the small strain cycles [4, 
5]. 

2.1.1 Transformation Criterion  
Following Ikeda et al. [4, 5], the phase 
transformation criterion of SMA is given by  
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where σ, EM, EA, εM, εA, ∆s, T, T0, and z denote 
the stress of the material, the Young’s moduli of 
martensitic phase and austenitic phase, the 
intrinsic strains of the two phases, the entropy 
difference between the two phases, the material 
temperature, the transformation temperature 
without dissipation, and the martensitic volume 
fraction. The left-hand side of the equation is 
the thermodynamic driving energy for the phase 
transformation, and the right-hand side, Ψ, is 
the required transformation energy (RTE). 
When the driving energy becomes equal to RTE, 

the phase transformation is assumed to take 
place. 

The boundary RTE for the complete phase 
transformation can be easily estimated from 
experimentally measured data and is assumed 
approximated by 
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where z  is the time derivative of the martensitic 
volume fraction. 

To express the partial transformation 
cycles, we proposed a new partial 
transformation model, named the shift-skip 
model, where RTE is rewritten in the following 
form; 
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Ψf and Ψr denote the boundary RTE for forward 
and reverse transformations, respectively. Ns is 
the turn number to be considered. zf,i and zr,i are 
a pair of memorized volume fractions of the i-th 
turn for forward and reverse transformation and 
zf,0 = 1 and zr,0 = 0. Moreover, when the 
specimen is loaded until z > zf,k or when the 
specimen is unloaded until z < zr,k, the memory 
pairs of zf,i and zr,i with i ≥ k are cleared. Here, it 
is noted that zr,Ns does not exist and is not also 
used when 0<z . 

2.1.2 Strain Equation 
Strain is assumed to consist of elastic, 
transformation, and thermal parts, and is given 
by 
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where 
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α and Ts are the thermal expansion coefficient 
and the surrounding temperature. 

2.1.3 Heat and Energy Flow Equation  
Forward transformation is exothermic whereas 
the reverse one is endothermic. Moreover, the 
dissipation energy due to the internal friction 
changes into heat and the heat generated in the 
material is exchanged with the surroundings. 
Consequently, since temperature of SMA 
increases and decreases during the deformation, 
we must consider the heat and energy flow 
equation; 
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C, h, A, and V denote the specific heat capacity 
at constant stress, the convection heat transfer 
coefficient, the exposed area, and the volume, 
respectively. 

2.2 Beam Model 
Next we formulate the beam with a tip mass and 
SMA foils bonded using Bernoulli-Euler beam 
theory. 

2.2.1 Bernoulli-Euler Beam Equation  
Equation of motion of Bernoulli-Euler beam is 
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x, t, µ, w, and f denote the longitudinal 
coordinate, the time, the mass per unit length, 
the displacement, and the distributed external 
force. E*I is the complex bending stiffness of 
the beam and given by 
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where E*, B, H, and subscripts Al and Ep are the 
complex Young’s modulus, the breadth, the 
thickness, and the quantities of  the aluminum 
beam and the epoxy adhesive. 

Assuming that the displacement is 
separable in space and time, and that the first 
mode vibration is dominant, that is, 

w(x,t) = q(t)W(x), (9) 

we obtain the following ordinary differential 
equation; 
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where q and W denote the generalized 
coordinate and the first modal function 
normalized as 
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ω, η, Ω, and L are the angular frequency, the 
damping factor, the natural angular frequency, 
and the length of the beam. 
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is the generalized force associated with q. 

2.2.2 Effect of Tip Mass 
Effect of the tip mass is considered as the 
external force given by 
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where M and δ denote the mass of the tip mass 
and the Dirac delta function. 

2.2.3 Transmission of Force from SMA 
The force from the SMA foil is assumed 
transmitted as if the concentrated forces act at 
the edges of the beam. Here we consider only a 
bending moment and ignore an axial force. The 
bending moment can be transformed into the 
equivalent coupling forces fSMA with a distance  
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Fig. 1. Coupling forces equivalent to a bending moment 

due to SMA foils 
 
of 2∆ as shown in Fig. 1 and given by the 
following equation. 
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The subscripts top, btm, and SMA are the 
quantities of the top foil, the bottom foil, and 
SMA foil. Accordingly, the generalized force 
generated by the SMA foils is obtained as 
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2.2.4 Relationship between Displacement and 
Strain of SMA Foils 
The strain of the top SMA foil is obtained, by 
integrating the local strain over the beam and by 
considering the boundary condition, as 
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Table 1 Constants of the wire and surroundings 
Constant Value 

d 
EA 
EM 
εA 
 εM 
α 
∆s 
C 
 T0 

 
Ts 
 
h 

A/V 
Ψc 
a1 
a2 

0.75 mm 
43.3 GPa 
22.9 GPa 
0.0 
0.0304 
1.04 × 10-5 1/K 
−0.246 MJ/(m3K) 
2.97 MJ/(m3K) 
248.6 K  (small loop) 
243.4 K (frequency effect) 
291.2 K (small loop) 
296.5 K (frequency effect) 
43.4 W/(m2K) 
5.33 × 103 1/m 
2.81 MJ/m3 
1.0 × 1010 
1.0 × 106 

 
where εpre is the prestrain when the foil is 
bonded. The bottom strain is obtained in a 
similar way as 
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3 Results and Discussion  

3.1 Validity of the Constitutive Model of 
SMA 

First we examined the validity of the proposed 
constitutive model of SMA by comparing 
predicted stress-strain relationship with 
measured data. In particular, the effects of small 
strain loops and loading frequencies were 
examined, because these effects are important 
when SMA is bonded on or embedded into the 
base structural element as a damping material. 
A NiTi SMA wire was used as a specimen. 

RTE was estimated from the experimental 
data as 
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Fig. 3. Comparison of the effect of loading frequency 
between the experiment and the calculation 

 
where Ψc, a1, and a2 were the material constants. 
The parameters of the wire and surroundings 
used in the numerical simulation are listed in 
Table 1. 

Fig. 2 and 3 show comparison of stress-
strain relationship between calculation and 
experiment on the effects of small strain loops 
and loading frequencies, respectively. The 
symbols are the measured data and the curves 
are the prediction. It is seen from Fig. 2 that the 
proposed model can capture the features of the 
measured boundary and inner small hysteresis 
loops quite well. This result indicates that RTE 
approximated by a sum of two exponential 
functions and the shift-skip partial 
transformation model are reasonable. From Fig.  
3, the model can capture also the loading  

Al alloy

epoxy adhesive
SMA foil

w(L,0)

L
weight

Cross section of 
the sandwich beam

solenoid

 
Fig. 4. Schematic of the cantilever beam used in the 

experiment and a cross section of the beam with SMA 
foils bonded 

 
frequency effect from 0.001 Hz to 1 Hz. 
Moreover, we made sure that almost adiabatic 
deformation took place at a loading frequency 
of more than 1 Hz and the stress-strain loops did 
not change much. 

3.2 Damping Vibration of Beams with SMA 

Fig. 4 shows a schematic figure of the 
cantilevered beam used in the damping 
enhancement measurement and a cross-section 
of the beam with SMA foils bonded on its 
surfaces. Five specimens were made. Those 
were a just aluminum beam (Al), aluminum 
beams with bonded SMA foils in R phase at 
room temperature (Al+R), with bonded SMA 
foils in austenitic phase (Al+A), with bonded 
prestrained SMA foils (Al+PA), and with 
bonded stainless steel foils (Al+S). The 
prestrain was applied to the austenitic SMA 
foils expecting SMA to vibrate around the 
center of the boundary stress-strain loop. The 
stainless steel foil was used to compare SMA 
foil with another metal foil. To avoid the effect 
of aerodynamic damping, the experiment was 
performed in a vacuumed camber. In the 
experiment the beams were first bent by 
quasistatically pulling their free end and then 
released to start a vibration. The vibration was 
measured by a strain gauge attached at 30mm 
from the clamp on the beam. 

Fig. 5a shows the envelopes of the positive 
side of the measured damping vibration of the 
beams. The damping of Al+R, indicated by a 
blue colored line, is approximately 200 % 
superior when compared to Al, indicated by the 
black line, and is approximately 100% superior  
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Fig. 5a. Measured envelope of damping vibration wave 
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Fig. 5b. Predicted envelope of damping vibration wave 
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Fig. 6. Stress-strain relationship of the top SMA foil 

Table 2 Constants of the aluminum beams, the epoxy 
adhesive layer, the stainless steel foil, the SMA foils and 

the surroundings 
Constant Value 

L 
B 

HAl 
HEp 
HR 
HA 
HS 
EAl 
EEp 
ER 

EA ↔ EM 
ES 
ηAl 
ηEp 
ηS 
µAl 
µEp 
µR 
µA 
µS 
εpre 
 Μ 
α 
C 
 Ts 
h 

εA↔ εM 
∆s 
 T0 
ΨAc 
aA1 
aA2 

A/VA 
εR+↔ εR- 

ΨRc 
aR1 
aR2 

A/VR 

200 mm 
20 mm 
2 mm 
0.08 mm 
0.04 mm 
0.05 mm 
0.04 mm 
73.0 GPa 
4.64 GPa 
26.7 GPa 
43.3 GPa ↔ 22.9 GPa 
200 GPa 
0.002546 
0.06136 
0.003501 
0.1040 kg/m 
0.0038 kg/m 
0.0090 kg/m 
0.0112 kg/m 
0.0126 kg/m 
0.02 
144.6 g 
1.04 × 10-5 1/K 
2.97 MJ/(m3K) 
291.2 K 
43.4 W/(m2K) 
0.0↔0.0304 
−0.246 MJ/(m3K) 
248.6 K 
2.81 MJ/m3 
1.0 × 1010 
1.0 × 106 
2.0 × 104 1/m 
0.042↔-0.042 
9.9 MJ/m3 
1.0 × 104 
1.0 × 104 
2.5 × 104 1/m 

 
when compared to Al+S, indicated by the gray 
line. Damping performance of Al+A and Al+S 
are similar and Al+PA is a little better than 
those. 
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From this result the material parameters of 
aluminum beam and epoxy adhesive were 
estimated. With respect to the material constants 
for the SMA foils, we assumed that they were 
the same as those for the wire used in the 
preliminary experiment etc. Moreover, it was 
assumed that rearrangement between R+ phase 
and R- phase took place in the R phase foils. 
The material constants of the aluminum beam, 
the epoxy adhesive, and the foils are listed in 
Table 2, where the subscripts S, R, R+, and R- 
denote the quantities on the stainless steel, R 
phase SMA, R+ and R- phase, respectively. 
Accordingly, qualitative comparison of damping 
performance was made between the prediction 
of damping vibration of the beams with SMA 
foils and the corresponding experiment. 

Fig. 5b shows the envelopes of the positive 
side of the calculated damping vibration of the 
beams. The simulated result seems to be in 
qualitatively good agreement with the 
experiment, although the damping of Al+PA is 
less than Al+S, being different from the 
experiment. 

It can be seen form Fig. 5 that bonding R 
phase SMA is effective for the damping 
enhancement and that the modeling of the beam 
with a tip mass and SMA foils bonded is 
reasonable. 

3.3 Effect of prestrain of SMA 
The austenitic SMA foils were prestrained 
because we expected SMA to vibrate around the 
center of the boundary stress-strain loop. 
However, we could not obtain a good damping 
enhancement for Al+PA beam, where the 
austenitic SMA foils were stretched by 2% and 
bonded on the aluminum beam. Since the 
damping performance relates to the area of the 
stress-strain loop, we examined the area for 
Al+PA beam in the simulation. Green curve in 
Fig. 6 illustrates the stress-strain relationship of 
the top SMA foil of Al+PA beam during the 
vibration. It was found that we could not obtain 
a large hysteresis loop in this condition because 
the deformation of SMA foil was in an elastic 
range and no transformation took place. 
Therefore, we tried simulating vibration of a 

beam with SMA foils which were stretched and 
relaxed a little before bonded so as to actually 
vibrate around the center of the hysteresis loop 
(Al+PA2).  Orange curve in Fig. 5b illustrates 
the envelope of the simulated damping vibration 
of Al+PA2 beam. In this beam we could obtain 
a damping performance as good as Al+R beam. 
At this time the area of the stress-strain 
relationship became larger as shown with the 
orange curve in Fig. 6. 

4 Conclusion 

Effects of SMA on damping enhancement was 
examined. To this end first a new constitutive 
model of SMA for partial transformation cycles 
was proposed. Next a beam with a tip mass and 
bonded SMA foils was formulated. The 
comparison of simulated stress-strain 
relationships for SMA wire with measured data 
showed the validity of the SMA model. Finally 
beams with SMA foils bonded were 
manufactured and we measured their damping 
vibration and simulated them using the 
formulated beam model. The predicted and 
measured waves of the damping vibration were 
in qualitatively good agreement with each other. 
The results showed that bonding R phase SMA 
was effective for damping enhancement and 
bonding austenitic SMA might increase 
damping performance by giving proper 
mechanical or/and thermal treatment. 

As future works we must measure the 
mechanical property of SMA foils to confirm 
the validity of the model more and make a beam 
with optimally prestrained austenitic SMA foils 
bonded to verify the prediction. 
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