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Heat Transfer with Ablation in Cylindrical Bodies

1 ABSTRACT

The phenomenon of ablation is a process of thermal protection
with several applications, mainly, in mechanical and aerospace
engineering. Ablative thermal protection is applied using
special materials (named ablative materials) externally on the
surface of a structure in order to isolate it against thermal
effects. The ablative phenomenon is a complex process
involving phase changes with partial or total loss of the
material. So the position of the boundary it is unknown a priori.
The governing equations of the process is a non-linear system
of coupled partial differential equations. The uni-dimensional
analysis of ablative process in a cylindrical body is performed
by using the generalized integral transform technique – GITT
for solution of the system of governing equations. By
application of this technique of solution the system of partial
differential equations is transformed in a system of infinite
ordinary differential equations that can be solved by numerical
techniques available in computational codes after the truncation
of that system. As boundary condition is considered a transient
heat flux like ones that occur, for example, in re-entrance of
aerospace vehicles in the atmosphere. The results of interest are
the thickness and the rate of loss of the ablative material. The
obtained results are compared with available results of other
techniques of solution in the literature.

2 INTRODUCTION

The phenomenon of ablation is a process of thermal
protection with several applications, mainly, in mechanical and
aerospace engineering. Ablative thermal protection is applied
using special materials (named ablative materials) externally on
the surface of a structure in order to isolate it against thermal
effects. The ablative phenomenon is a complex process
involving phase changes with partial or total loss of the
material. So the position of the boundary it is unknown a priori.

The diagrams shown in Figures 1 and 2 illustrate the
ablation phenomenon. In Figure 1 the following proccesses are
presented:

1. Heat transfer by convection in the boundary layer, that
represents the main thermal load;
2. Heat transfer by radiation;
3. Heat transfer by conduction in the virgin material that should
satisfy the temperature approach limits in the substructure or in
the thermal shield on the structure;

4. Resin decomposition;
5. Fibers decomposition;
6. Passage of the gas produced through of the residuals;
7. Retreat of the surface;
8. Radiation in the wall;
9. Shock in the boundary layer;
10. Combustion in the boundary layer.

Figure 1: Illustration of ablation phenomenon.

Figure 2: Physical representation of the ablation
process involving the melting of the ablative material.
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The analytical and numerical, as well as analytical-
numerical solutions have been done. In a two-dimensional,
geometry the method of Approximate Integral Balance, was
presented by Hsiao et all (1984). The physical and
mathematical models of the ablation process have been
presented by Lacase (1967) and Zaparoli (1989). The solution
of the diffusion problem with variable coefficients was studied
by Özisik and Cotta (1987). A generalized study of the ablative
phenomenon was done by Adams and Sutton (1982 and 1959).
The using of the Generalized Integral Transform Technique
(GITT), was presented by Cotta (1993), Diniz et all (1990,
1993). They solved the uni-dimensional problems of heat
diffusion for several geometries. Vollerani (1974) applied the
Integral Method for problems of simple classes of ablation. The
Classical Integral Transform  Technique for linear problems
was presented by Mikhailov and Özisik (1984). The GITT is a
generalization of that technique for non-linear problems

In the present work the uni-dimensional analysis of
the ablative process in a cylindrical body has been done using
the Generalized Integral Transform Technique as an analytical
tool for solution of the differential partial equation, considering
the isolated internal side and the external side subject to a
transient heat flow. In the solution of the problem the values of
the depth S(t) and the ablative speed represented by V(t), are
obtained and compared with results from the literature.

ANALYSIS    

Here it is considered the conduction of heat in a
hollow cylinder of finite thickness (l) with constant physical
properties. Initially, the cylinder is subjected to a temperature
T0 and its external surface is submitted to transient heat flux
and the internal surface is thermally isolated. The problem is
solved in two steps: the heating of the material to the phase
change temperature (Pre-ablation Period) and the phase change
with removal of the protection material (Ablation Period).
Figure 3 shows the cylindrical geometry

Figure 3: Cylindrical geometry.

• Preablation Period:

The Figure 4 illustrate the phenomenon for the Pre-
ablation Period:

Figure 4: Cylindrical geometry in the radial direction.

The uni-dimensional heat conduction equation for the
cylindrical geometry is the form
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The following initial and boundary conditions, are
considered

                        θ (R,0)=0 ; τ=0                             (2)
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In order to homogenize the equations (1) and (3) a new
variable is defined:
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The substitution the equation (4) in the equation (1) and
in the boundary and initial conditions results in the following
equations:
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The initial and the boundary conditions become
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where, Q(t) is the heat flux imposed at the external surface of
the cylinder.
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For the solution of the problem by the Generalized
Integral Transform Technique, the following auxiliary problem
of eigenvalue, with two homogeneous boundary conditions is
defined
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The eigenfunctions, eigenvalues and the norm are of the form
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The using of the Generalized Integral Transform
Technique, after a sequence of mathematical manipulations,
permits to define the following Integral Transform and its
inverse pair:
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Applying the transformations in the equation (5) it is
obtained:
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The solution of the equation (15) is,
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The temperature field of the pre-ablative
phase is obtained substituting the equation (20) in
the equation (14), thus:
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with,
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To obtain the t f (time at the beginning of the ablation
period), the equation is used (21) is solved for θ(1, τf )≡1, thus:
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The temperature of the period Pre-ablation Period is
the initial condition for the Ablation Period, which involves the
transient motion of the external surface in R coordinate.

• Ablation Period:

The Figure 5 shows the Ablation Period.

Figure 5: Cylindrical geometry in function of the new
variable (ξ).
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The equation that governs the ablation period becomes:
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with the following conditions initial and of boundary;
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The values of the ablation speed are imposed by the
couplement equation.
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The equation (27)  with the equations (24) and (25),
are solved using the Generalized Integral Transform Technique.
The ablative depth is ( ) ( )( ) :)(11 tStRft −==λ  and the
eigenfunctions and the eigenvalues are of the form

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]RYRJRJRYR iiiiii ,,,,, 001001 τλτλτλτλτλφ −=
                                                                                               (28)

( )[ ] ( )( ) ( )[ ] ( )( )010010 )()( RJRYRYRJ iii τλττλτλττλ −
                                                                                                29)

Defined a normalized eigenfunction Ki(R,t), in the

following way:
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The values of the integral transform and its inverse
are obtained after the solution of the coupled system of ordinary
differential equations
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The equations (34) to (36) form a infinite system of
differential ordinary equations. For the calculation of the speed
and ablative depth it is necessary to truncate the system for
finite of order N.

3 DISCUSSION AND CONCLUSION

The result s of interest are the thickness S(t) of the
melted material and the speed represented by the ablation rate
V(t), due to the loss of the thickness of the ablation material.

The results shown in the Figures (6 to 8) were
obtained by numerical solution of equations (34)-(36) using the
IMSL Library (1979

Initially the problem was developed considering the
conditions that simulated the case of a plane plate and using a
constant flux, Figure (6), The results is in good agreement to
results by the exact solution obtained by B. T. F. Chung and J.
S. Hsiao (1983) and Diniz (1990). For large values of the radio
of curvature the solution approaches of the exact and when the
radio decreases, it is noticed the curvature influence in the
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calculated parameters, according to values indicated by τM in
the Figures.

In Figures (7) and (8) are presented results for linear
and  parabolic heat fluxes.

The Generalized Integral Transform Technique has
been applied with success in the present work, for the solution
of the ablation problem in a cylindrical geometry. More results
for diffusion problems of heat and mass are presented by Diniz
(1990-1993), Cotta (1989-1993) and Kurokawa (2002-2003).

Figure 6: Comparison with the solution of the plane plate, for
Q(τ) = 2.

Figure 7: Influence of the ray Q(τ) = 10τ, with R=1000.

Figure 8: Comparison with the result of the plane plate, for
R=1000 and Q(t) = 10τ2.
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