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Abstract  

The development of a Multi-platform Integrated 
Development Aid System (MIDAS), which aims 
to facilitate the task of implementing distributed 
simulations for aircraft design applications, is 
outlined. A series of benchmarking tests confirm 
the near linear scalability of computational per-
formance attainable with MIDAS. The results of 
solving a simple computational fluid dynamics 
(CFD) problem in a distributed computing envi-
ronment are included to showcase the benefits 
of employing distributed simulation for compu-
tationally demanding tasks. 

1 Motivation 
In recent years, multi-disciplinary aircraft de-
sign and simulation environments have required 
progressively greater computing capability. This 
is an unavoidable consequence of attempting to 
increase the quality of various disciplinary 
analyses by incorporating high-fidelity simula-
tion tools into the early phase of conceptual de-
sign. 

Unfortunately, such implementations are 
highly likely to extend the execution time of 
each computational run to a prohibitive level for 
large scale design problems. In order to prevent 

simulation from becoming the major bottleneck 
of the overall design cycle, one can either up-
grade to hardware with enhanced capability or 
take advantage of the aggregate computing 
power of multiple machines. The latter ap-
proach, which is known as “distributed simula-
tion technology,”[1] has been attempted in aero-
space engineering through the employment of 
dedicated, high-performance computing clus-
ters.[2]  Since such costly computation infra-
structures are often difficult to gain access to or 
financially infeasible, a more practical and cost-
effective solution would be to create a distrib-
uted computing environment by interconnecting 
existing standard desktop computers. Neverthe-
less, an accessible framework, which can be 
easily used without an in-depth knowledge of 
parallel and network programming, to create 
such an ad hoc computing cluster for aircraft 
design applications has remained elusive. 

Motivated by these limitations, the authors 
created the Multi-platform Integrated Develop-
ment Aid System (MIDAS), which is aimed to 
be a user-friendly framework that enables the 
straightforward execution of a simulation task 
over a network of geographically scattered 
computers. This design goal is conceptually rep-
resented in Fig. 1. The abscissa of the figure 
represents the time a designer must invest in 
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Fig. 1. Improvement in Program Development and Execution Process through MIDAS 
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order to learn, develop, and execute a program 
in a distributed computing environment. As it 
can be seen, even a novice of distributed simula-
tion is projected to considerably shorten the 
program development and execution process 
when using MIDAS. 

2 Design and Development of MIDAS 
With recent advances in the computational 
power of standard desktops, the collective com-
puting capability of a large scale network of 
such computers can rival that of a supercom-
puter. Initial research into the matter of distrib-
uted computing revealed that JavaTM was de-
signed as a network language from its concep-
tion. Not only does JavaTM include the necessary 
network Input/Output (I/O) libraries, but also it 
guarantees platform independence and network 
security through the built-in implementation of 
Java virtual machine (JVM) [3]. Additionally, 
higher level network functionality such as web 
servers and database servers are either already 
included in the basic libraries or at the very least 
have a programming interface that can be util-
ized. Furthermore, JavaTM includes a functional-
ity called dynamic class loading that allows a 
JVM to load the code and data during the execu-
tion. A security model, which grants access to 
the dynamically loaded classes, ensures that it is 
not possible for users to inadvertently or mali-
ciously access, delete, or send unauthorized data 
across the network. In light of these favorable 
features, JavaTM was selected as the program-
ming language for MIDAS. 

Further background research led to the dis-
covery of an enabling Remote Method Invoca-
tion (RMI) technology called JavaSpaces™. It is 
an implementation of a persistent “object” stor-
age called a “space.”[4] This space provides a 
logically shared memory where data can be 
stored, accessed, and updated in real-time with-
out requiring a physically shared memory. Th-
erefore, the application of JavaSpaces™ pro-
vides a basis for MIDAS to create a flexible, 
scalable, and reliable master-and-worker type 
distributed computing environment across a lo-
cal area network (LAN), as shown in Fig. 2. 

Shown here are the workers, generic com-
putation engines, which can search for, receive 
and run any tasks placed in the space by the 
master. Each task is implemented as an “entry” 
into the space [4]. “Entry” is the implementation 
of a generic object that the JavaSpaces™ Appli-
cation Programming Interface (API) uses to 
store it in the space. In this context, each task is 
an object that contains the data as well as the 
necessary reference executable code to complete 
the computational job. The workers wait for en-
tries into the space that match the template of a 
task. Once a task is found, it is removed from 
the space and its local copy is created on the 
worker machine. Subsequently, the worker dy-
namically loads the remote code into its native 
JVM and executes it. After the job is completed, 
the worker writes the result back to the space as 
another instantiation of an entry. Each result 
only contains a number of data objects storing 
the result values. Although only one master ma-
chine was used for this study, the JavaSpaces™ 
technology allows the interaction between mul-

Fig. 2. System Level Architecture of MIDAS 
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tiple master computers and multiple worker ma-
chines, which forms a basis for the expansion of 
computing power. 

The implementation of such a distributed 
simulation scheme in a space is inherently self-
load balancing, because idle workers would 
continue to take the tasks and return the results 
until the space is empty of new tasks. Therefore, 
there is no need for a special assignment 
mechanism that actively distributes tasks among 
workers. 

The master side is responsible for creating 
new tasks and collecting the results. This part of 
the infrastructure consists of modules that relate 
to user interactions, resource and worker man-
agement, and task construction. As long as all 
machines on the network have the compatible 
versions of JVM, such an infrastructure is able 
to distribute the tasks amongst a collection of 
heterogeneous, multi-platform workers. Func-
tions which automatically add or delete the 
workers and dynamically adjust the priority of 
the tasks are also built into the master. The latter 
feature is especially necessary in order to pre-
serve enough resources for the local users of the 
worker computers. 

3 Distributed Computing Environment 
After the initial development of MIDAS was 
complete, we were able to create and experi-
ment with clusters that consisted of various 
desktop computers. The computational effi-
ciency of our home-grown distributed comput-
ing environment was measured through a series 
of benchmarking tests. 

3.1 Implementation of MIDAS 
The initial implementation of MIDAS involved 
the creation of generalized workers that would 
simply exist as a Java Archive (JAR) containing 
the necessary libraries and policy files. After the 
generic worker connects to the space, as illus-
trated in Fig. 3, it writes the status information 
about itself to the space and waits for any avail-
able tasks. 
 

 
Fig. 3. Screen Shot of MIDAS Generic Worker 

In the beginning, the implementation of the 
master was also done as a simple executable 
that would obtain information about the con-
nected workers, write the tasks to the space, and 
then wait until all results were received from the 
space. For convenience, a generalized graphical 
user interface (GUI) version of the master was 
created to let the user easily control the system 
status (Fig. 4), submit tasks (Fig. 5), and avoid 
the inconvenience of having to change the entire 
underlying code every time tasks are to be dis-
tributed.  

 

 
Fig. 4. MIDAS Master Status Screen 

 
Fig. 5. MIDAS Task Submission Menu 

 
The current implementation of the space, 

transaction manager, and other network services 
are those provided by Sun’s libraries, and the 
system is developed using the IncaX IDE 
Community Edition [5]. For practical reasons, 
currently the network services all run on the 
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master, but they are not required to. Each of the 
network services can be run on separate com-
puters. Nevertheless, this should only be truly 
necessary under a very heavy computational 
load. Alternatively, a designated computer can 
be used as the dedicated provider of the LAN. 
This has the advantage that all necessary net-
work services will be available continuously. In 
the future, it is envisioned to incorporate the 
execution and management of these network 
services into the GUI to provide an easy-to-use 
network service manager that can be run inde-
pendently of the master, but without the use of 
proprietary management products. 

At the time of this writing, it is required to 
manually write and compile the tasks by using 
the programming interface as shown in Fig. 6. 
Nevertheless, once a task is implemented, it can 
be submitted to the master and the GUI of MI-
DAS is used for the task’s execution and the 
retrieval of results. As a future enhancement to 
the GUI, it is envisioned to create an element 
that contains the programming interface infor-
mation and allows the creation of a code in a 
simple text editor. Subsequently, the written 
code can be automatically compiled through the 
GUI on the master machine and become imme-
diately available for task execution. 

 
MIDAS Standard InterfaceMIDAS Standard Interface
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Fig. 6. MIDAS Class Hierarchy 

 

3.2 Benchmarking Tests 
Generally, the computational performance of a 
distributed computing environment is measured 
by the speed-up, which is given as the ratio of 
the execution time on a single processor to that 
of n number of processors, i.e., SU = T(1) / T(n). 
The ideal case is when the speed-up is identical 
to the number of machines n. In practice, the 
speed-up will be less due to the prescribed 
communication bandwidth (“the amount of data 
that can be sent from one computer to another 
through a particular connection in a certain 
amount of time”[6]) and latencies (“the delay in 
transmitting a message from one computer to 
another”[1]). Our goal was to measure this rela-
tionship between the reduction in execution 
time and the number of employed machines.  

For this purpose, SciMark 2.0, which is a 
benchmarking tool for JavaTM platforms devel-
oped by the National Institute of Standards and 
Technology [7], was used to measure computa-
tional speed in millions of floating point opera-
tions per second (Mflops). For this experiment, 
up to four computers of identical specifications 
were used to create four separate distributed 
computing environments. Table 1 lists the aver-
age performance each environment spent to fin-
ish executing all five algorithms. As expected, 
the results confirm that the speed-up is linearly 
proportional to the number of CPUs. 

Table 1. Linear Speed-Up vs. Number of CPUs 

# of CPUs 1 2 3 4 

Mflops 
(Speed-up) 

90.7 
(1) 

177.5 
(1.96) 

259.3 
(2.86) 

338.0 
(3.73) 

3.3. Efficiency Measurements of Clusters 
The purpose of this experiment was to test the 
effectiveness of MIDAS, in creating an efficient 
multi-platform computing environment. Eight 
such clusters of machines were created, as listed 
in Table 2 from the desktop computers listed in 
Table A1 of the Appendix. 

In order to equitably measure the perform-
ance of different machines, a normalized per-
formance index (PI) was created. It is defined in 
such a way that a baseline PI of 1 indicates the 
computational capability of a single Pentium IV 
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Linux machine (Bi’s in Table A1). Furthermore, 
one computational load (1 λ) is defined as a task 
that takes 96.4 seconds (1 τ) to complete on the 
baseline machine.  

Consequently, it was possible to compare 
the computational efficiencies of the eight clus-
ters, as depicted in Fig. 7. The ideal τ for each 
cluster to finish computing a load was obtained 
by dividing the given λ number by its respective 
aggregate PI value. The solid line in Fig. 7 indi-
cates this ideal case that can only happen if all 
tasks were evenly distributed to each machine 
within a cluster with zero latencies. Each clus-
ter’s actual τ under different loads was then 
compared against their ideal τ. The gaps in the 
horizontal direction of Fig. 7 between the ideal 
line and the marked points represent the ines-
capable losses that occur from different ma-
chines completing the same unit-load task at 
different rates. 
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Fig. 7. Computational Efficiencies of Various Clusters 

 

4 Application of MIDAS 
The idea of using computational fluid dynamics 
(CFD) in a distributed computing environment 
is usually hindered by the complexities of the 
implementation. In addition, the highly interde-
pendent nature of the problem requires high-
bandwidth links between CPUs. This brings in 
an additional disadvantage of limiting the at-
tainable speed-up in massive environments that 
are required for complex problems. 

Nevertheless, if an aircraft designer’s goal 
is to solve a number of relatively simple CFD 
cases for the purpose of creating, for example, a 
meta-model to be used during conceptual de-
sign, then the use of a low-bandwidth 
distributed system would be sufficient. A design 
problem of such limited complexity is that of 
predicting temperature exposures on a sharp-
edged supersonic airfoil. 

4.1 Problem Setup 
Various sharp-edged airfoils have been 

used as control surfaces on supersonic planes. 
Sharp-edged airfoils produce an attached 
oblique shock at the leading edge, expansion 
waves at the convergent aft end, and finally an-
other oblique shock attached to the trailing 
edge. A CFD problem that utilizes Roe’s Flux 
Difference Splitting (FDS) [8] with a Total 
Variation Diminishing (TVD) Minmod Limiter 
[9] in generalized coordinates [10] to perform a 
2D-Explicit Upwind Navier-Stokes solution for 
a structured grid was chosen as an application 
for the current version of MIDAS. The creation 
of a grid with good orthogonality that still al-
lows good boundary layer resolution is a key 
factor in obtaining good results. Fortunately, the 

Cluster ID Loads (λ) # of CPUs Bi Pi G4i G5 ΣPI 
Θ1 
Θ2 

36 
72 6     9.5 

Φ1 
Φ2 

36 
72 8     11.2 

Ψ1 
Ψ2 

36 
72 10    13.8 

Π1 
Π 2 

36 
72 18    27.0 

 

Table 2. Clusters of Heterogeneous Machines 

Ψ1 

Φ1 
Θ1 

Ψ2 

Φ2 

Θ2 

Π2 

Π1 



Young-Ki Lee, Holger Pfaender, and Taeyun P. Choi 

6 

fixed geometry allowed a single grid to be suffi-
cient for all cases. The grid was created manu-
ally with the use of an elliptic Poisson equation 
with control terms [11], and it is shown in Fig. 8. 
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Fig. 8. Grid to Solve CFD Problem of Supersonic Airfoil 

 
A number of cases with varying Mach 

Numbers and altitude were run to create a data-
base of surface temperatures and temperature 
gradients for the given supersonic airfoil. By 
imposing an adiabatic boundary condition, we 
examined the worst-case scenario that is actu-
ally advantageous for designs where active 
cooling is not desirable because of added com-
plexity. 

4.2 Results 
As expected, the results of the simulation show 
an attached oblique shock at the leading edge, 
followed by an expansion, which is followed by 
another shock. As shown in Fig. 9, the strength 
of the shock varies greatly with Mach number, 
which is evident in how rapidly the shock dissi-
pates away from the airfoil. At Mach 1.4 and an 
altitude of 18 km, the leading edge shock is 
fairly weak and does not propagate very far be-
fore losing a substantial amount of strength. The 
result for Mach 2.8, however, is much stronger 
and therefore propagates much farther out. 
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Fig. 9. Contours of Shock and Expansion Waves 

 
As a result, the leading edge temperatures 

show a strong influence of the Mach number as 
well, as shown in Fig. 10. The free stream tem-
perature boundary conditions were varied ac-
cording to the 1976 standard atmosphere model. 
In contrast, the temperature variation with alti-
tude shows only minimal variation especially 
since the altitude range covers the Tropopause, 
an isothermal layer of the atmosphere. 
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In order to obtain the results depicted in the 
above figures, a total of 45 simulation cases 
were required to be executed. Overall, this is a 
computationally demanding task that requires 
approximately 40 minutes for a single case to be 
completed on one of the baseline machines. 
Nevertheless, using all 18 computers listed in 
Table A1, the computations were completed in 
roughly half an hour. This is an impressive 
speed-up, which shows a very good scalability 
of the distributed computing environment cre-
ated by MIDAS.  

5 Conclusion 
The nearly linear scalability in computational 
performance demonstrated by MIDAS and its 
successful application to solving a two-
dimensional CFD problem indicate that there is 
a great deal of potential for our framework to be 
employed for larger aircraft design problems. 
Future work with later versions of MIDAS will 
seek to provide a more functional and easy-to-
use GUI and apply distributed simulation to 
large scale multidisciplinary optimization and 
analysis problems. The authors are planning to 
develop MIDAS into a facilitator framework for 
engineers who do not have much background in 
programming so that they can still carry out any 
type of generic object-oriented modeling and 
distributed simulation tasks. 
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Appendix 
As the PI values listed in Table A1 in the fol-
lowing page indicates, a machine’s hardware 
specification alone is not an adequate measure 
of computing performance. The PI value of a 
desktop computer is influenced by factors such 
as the type of OS, JVM version, and number of 
user-installed software, in addition to the CPU, 
clock speed and amount of RAM. This explains 
why, a Pentium III machine (P6) surpasses a 
Pentium IV machine (P7) in performance and 
the personal computers with the same hardware 
specification (P2, P8, and P9) have different PI 
values. 
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Machine ID CPU Clock Speed RAM OS JVM Version PI 
B1, B2, B3, B4 Intel Pentium IV 1.6GHz 1GB Linux 1.4.2_04 1.0 
P1 Intel Pentium III 866MHz 256MB Windows 2000 1.4.0 1.1 
P2 Intel Pentium IV 2.0GHz 512MB Windows 2000 1.4.2 1.6 
P3 Intel Pentium IV 3.2GHz 1GB Linux 1.4.2_04 2.3 
P4 Intel Pentium III 700MHz 128MB Windows 2000 1.4.0 1.1 
P5 Intel Pentium III 700MHz 224MB Windows 2000 1.4.2_03 1.1 
P6 Intel Pentium III 866MHz 256MB Windows 2000 1.4.0 1.4 
P7 Intel Pentium IV 1.5GHz 256MB Windows 2000 1.4.0 1.3 
P8 Intel Pentium IV 2.0GHz 512MB Windows 2000 1.4.1_01 1.7 
P9 Intel Pentium IV 2.0GHz 512MB Windows 2000 1.4.0 1.9 
P10, P11 Intel Pentium IV 2.26GHz 512MB Windows 2000 1.4.0_01 2.4 
G41, G42 Power PC G4 866MHz 1GB Mac OS 1.4.2_03 1.3 
G5 Power PC G5 1.6GHz 512MB Mac OS 1.4.2_03 2.3 
 

Table A1. Hardware and JVM Specifications of Machines Used 


