
24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

The development of a Multi-platform Integrated
Development Aid System (MIDAS), which aims
to facilitate the task of implementing distributed
simulations for aircraft design applications, is
outlined. A series of benchmarking tests confirm
the near linear scalability of computational per-
formance attainable with MIDAS. The results of
solving a simple computational fluid dynamics
(CFD) problem in a distributed computing envi-
ronment are included to showcase the benefits
of employing distributed simulation for compu-
tationally demanding tasks.

1 Motivation
In recent years, multi-disciplinary aircraft de-
sign and simulation environments have required
progressively greater computing capability. This
is an unavoidable consequence of attempting to
increase the quality of various disciplinary
analyses by incorporating high-fidelity simula-
tion tools into the early phase of conceptual de-
sign.

Unfortunately, such implementations are
highly likely to extend the execution time of
each computational run to a prohibitive level for
large scale design problems. In order to prevent

simulation from becoming the major bottleneck
of the overall design cycle, one can either up-
grade to hardware with enhanced capability or
take advantage of the aggregate computing
power of multiple machines. The latter ap-
proach, which is known as “distributed simula-
tion technology,”[1] has been attempted in aero-
space engineering through the employment of
dedicated, high-performance computing clus-
ters.[2] Since such costly computation infra-
structures are often difficult to gain access to or
financially infeasible, a more practical and cost-
effective solution would be to create a distrib-
uted computing environment by interconnecting
existing standard desktop computers. Neverthe-
less, an accessible framework, which can be
easily used without an in-depth knowledge of
parallel and network programming, to create
such an ad hoc computing cluster for aircraft
design applications has remained elusive.

Motivated by these limitations, the authors
created the Multi-platform Integrated Develop-
ment Aid System (MIDAS), which is aimed to
be a user-friendly framework that enables the
straightforward execution of a simulation task
over a network of geographically scattered
computers. This design goal is conceptually rep-
resented in Fig. 1. The abscissa of the figure
represents the time a designer must invest in

MULTI-PLATFORM INTEGRATED DEVELOPMENT AID
SYSTEM (MIDAS)

Young-Ki Lee, Holger Pfaender, and Taeyun P. Choi

Aerospace Systems Design Laboratory (ASDL)
Georgia Institute of Technology, Atlanta, GA 30313, USA

Keywords: Distributed / Parallel / Grid Computing, JavaSpaces

Fig. 1. Improvement in Program Development and Execution Process through MIDAS

P.D. C. D.

Program
Design Coding Debug Parallelization

Op. 1
Op. 2
Op. 3
Op. 4

P.
Operation 1
Operation 2
Operation 3
Operation 4

Development & Execution Time

Time saved by using MIDASP.D. C. D.

Program
Design Coding Debug Parallelization

Op. 1
Op. 2
Op. 3
Op. 4

P.
Operation 1
Operation 2
Operation 3
Operation 4

Development & Execution Time

Time saved by using MIDAS

Young-Ki Lee, Holger Pfaender, and Taeyun P. Choi

2

order to learn, develop, and execute a program
in a distributed computing environment. As it
can be seen, even a novice of distributed simula-
tion is projected to considerably shorten the
program development and execution process
when using MIDAS.

2 Design and Development of MIDAS
With recent advances in the computational
power of standard desktops, the collective com-
puting capability of a large scale network of
such computers can rival that of a supercom-
puter. Initial research into the matter of distrib-
uted computing revealed that JavaTM was de-
signed as a network language from its concep-
tion. Not only does JavaTM include the necessary
network Input/Output (I/O) libraries, but also it
guarantees platform independence and network
security through the built-in implementation of
Java virtual machine (JVM) [3]. Additionally,
higher level network functionality such as web
servers and database servers are either already
included in the basic libraries or at the very least
have a programming interface that can be util-
ized. Furthermore, JavaTM includes a functional-
ity called dynamic class loading that allows a
JVM to load the code and data during the execu-
tion. A security model, which grants access to
the dynamically loaded classes, ensures that it is
not possible for users to inadvertently or mali-
ciously access, delete, or send unauthorized data
across the network. In light of these favorable
features, JavaTM was selected as the program-
ming language for MIDAS.

Further background research led to the dis-
covery of an enabling Remote Method Invoca-
tion (RMI) technology called JavaSpaces™. It is
an implementation of a persistent “object” stor-
age called a “space.”[4] This space provides a
logically shared memory where data can be
stored, accessed, and updated in real-time with-
out requiring a physically shared memory. Th-
erefore, the application of JavaSpaces™ pro-
vides a basis for MIDAS to create a flexible,
scalable, and reliable master-and-worker type
distributed computing environment across a lo-
cal area network (LAN), as shown in Fig. 2.

Shown here are the workers, generic com-
putation engines, which can search for, receive
and run any tasks placed in the space by the
master. Each task is implemented as an “entry”
into the space [4]. “Entry” is the implementation
of a generic object that the JavaSpaces™ Appli-
cation Programming Interface (API) uses to
store it in the space. In this context, each task is
an object that contains the data as well as the
necessary reference executable code to complete
the computational job. The workers wait for en-
tries into the space that match the template of a
task. Once a task is found, it is removed from
the space and its local copy is created on the
worker machine. Subsequently, the worker dy-
namically loads the remote code into its native
JVM and executes it. After the job is completed,
the worker writes the result back to the space as
another instantiation of an entry. Each result
only contains a number of data objects storing
the result values. Although only one master ma-
chine was used for this study, the JavaSpaces™
technology allows the interaction between mul-

Fig. 2. System Level Architecture of MIDAS

Master

Task
Builder

Transaction
Manager

Worker
Handler

Solution
Reporter

Worker #2

Administrative
Tools

Performance
Reporter

Task
Executor

Worker #1

Worker #N

…

“Space”

New Task “Entry”

Result “Entry”

Assigned Task “Entry”

Master

Task
Builder

Transaction
Manager

Worker
Handler

Solution
Reporter

Worker #2

Administrative
Tools

Performance
Reporter

Task
Executor

Worker #1

Worker #N

…

“Space”

New Task “Entry”

Result “Entry”

Assigned Task “Entry”

3

MULTI-PLATFORM INTEGRATED DEVELOPMENT AID SYSTEM (MIDAS)

tiple master computers and multiple worker ma-
chines, which forms a basis for the expansion of
computing power.

The implementation of such a distributed
simulation scheme in a space is inherently self-
load balancing, because idle workers would
continue to take the tasks and return the results
until the space is empty of new tasks. Therefore,
there is no need for a special assignment
mechanism that actively distributes tasks among
workers.

The master side is responsible for creating
new tasks and collecting the results. This part of
the infrastructure consists of modules that relate
to user interactions, resource and worker man-
agement, and task construction. As long as all
machines on the network have the compatible
versions of JVM, such an infrastructure is able
to distribute the tasks amongst a collection of
heterogeneous, multi-platform workers. Func-
tions which automatically add or delete the
workers and dynamically adjust the priority of
the tasks are also built into the master. The latter
feature is especially necessary in order to pre-
serve enough resources for the local users of the
worker computers.

3 Distributed Computing Environment
After the initial development of MIDAS was
complete, we were able to create and experi-
ment with clusters that consisted of various
desktop computers. The computational effi-
ciency of our home-grown distributed comput-
ing environment was measured through a series
of benchmarking tests.

3.1 Implementation of MIDAS
The initial implementation of MIDAS involved
the creation of generalized workers that would
simply exist as a Java Archive (JAR) containing
the necessary libraries and policy files. After the
generic worker connects to the space, as illus-
trated in Fig. 3, it writes the status information
about itself to the space and waits for any avail-
able tasks.

Fig. 3. Screen Shot of MIDAS Generic Worker

In the beginning, the implementation of the
master was also done as a simple executable
that would obtain information about the con-
nected workers, write the tasks to the space, and
then wait until all results were received from the
space. For convenience, a generalized graphical
user interface (GUI) version of the master was
created to let the user easily control the system
status (Fig. 4), submit tasks (Fig. 5), and avoid
the inconvenience of having to change the entire
underlying code every time tasks are to be dis-
tributed.

Fig. 4. MIDAS Master Status Screen

Fig. 5. MIDAS Task Submission Menu

The current implementation of the space,

transaction manager, and other network services
are those provided by Sun’s libraries, and the
system is developed using the IncaX IDE
Community Edition [5]. For practical reasons,
currently the network services all run on the

Young-Ki Lee, Holger Pfaender, and Taeyun P. Choi

4

master, but they are not required to. Each of the
network services can be run on separate com-
puters. Nevertheless, this should only be truly
necessary under a very heavy computational
load. Alternatively, a designated computer can
be used as the dedicated provider of the LAN.
This has the advantage that all necessary net-
work services will be available continuously. In
the future, it is envisioned to incorporate the
execution and management of these network
services into the GUI to provide an easy-to-use
network service manager that can be run inde-
pendently of the master, but without the use of
proprietary management products.

At the time of this writing, it is required to
manually write and compile the tasks by using
the programming interface as shown in Fig. 6.
Nevertheless, once a task is implemented, it can
be submitted to the master and the GUI of MI-
DAS is used for the task’s execution and the
retrieval of results. As a future enhancement to
the GUI, it is envisioned to create an element
that contains the programming interface infor-
mation and allows the creation of a code in a
simple text editor. Subsequently, the written
code can be automatically compiled through the
GUI on the master machine and become imme-
diately available for task execution.

MIDAS Standard InterfaceMIDAS Standard Interface

TaskID: Integer
TaskNo: Integer

ResultEntry

TaskID: Integer
TaskNo: Integer

ResultEntry
TaskID: Integer
TaskNo: Integer
TaskData: Object
codebase: String
implClass: String
execute()

TaskEntry
TaskID: Integer
TaskNo: Integer
TaskData: Object
codebase: String
implClass: String
execute()

TaskEntry

execute(): ResultEntry

Interface Task

execute(): ResultEntry

Interface Task

execute(): ResultEntry

Interface TaskCode

execute(): ResultEntry

Interface TaskCode

resulttime: long
x[]: double[]
f[]: double[]

Result

space: JavaSpace
Task[]: TaskEntry
result: Result

writeTask(): void
getResult(): void

Master

space: JavaSpace
Task[]: TaskEntry
result: Result

writeTask(): void
getResult(): void

Master

resulttime: long
x[]: double[]
f[]: double[]
execute(): ResultEntry
Main(): void

Analysis

resulttime: long
x[]: double[]
f[]: double[]
execute(): ResultEntry
Main(): void

Analysis

Fig. 6. MIDAS Class Hierarchy

3.2 Benchmarking Tests
Generally, the computational performance of a
distributed computing environment is measured
by the speed-up, which is given as the ratio of
the execution time on a single processor to that
of n number of processors, i.e., SU = T(1) / T(n).
The ideal case is when the speed-up is identical
to the number of machines n. In practice, the
speed-up will be less due to the prescribed
communication bandwidth (“the amount of data
that can be sent from one computer to another
through a particular connection in a certain
amount of time”[6]) and latencies (“the delay in
transmitting a message from one computer to
another”[1]). Our goal was to measure this rela-
tionship between the reduction in execution
time and the number of employed machines.

For this purpose, SciMark 2.0, which is a
benchmarking tool for JavaTM platforms devel-
oped by the National Institute of Standards and
Technology [7], was used to measure computa-
tional speed in millions of floating point opera-
tions per second (Mflops). For this experiment,
up to four computers of identical specifications
were used to create four separate distributed
computing environments. Table 1 lists the aver-
age performance each environment spent to fin-
ish executing all five algorithms. As expected,
the results confirm that the speed-up is linearly
proportional to the number of CPUs.

Table 1. Linear Speed-Up vs. Number of CPUs

of CPUs 1 2 3 4

Mflops
(Speed-up)

90.7
(1)

177.5
(1.96)

259.3
(2.86)

338.0
(3.73)

3.3. Efficiency Measurements of Clusters
The purpose of this experiment was to test the
effectiveness of MIDAS, in creating an efficient
multi-platform computing environment. Eight
such clusters of machines were created, as listed
in Table 2 from the desktop computers listed in
Table A1 of the Appendix.

In order to equitably measure the perform-
ance of different machines, a normalized per-
formance index (PI) was created. It is defined in
such a way that a baseline PI of 1 indicates the
computational capability of a single Pentium IV

5

MULTI-PLATFORM INTEGRATED DEVELOPMENT AID SYSTEM (MIDAS)

Linux machine (Bi’s in Table A1). Furthermore,
one computational load (1 λ) is defined as a task
that takes 96.4 seconds (1 τ) to complete on the
baseline machine.

Consequently, it was possible to compare
the computational efficiencies of the eight clus-
ters, as depicted in Fig. 7. The ideal τ for each
cluster to finish computing a load was obtained
by dividing the given λ number by its respective
aggregate PI value. The solid line in Fig. 7 indi-
cates this ideal case that can only happen if all
tasks were evenly distributed to each machine
within a cluster with zero latencies. Each clus-
ter’s actual τ under different loads was then
compared against their ideal τ. The gaps in the
horizontal direction of Fig. 7 between the ideal
line and the marked points represent the ines-
capable losses that occur from different ma-
chines completing the same unit-load task at
different rates.

0

2

4

6

8

10

0 2 4 6 8 10

Actual Time (t)

Id
ea

l T
im

e
(t

)

Fig. 7. Computational Efficiencies of Various Clusters

4 Application of MIDAS
The idea of using computational fluid dynamics
(CFD) in a distributed computing environment
is usually hindered by the complexities of the
implementation. In addition, the highly interde-
pendent nature of the problem requires high-
bandwidth links between CPUs. This brings in
an additional disadvantage of limiting the at-
tainable speed-up in massive environments that
are required for complex problems.

Nevertheless, if an aircraft designer’s goal
is to solve a number of relatively simple CFD
cases for the purpose of creating, for example, a
meta-model to be used during conceptual de-
sign, then the use of a low-bandwidth
distributed system would be sufficient. A design
problem of such limited complexity is that of
predicting temperature exposures on a sharp-
edged supersonic airfoil.

4.1 Problem Setup
Various sharp-edged airfoils have been

used as control surfaces on supersonic planes.
Sharp-edged airfoils produce an attached
oblique shock at the leading edge, expansion
waves at the convergent aft end, and finally an-
other oblique shock attached to the trailing
edge. A CFD problem that utilizes Roe’s Flux
Difference Splitting (FDS) [8] with a Total
Variation Diminishing (TVD) Minmod Limiter
[9] in generalized coordinates [10] to perform a
2D-Explicit Upwind Navier-Stokes solution for
a structured grid was chosen as an application
for the current version of MIDAS. The creation
of a grid with good orthogonality that still al-
lows good boundary layer resolution is a key
factor in obtaining good results. Fortunately, the

Cluster ID Loads (λ) # of CPUs Bi Pi G4i G5 ΣPI
Θ1
Θ2

36
72 6 9.5

Φ1
Φ2

36
72 8 11.2

Ψ1
Ψ2

36
72 10 13.8

Π1
Π 2

36
72 18 27.0

Table 2. Clusters of Heterogeneous Machines

Ψ1

Φ1
Θ1

Ψ2

Φ2

Θ2

Π2

Π1

Young-Ki Lee, Holger Pfaender, and Taeyun P. Choi

6

fixed geometry allowed a single grid to be suffi-
cient for all cases. The grid was created manu-
ally with the use of an elliptic Poisson equation
with control terms [11], and it is shown in Fig. 8.

x

y

-0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 8. Grid to Solve CFD Problem of Supersonic Airfoil

A number of cases with varying Mach

Numbers and altitude were run to create a data-
base of surface temperatures and temperature
gradients for the given supersonic airfoil. By
imposing an adiabatic boundary condition, we
examined the worst-case scenario that is actu-
ally advantageous for designs where active
cooling is not desirable because of added com-
plexity.

4.2 Results
As expected, the results of the simulation show
an attached oblique shock at the leading edge,
followed by an expansion, which is followed by
another shock. As shown in Fig. 9, the strength
of the shock varies greatly with Mach number,
which is evident in how rapidly the shock dissi-
pates away from the airfoil. At Mach 1.4 and an
altitude of 18 km, the leading edge shock is
fairly weak and does not propagate very far be-
fore losing a substantial amount of strength. The
result for Mach 2.8, however, is much stronger
and therefore propagates much farther out.

x

y

-0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8
M

1.81519
1.68893
1.56266
1.43639
1.31013
1.18386
1.0576
0.93133
0.805064
0.678798
0.552532
0.426266

M=1.4, Altitude=18km

x

y

-0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8
M

3.39741
3.14762
2.89784
2.64806
2.39827
2.14849
1.8987
1.64892
1.39914
1.14935
0.899568
0.649784
0.4

M=2.8, Altitude=18km

Fig. 9. Contours of Shock and Expansion Waves

As a result, the leading edge temperatures

show a strong influence of the Mach number as
well, as shown in Fig. 10. The free stream tem-
perature boundary conditions were varied ac-
cording to the 1976 standard atmosphere model.
In contrast, the temperature variation with alti-
tude shows only minimal variation especially
since the altitude range covers the Tropopause,
an isothermal layer of the atmosphere.

300

350

400

450Te m
pera ture

(K
)

14

16

18

20

22

Altit
ud

e (km
)

1.5 2 2.5 3
Mach no.

Fig. 10. Surface Plot of Aerodynamic Heating

7

MULTI-PLATFORM INTEGRATED DEVELOPMENT AID SYSTEM (MIDAS)

In order to obtain the results depicted in the
above figures, a total of 45 simulation cases
were required to be executed. Overall, this is a
computationally demanding task that requires
approximately 40 minutes for a single case to be
completed on one of the baseline machines.
Nevertheless, using all 18 computers listed in
Table A1, the computations were completed in
roughly half an hour. This is an impressive
speed-up, which shows a very good scalability
of the distributed computing environment cre-
ated by MIDAS.

5 Conclusion
The nearly linear scalability in computational
performance demonstrated by MIDAS and its
successful application to solving a two-
dimensional CFD problem indicate that there is
a great deal of potential for our framework to be
employed for larger aircraft design problems.
Future work with later versions of MIDAS will
seek to provide a more functional and easy-to-
use GUI and apply distributed simulation to
large scale multidisciplinary optimization and
analysis problems. The authors are planning to
develop MIDAS into a facilitator framework for
engineers who do not have much background in
programming so that they can still carry out any
type of generic object-oriented modeling and
distributed simulation tasks.

Acknowledgment

The authors gratefully appreciate the effort and
guidance of MIDAS team leader, Mr. Jung-Ho
Lewe, in preparing this paper. We would also
like to thank our faculty advisor, Dr. Dimitri
Mavris, for his encouragement and support.

References
[1] Fujimoto R. Parallel and distributed simulation sys-

tems, John Wiley & Sons, Inc., New York, 2000.
[2] Kim S, Lee C and Kim J. Large-Scale Structural

Analysis by Parallel Multifrontal Solver Through
Internet-Based Personal Computers. AIAA Journal,
Vol. 40, No. 2, pp 359-367, 2002.

[3] Eck D. Introduction to programming using Java Ver-
sion 4.0. URL:http://math.hws.edu/javanotes [cited
28 May 2004].

[4] Freeman E, Hupfer S and Arnold K. JavaSpaces
principles, patterns, and practice. Addison-Wesley,
Reading, 1999.

[5] IncaX. URL:http://www.incax.com [cited 28 May
2004].

[6] Congress Online Project. URL:
http://www.congressonlineproject.org/glossary.html/
[cited 19 May 2004].

[7] National Institute of Technology. URL:
http://math.nist.gov/scimark2/ [cited 9 June 2004].

[8] Roe P L. Approximate riemann solvers, parameter
vectors and difference schemes. J. Comput. phys.,
Vol. 43, pp 357-372, 1981.

[9] Chakravarthy S R and Osher S. A new class of high
accuracy TVD schemes for hyperbolic conservation
laws. 23rd AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, AIAA Paper 85-0363, 1985.

[10] Kontinos D A and McRae D S. Rotated upwind
strategies for solution of the euler equations. 32nd
AIAA Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, AIAA Paper 94-0079, 1994.

[11] Thompson, et al. Numerical grid generation. El-
sevier, New York, 1985.

Appendix
As the PI values listed in Table A1 in the fol-
lowing page indicates, a machine’s hardware
specification alone is not an adequate measure
of computing performance. The PI value of a
desktop computer is influenced by factors such
as the type of OS, JVM version, and number of
user-installed software, in addition to the CPU,
clock speed and amount of RAM. This explains
why, a Pentium III machine (P6) surpasses a
Pentium IV machine (P7) in performance and
the personal computers with the same hardware
specification (P2, P8, and P9) have different PI
values.

Young-Ki Lee, Holger Pfaender, and Taeyun P. Choi

8

Machine ID CPU Clock Speed RAM OS JVM Version PI
B1, B2, B3, B4 Intel Pentium IV 1.6GHz 1GB Linux 1.4.2_04 1.0
P1 Intel Pentium III 866MHz 256MB Windows 2000 1.4.0 1.1
P2 Intel Pentium IV 2.0GHz 512MB Windows 2000 1.4.2 1.6
P3 Intel Pentium IV 3.2GHz 1GB Linux 1.4.2_04 2.3
P4 Intel Pentium III 700MHz 128MB Windows 2000 1.4.0 1.1
P5 Intel Pentium III 700MHz 224MB Windows 2000 1.4.2_03 1.1
P6 Intel Pentium III 866MHz 256MB Windows 2000 1.4.0 1.4
P7 Intel Pentium IV 1.5GHz 256MB Windows 2000 1.4.0 1.3
P8 Intel Pentium IV 2.0GHz 512MB Windows 2000 1.4.1_01 1.7
P9 Intel Pentium IV 2.0GHz 512MB Windows 2000 1.4.0 1.9
P10, P11 Intel Pentium IV 2.26GHz 512MB Windows 2000 1.4.0_01 2.4
G41, G42 Power PC G4 866MHz 1GB Mac OS 1.4.2_03 1.3
G5 Power PC G5 1.6GHz 512MB Mac OS 1.4.2_03 2.3

Table A1. Hardware and JVM Specifications of Machines Used

