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Abstract  

A three-dimensional, frequency-domain 
flutter theory for a five Degree-of-Freedom 
(5DOF) system for rotor blades with trailing-
edge flaps is developed. Lagrange’s equation 
using superposition of normal modes and the 
aerodynamic forces and moments given by two-
dimensional strip theory for an incompressible 
flow is applied to develop a flutter solution.  In 
order to solve the flutter problem, the free 
vibrations for both the bending and torsional 
mode shapes and natural frequencies for the 
rotating blade are determined. To model the 
flap, the stiffness of the torsional spring for the 
flap is tuned such that the flap rigid body 
uncoupled natural frequency can be equated to 
the flap input frequency, thus allowing analysis 
of the effect of flap input frequency on the flutter 
solution.  

Three-dimensional aspects are included 
with sectional variations of mass, geometry and 
freestream velocity. Aerodynamic effects are 
examined through different lift deficiency 
functions. It is assumed that the aerodynamic 
forces and moments do not change the 
uncoupled modes shapes. Practical application 
is demonstrated using a hingeless rotor blade. 

1  Introduction  
Flutter is normally defined as an 

aeroelastic, self-excited vibration, in which the 
external source of energy is the air stream.  
When flutter occurs, the air stream provides 
energy to the system more rapidly than it is 
dissipated by damping [1], [2].  The 
requirements for designing helicopter rotor 

blades to be free of flutter are contained in 
Federal Aviation Regulations under Aircraft 
Circular 27-1B for normal category rotorcraft  
[3] and Aircraft Circular 29-2C for transport 
category rotorcraft [4].   Section 629 of both 
circulars state that the rotorcraft must be free 
from flutter.  Additionally, section 629A of AC 
29-2C requires “each aerodynamic surface of 
the rotorcraft must be free from divergence in 
addition to the requirement of freedom from 
flutter.  The aeroelastic stability evaluations 
required by this regulation include flutter and 
divergence.  Compliance with this regulatory 
requirement should be shown by analysis and/or 
flight test, supported by any other means found 
necessary by the Administrator.  The aeroelastic 
evaluation of the rotorcraft should include an 
investigation of the significant elastic, inertia 
and aerodynamic forces on all aerodynamic 
surfaces (including rotor blades) and their 
supporting structure.  The forces associated 
with the rotations and displacements of the 
plane of the rotors should be considered.” 

A prevalent design practice of collocating 
the center of gravity, elastic axis and 
aerodynamic center has the advantage of 
decoupling the aerodynamic, elastic and 
dynamic equations of motion.  While this 
assures freedom from flutter and other 
aeroelastic phenomena, it provides additional 
constraints on rotor blade design not normally 
followed in fixed-wing design.  A rotor blade 
designed with the center of gravity, elastic axis 
and aerodynamic center coincident at the 
quarter-chord will be heavier than one free of 
that restriction.  The added weight in the rotor 
blade may necessitate a larger power plant and a 
larger gearbox, and the rotor blade itself may be 
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larger than needed in order to provide the 
necessary rotor thrust to achieve flight.  Also, if 
strictly followed, this design constraint rules out 
use of a trailing-edge flap because the 
aerodynamic center will move when the flap 
angle is changed [5], [6], and the elastic axis 
and center of gravity may shift when a trailing-
edge flap is incorporated. 

Aeroelastic analysis of a rotor blade with a 
trailing-edge flap is a concern for active 
vibration control systems such as individual 
blade control (IBC) and higher harmonic control 
(HHC) and have been routinely performed using 
a computational code such as CAMRAD II, 
CAMRAD/JA, 2GCHAS, UMARC, and others 
[5], [7], [8].  While these codes are quite 
capable of predicting rotor vibrations, they all 
work predominantly in the time domain and 
require much effort to learn how to use them to 
the fullest extent of their capabilities.  Time 
history plots are generated and analyzed in order 
to see if any instability, such as flutter, existed.  
The lack of a closed-form, frequency-domain 
solution for the aeroelastic analysis of rotor 
blades with trailing-edge flaps is very apparent 
in a review of the literature.  Inherent in 
IBC/HHC analyses is the issue of freeplay and 
its effect on rotor performance and structural 
stability [9].  Additionally, Loewy [10] showed 
how shed layers of vorticity affect Theodorsen’s 
lift deficiency function [11] and influence the 
unsteady aerodynamic lift and moment 
equations.  While Loewy did not explicitly state 
that his 2-D theory would apply to rotor blades 
with trailing-edge flaps, the manner in which 
the theory was developed allows it to be applied 
in this manner. 

2  Background 

2.1 Structural Dynamics 
In order to solve the flutter problem, the 

free vibrations for both the bending and 
torsional mode shapes and natural frequencies 
for the rotating blade need to be determined.  
Typically, the rotor blade is modeled as a series 
of discrete masses and springs that 

approximates the continuous system.  For the 
torsional mode shapes and frequencies, the 
Holzer method [12] is used, while the 
Myklestad method [13], [14] is used for the 
bending, or flexural mode shapes and 
frequencies.  Both methods are effectively step-
by-step solutions to either a 2nd order or 4th 
order differential equation of a lumped-
parameter system.  The Holzer method written 
in transfer matrix form is 
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The Myklestad method written in transfer 
matrix form is 
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2.2 Unsteady Aerodynamics 
Any general oscillating motion of an 

aircraft structure can be expressed in terms of 
translation from and/or rotation about some 
reference axis, assuming the displacements from 
equilibrium are small relative to the dimensions 
of the structure.  If that structure contains a 
portion that is free to rotate about some hinge 
axis, the general displacement of an element of 
mass can be expressed in terms of translation 
from a reference axis, rotation about a reference 
axis, and rotation about the hinge axis.  
Assuming the structure under consideration is a 
helicopter rotor blade that has a trailing-edge 
flap incorporated at the trailing edge as shown 
in Fig. 1.  The reference axis for translation will 

2 



 A FLUTTER MODEL FOR ROTOR BLADES WITH FLAPS

be the elastic axis of the undisturbed rotor blade, 
and the reference axis for blade rotation will 
also be the elastic axis.  Applying thin airfoil 
theory for the case of an inviscid, 
incompressible fluid, Smilg and Wasserman 
[15] showed that the forces and moments per 
unit span on the airfoil are given as follows: 

(1) Wing lift force per unit span: 
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(2) Moment per unit span due to blade 
rotation about the wing quarter-chord: 
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(3) Moment per unit span due to flap 
rotation about the hinge: 
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where b is the semi-chord, k is the reduced 
frequency, the dimensions for a, c and e are 
shown in Fig. 1, and the L, M, T and P terms are 
listed in Ref [15]. 

 
Fig. 1.  Two-dimensional schematic of rotor 
blade with trailing-edge flap. 

3 Development of Flutter Model 

3.1 Normal Modes 
The basic approach to the three-

dimensional rotor blade flutter problem is 
similar to that developed by Scanlan and 
Rosenbaum [2] for a fixed-wing aircraft and 
Daughaday, DuWaldt, and Gates [16] for 
rotary-wing aircraft.  Lagrange’s equation is 
applied using the aerodynamic forces and 
moments given by two-dimensional strip theory 
for an incompressible flow, but with a modified 
lift deficiency function, such as Loewy’s or a 
finite-wake model [17], [18].  The problem will 
be three-dimensional only to the extent that the 
blade sectional variations of mass, geometry and 
freestream velocity ( ) are taken into 
account.  It is assumed that the aerodynamic 
forces and moments do not change the 
uncoupled modes shapes. 

v = Ωr

The number of degrees of freedom that  
should consider depends on the particular 
design of the rotor blade and its corresponding 
structural properties.  A hingeless rotor requires 
at least three degrees of freedom (3DOF) – the 
first blade bending mode (h1), the first blade-
torsional mode (α1), and rigid-body motion for 
the trailing-edge flap (β0).  Scanlan and 
Rosenbaum [2] recommend that in general, if 
the frequency of the corresponding mode is less 
than 1.2 times that of the 1st blade torsional 
mode, then the mode shape should be 
considered.   In most helicopter rotor blades the 
second and sometimes the third bending modes 
normally meet the conditions set by Scanlan and 
Rosenbaum.   

Considering a 5DOF case for a hingeless 
rotor system incorporating a trailing-edge flap, 
the bending and torsional deflections can be 
written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3,h x t h t f x h t f x h t f x= + +  
( ) ( ) (1 1, )x t t Fα = α x  
( ) ( ) (0 0,y t t G yβ = β )  

where it is assumed that the predominant motion 
of the trailing-edge flap is rigid-body motion 
(subscript 0).  The terms containing the 
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displacement (y) are the characteristic functions 
(mode shapes) for the rotor blade, and the terms 
containing the time (t) are the normal 
coordinates that can be considered as weighting 
functions for each mode that contributes to the 
deflection.  Since the rigid-body displacements 
of the trailing-edge flap are not set to a specific 
value, the displacements are eigenvectors that 
are relative to each other, and simple harmonic 
motion is assumed so that a flutter solution may 
be obtained.  For rigid body trailing-edge flap 
motion, the free deflection motion can be 
written as 

0

k

I
β

β

β

ω =  

where kβ  is the torsional stiffness and Iβ  is the 
mass moment of inertia of the trailing-edge flap 
[1].  Since the torsional stiffness of the trailing-
edge flap can be varied, it can be tuned such that 
the flap rigid body uncoupled natural frequency 
is equal to the flap input frequency.  In this 
paper, the flap uncoupled natural frequencies 
will be restricted to integer multiples of the 
rotational velocity in order to study the effects 
of inputs corresponding to higher harmonic 
control and the natural filtering of frequencies 
provided by the rotor. 

3.2 Application of Lagrange’s Equation 
Lagrange’s equation is given as 
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where T ≡ kinetic energy, U ≡ potential energy, 
D ≡ dissipation function, and Qn ≡ generalized 
force.  For the 5DOF case, 
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where nM , 
n

Iα , and 
n

Iβ are the generalized 
masses, 

n
Sα  and 

n
Sβ are the static imbalance 

terms, and 
n n

Pα β  are the mechanical coupling 
terms.  The generalized forces are defined as  
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and include the aerodynamic terms which 
couple the modes together and incorporate the 
unsteady force and moment equations defined 
by Ref. [15] and [18].  Assuming simple 
harmonic motion and applying Lagrange’s 
equation to each of the five DOFs yields the 
matrix shown in Eq. (1). 
 

3.2 Solving the Eigenvalue Problem 
It can be seen that Eq. (1) is a set of 

complex homogenous equations where the 
primary variable is the flutter frequency (ω).  
Since it can be assumed that not all the 
displacements (h1, h2, h3, α1, and β0) are 
simultaneously zero, the solution to the complex 
homogeneous equations is found by solving a 
complex eigenvalue problem of the form 
( ) 0.A IZ X− = .  Unfortunately, the blade 
structural damping coefficients in Eq. (1) are 
not easily obtained.  To overcome this problem, 
Smilg and Wasserman [15] suggest a method 
that effectively equate the damping coefficients 
defined in the dissipation function, 

1 2 3 1 0h h hg g g g gα β g= = = = = .  By examining 
Eq. (1), it can be seen that the flutter frequency 
and the structural damping always appear 
together.   Defining a complex variable 

4 



 A FLUTTER MODEL FOR ROTOR BLADES WITH FLAPS

 

( )

( )

( )

1 1

1 2 1 3 1 1 11 1 0 101

1

2 2

2 1 2 3 2 1 21 2 0 202

2

3 3

3 1 3 2 3

3

1

2

1

2

2

2

3

2

3

1

1

1

h h

h h h h h hh
h

h h

h h h h h hh
h

h h

h h h h h
h

A M

A A A S A S
M ig

A M

A A A S A
M ig

A M

A A
M ig

α α β β

α α β β

πρ +⎧ ⎫
⎪ ⎪

πρ πρ πρ + πρ +ω⎨ ⎬⎛ ⎞
− +⎪ ⎪⎜ ⎟ω⎝ ⎠⎩ ⎭

πρ +⎧ ⎫
⎪ ⎪

πρ πρ πρ + πρ +ω⎨ ⎬⎛ ⎞
− +⎪ ⎪⎜ ⎟ω⎝ ⎠⎩ ⎭

πρ +

πρ πρ ω⎛ ⎞
− + ⎜ ⎟ω⎝ ⎠

( )

S

( )

3 1 31 3 0 30

1 1 1

1 1 11 1 2 21 1 3 31 1 0 1 01

1 1

0 0 0

0 1 10 0 2 20 0 3 30 0 1 1 0 0

0 0

2

1

1

h h

h h h

h h h

A S A S

A I

A S A S A S A P
I ig

A I

A S A S A S A P
I ig

α α β β

α α α

α α α α α α α β α βα
α α

β β β

β β β β β β β α α β β
β β

⎧ ⎫
⎪ ⎪

πρ + πρ +⎨ ⎬
⎪ ⎪
⎩ ⎭

πρ +⎧ ⎫
⎪ ⎪

πρ + πρ + πρ + πρ +ω⎨ ⎬⎛ ⎞
− +⎪ ⎪⎜ ⎟ω⎝ ⎠⎩ ⎭

πρ +

πρ + πρ + πρ + πρ + ω⎛
− +

ω

1

2

3

1

0

2

0

h
h
h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =⎢ ⎥⎢ ⎥
α⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ β⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫
⎢ ⎥⎪ ⎪
⎢ ⎥⎨ ⎬⎞
⎢ ⎥⎪ ⎪⎜ ⎟
⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦

 

 

( )1

2

1Z igα
ω

= +
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

the solution to Eq. (1) can be written as  
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where the 
i jq qA  are the aerodynamic terms which 

couple the modes and incorporate the unsteady 
force and moment equations defined by [15] and 
[18] using lumped parameter system: 
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Eq. (1).  Rotor Blade Flutter Matrix 
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The definition of Z is somewhat arbitrary, 
but it is a complex quantity that has a ratio of a 
reference frequency to the flutter frequency in 
its real part and a product of the flutter 
frequency and the damping coefficient in the 
imaginary part.  Since the first torsional 
frequency is used as the reference frequency for 

determining whether or not to include a mode, it 
becomes the most logical choice as the 
reference frequency for Z. 

4 Flutter Analysis Using Example Rotor 
Blade 

Due to the proprietary rights of many of the 
current rotor blades under development, it 
became necessary to develop an example rotor 
blade that could be used in the analysis to 
demonstrate the robustness and applicability of 
the theory.  The example rotor blade chosen is a 
hingeless design that is similar to the rotor blade 
described in Table B-17 of TRECOM Technical 
Report 64-15 [19], which is modelled after the 
blade designed for the Sikorsky H-3 (S-61).  
This rotor blade has a length of 31 feet (R = 31 
ft.) and is part of a five-bladed helicopter (Nb = 
5) with a gross weight of 16,800 lbs.  The 
primary differences between the TRECOM 
blade and the example blade is that a 25% 
chord, trailing-edge flap has been incorporated 
from station 279 to 334 on the rotor blade, the 
root end restraint has been modified from an 
articulated design to a hingeless design, and the 
mass of the blade has been redistributed to 
account for added weight of the flap but 
designed in such a manner that the overall mass 
of the blade remains the same.  Additionally, the 
c.g. of the rotor blade where the flap has been 
incorporated has been shifted from 25% chord 
to 40% chord to show effects of c.g. 
displacement on the flutter speed.   

Figures 2 through 7 are plots of natural 
frequency and damping coefficient required for 
flutter to exist versus a non-dimensionalized 
rotational velocity for different choices of lift 
deficiency function (Theodorsen or Loewy) and 
different values of flap stiffness, kβ , in 
which

0
k I

0β β βω = . Note that a negative value 
of g is the stable condition since damping must 
be reduced to cause flutter to exist. The flutter 
speed is determined by noting the velocity at 
which the damping coefficient is zero. It can be 
shown that layers of shed vorticity beneath the 
rotor have a significant effect on aerodynamic 
coefficients [18]. When comparing Loewy’s lift 
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deficiency function with an infinite number of 
previously shed wakes to the finite wake lift 
deficiency function with just a single previously 
shed wake, it can be seen that the number of 
wakes has a lesser effect than frequency ratio, 
which effectively is the phase relationship 
between the shed layers of vorticity.  Thus, 
frequency ratio will also have a significant 
effect on the flutter solution due to the larger 
changes to aerodynamic coefficients caused by 
changes in frequency ratio. The case of m = 0 
(wakes completely in phase) always yielded the 
highest flutter speed, and the case of m = 0.25 
yielded the lowest flutter speed. The reason for 
this phenomenon can be seen in Fig. 8 from 
Loewy [10] in which the pitch damping 
coefficient, defined by 

2

1 1 1 2

2 2

1
2

4

pitch damping

G
C a

k

a F

−
a

k

′
= − − +

′− −

⎡⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢⎣⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎤
⎜ ⎟ ⎥⎝ ⎠ ⎦

, 

is plotted against the frequency ratio for various 
wake spacings (inflow parameter).  It can be 
seen that the pitch damping coefficient becomes 
negative (unstable) in the region where m = 
1.25.  The wake weighting function is periodic 
in m, and the  case shown in Fig. 8 
could correspond to any integer plus 0.25 case. 
Thus, this decreased pitch damping has a 
destabilizing effect on the flutter speed of the 
rotor blade. 

0.25m =

This destabilizing effect was also noted by 
Jones and Platzer [20] and Turner [21].  Jones 
and Platzer used a panel code to plot the time 
rate change of the pitch amplitude against 
frequency ratio for the case of a single wake 
beneath an airfoil that was oscillating in pure 
pitch about the leading edge (a = -1.0).  Their 
results showed an instability for 1.52 ≤ m ≤ 
1.84, which is consistent with Figure 16 (a = -
1.0) from Loewy.  Since the example rotor 
blade had an aft c.g. offset in the sections with 
trailing-edge flaps, the effect on pitch damping 
would be similar to moving the elastic axis aft 
towards the midchord.  

 

 
Fig. 2. g-Ω plot for example rotor blade using 
Theodorsen’s lift deficiency function (ωβ = 
0P). 
 
 

 
Fig. 3. g-Ω plot for example rotor blade using 
Loewy’s lift deficiency function, m = 0 (ωβ = 
0P). 
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Fig. 4. g-Ω plot for example rotor blade using 
Loewy’s lift deficiency function, m = 0.25 (ωβ 
= 0P). 
 
 

 
Fig. 5. g-Ω plot for example rotor blade using 
Theodorsen’s lift deficiency function (ωβ = 
5P). 
 
 

 
Fig. 6. g-Ω plot for example rotor blade using 
Loewy’s lift deficiency function, m = 0 (ωβ = 
5P). 
 
 

 
Fig. 7. g-Ω plot for example rotor blade using 
Loewy’s lift deficiency function, m = 0.25 (ωβ 
= 5P). 
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Fig. 8.  Pitch damping coefficient versus 
frequency ratio (a = 0) (from [10]). 

5 Conclusion 
The solution to the flutter problem for 

rotary-wing aircraft is inherently more 
complicated than its fixed-wing counterpart, 
especially for rotor blades with trailing-edge 
flaps. The frequency-domain approach is used 
here to develop the flutter equations of motion 
that could be used quickly and easily without 
the need to learn all the ins and outs of one of 
the rotor dynamics computational codes. The 
method may be easily programmed in any 
language that has access to an eigenvalue 
subroutine that can handle complex coefficients. 
It was seen that the frequency ratio (m), which 
effectively measures the phase relationship 
between shed layers of vorticity, was the lift 
deficiency function parameter that affected the 
results the most with a destabilizing effect seen 
near m = 0.25. 
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