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Abstract  

Investigation of the subsonic flow around a 
delta wing at high angle-of-attack is essential to 
meeting the requirements of high-lift-flight for 
high-speed aircraft during takeoff and landing. 
Many studies have been dedicated to this 
problem using experimental and numerical 
approaches.   

Recently, Lattice Boltzmann Method (LBM) 
has become one of the computational methods 
to calculate low Mach number flow. Originally, 
LBM is formulated on isotropic grid such as 
orthogonal grid with equal spacing. We have 
extended the LBM to generalized coordinates 
based on the idea of Interpolation Supplemented 
LBM (ISLBM). We have validated our code on 
two-dimensional cases, and results are 
consistent with the other flow solvers that are 
based on Navier-Stokes equation and lattice 
Boltzmann Equation (LBE).  

In this paper, a multi-block version of the 
three-dimensional code was constructed. Before 
solving delta wing, 3D lid-driven cavity problem 
was solved as a benchmark problem. The 
present results are compared with numerical 
results obtained by Navier-Stokes computations 
and shows good agreement. Flow around a 
delta wing with a sweep angle of 76 deg is then 
solved.  Well known flow structures around 
delta wing, such as separation line on the upper 
surface, vortex breakdown phenomenon are 
simulated by the current code. 

1  Introduction 

Investigation of the subsonic flow around a 
delta wing at high angle-of-attack is essential to 

meeting the requirements of high-lift-flight for 
high-speed aircraft during takeoff and landing. 
At moderate angles-of-attack, a pair of leeward-
side vortices is formed above the upper surface 
of the delta wing due to the leading-edge flow 
separation [1]. As the angle-of-attack increases, 
the leeward-side vortices are strengthened, and 
sudden bursting of the vortices occurs. This is 
commonly referred to as vortex breakdown.  

Recent advances in computing techniques 
based on the discretization of the Navier-Stokes 
equations have made it possible to calculate 
complicated three-dimensional flowfields [2-4]. 
Numerical flow simulation has become one of 
the most important design tools of aerospace 
vehicles. However, numerical analysis of a 
flowfield including separation and vortices is 
still a challenging problem, since artificial 
viscosity included in the discretization may 
smear such phenomena. 

Recently, the Lattice Boltzmann Method 
(LBM), which is based on kinetic equations of 
the particles, has been applied to various low-
speed flow simulations [5]. The standard LBM, 
commonly referred to as the Lattice Bhatnagar-
Gross-Krook (LBGK) model, is known to be an 
efficient and accurate solver for an 
incompressible flow problem, since it is 
essentially free from the artificial viscosity due 
to the Lagrangian procedure of the pseudo 
particles and does not require time-consuming 
solution procedure of the Poisson equation for 
the pressure. Although LBGK is expected to be 
a good solver for flow problems with separation 
and vortices, this method still has a few 
disadvantages that limit its application as a 
practical CFD tool. One of the limitations is that 
the grid used in the calculation is required to be 
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isotropic (e.g, orthogonal coordinates with equal 
spacing). However, when the Reynolds number 
is large, clustering the grid nodes around the 
wall boundary is effective to capture the 
boundary layer within the limitation of the 
computational time and storage. In the 
Generalized form of Interpolation supplemented 
Lattice Boltzmann Method (GILBM) [6], 
developed by the current authors, the Lattice 
Boltzmann equation is transformed into 
generalized coordinates using grid metrics. The 
usage of the generalized coordinates enhances 
the applicability of LGBK for low Mach 
number flow analysis around a practical 
configuration at practical Reynolds numbers.  

In the present study, the flow around a high 
angle-of-attack delta wing with vortex 
breakdown is numerically simulated using 
GILBM. For the present calculation, a multi-
block version of the three-dimensional GILBM 
was constructed. The present results are 
compared with numerical results obtained by 
Navier-Stokes computations. 
 

2  Numerical Methods 

2.1 Lattice Boltzmann Method on orthogonal 
grid system 

The LBM describes flows by the 
collision and advection calculation of 
distribution functions as follows. The Three-
dimensional 15-velocity (3D15V) model is used 
in the present calculations. The governing 
equation of the LBM, Lattice Boltzmann 
Equation (LBE), is described as  
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where 14,2,1,0 L=i . if  and )(eq
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distribution function and the equilibrium 
distribution function corresponding to the 
discrete velocity vector ic , respectively. The 
value t∆  is the time step and ω  is the 

relaxation time. The right and left hand sides of 
Eq.(1) corresponds to the collision and the 
advection terms, respectively. Thus Eq.(1) can 
be divided into two phases as 
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where *

if  indicates the post-collision 
distribution function. The discrete velocity 
vector are defined as  
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 (4) 
and the equilibrium distribution function is 
defined as 
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with 

0 2 / 9w = , 
1 6 1/ 9w w= ⋅⋅⋅ = = , 

7 14 1/ 72w w= ⋅⋅⋅ = = , 
 
for 3D15V model.  

The macroscopic variables such as 
density and velocity are obtained from 
integrating the moment of the distribution 
functions over the velocity plane as 
 

i
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By applying the Chapman-Enskog expansion to 
the governing equation, the relation between the 
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LBE (Eq.(1)) and the Navier-Stokes equations is 
obtained. The relationship between the 
relaxation time ω and the Reynolds number can 
be derived as 
 

2)12(
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ω
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and the pressure is given as 2 / 3p cρ= . 
 

2.2 Generalized form of Interpolation-based 
Lattice Boltzmann Method 

In this section, LBM model on generalized 
coordinates is introduced based on the idea of 
ISLBM [7,8]. The physical plane x  is 
transformed into computational plane described 
by ξ . Eq.(2) and (3) are transformed into 
generalized coordinates as follows. The 
collision term on generalized coordinates is 
described as 
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where ω , ),()( tf eq

i ξ , and ),(* tf i ξ  correspond 
to the relaxation time, the equilibrium 
distribution function, and the post-collision 
distribution function, respectively. The 
advection term is solved as 
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This is the time integration of the contravariant 
velocity. Two-step Runge-Kutta method is used 
for the integration of Eq.(10) in order to 
maintain the numerical accuracy in highly 
clustered grid region. By using the metrics and 
the discrete velocity ,ic β , the contravariant 
velocity ,ic α%  is obtained as 
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where the summation convention is used for the 
subscript βα , . The right hand side of Eq.(9) 
should be calculated using second-order upwind 
multi-dimensional interpolation [7,8]. By 
introducing the contravariant velocity, the 
advection term is calculated in the 
computational space, and the grid is not 
restricted to any specific grid system for LBM, 
such as isotropic grids. 
 

2.3 Wall boundary conditions for GILBM 

In this study, suitable wall boundary 
condition for the generalized coordinates is 
obtained based on the idea of the incompressible 
Navier-Stokes solvers. The wall boundary 
condition for the incompressible Navier-Stokes 
solvers is defined as follows. Since the normal 
gradient of the pressure vanishes at the wall 
boundary, pressure on the wall 0=jp   is 
extrapolated from the node in the computational 
domain next to the wall boundary node as 

10 == = jj pp . In LBM, similar expression for 
density is obtained as 10 == = jj ρρ . The flow 
velocity at the wall is given as wall velocity.  

From the boundary condition of the 
macroscopic variables ( vu,,ρ ), the boundary 
condition of the distribution function is 
calculated. If we assume )(eq

ii ff ≅ , distribution 
function can be calculated using Eq.(5). 
However, this assumption is not accurate 
enough since viscosity effect appears in the 
first-order of non-equilibrium term. The 
distribution function is estimated up to the first-
order of non-equilibrium using the Chapman-
Enskog expansion as  
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where ααα ucU ii −= ,, , and αβδ  is Kronecker 
delta. 
 

3 Numerical Results  

3.1 Three-dimensional Lid-driven Cavity 
problem  
Three-dimensional lid-driven cavity flow 

calculations are discussed in this section in 
order to validate the code extended to three-
dimension. The flow is driven by the uniform 
translation of the topside wall, which is defined 
as 1.0/ =cUtop . The Reynolds number is based 
on the velocity of the topside wall and the side 
length of the cavity. For the present calculation, 
the grid nodes are clustered around the 
surrounding walls to resolve the boundary layer 
accurately. The minimum grid spacing around 
the wall is defined as Re/1.0min =∆x . The grid 
resolutions used in the simulations are 
65x65x65 for three cases where Re=100, 400, 
and 1000.  
Figure 1,3 and 5 show the mid-plane cross 

section streamlines and overall view for Re=100, 
400 and 1000. For two-dimensional calculations, 
secondary vortices were observed at the lower 
corner for Re=100. However, for three-
dimensional cases, the additional vortex does 
not exist at the corners. Around z=0.2 of the yz-
plane for Re=400 in Fig.3, two distinct 
secondary vortices are found near the corner. 
These vortices gradually move toward the 
corners when the Reynolds number increases to 
1000. This tendency is also observed in the 
Navier-Stokes calculations performed by Ku et 
al. [9]. Also, two more small secondary vortices 
appear at the upper corner of the cavity for 
Re=1000.  
The velocity profiles on the vertical and 

horizontal centerlines for Re=100, 400, and 
1000 are shown in Fig. 2, 4 and 6, respectively. 
The line indicates the present results; the 
symbol represents the Navier-Stokes solution 

[9]. The results for Re=100 and 400 are in good 
agreement. The results for Re=1000 are rather 
dissipative compared to the Navier-Stokes 
results. The grid resolution away from the wall 
for the present calculation is relatively coarse 
compared with the Navier-Stokes results, which 
were obtained on an orthogonal grid with equal 
spacing. A high-resolution grid is also necessary 
in the regions away from the walls for these 
problems. 
 

3.2 Delta Wing  
Numerical simulation of the flow around a 

delta wing with a sweep angle of 76 deg. (an 
aspect ratio of 1) is performed. The wing 
geometry is the same as that used in the 
experiment by Hummel [2]. The Reynolds 
number based on the macroscopic free stream 
velocity and the chord length of the delta wing 
is 9.0×105. All of the calculations were assumed 
to be laminar. The grids consist of four blocks, 
and the total number of grid points is 500,000. 
In order to resolve the vortices accurately, 80% 
of the grid points are located to the upper side of 
the wing. The minimum grid size around the 
wing is defined as Re/1.0min =∆x . The grid 
used in the simulation is shown in Fig. 7. 
 

3.2.1 AOA=20.5[deg] case  
The first case is performed at angle-of-attack 

at 20.5[deg] in order to validate the present 
code with the experimental results obtained by 
Hummel [2]. The oil flow pattern of the upper 
surface is shown in Fig.8. The upper part of the 
figure is the present result and is compared 
with the experimental results (lower part). The 
secondary separation line is observed near the 
leading edge for both results. The agreement in 
the location of the separation line is good.  
In Fig.9, the pressure and velocity fields of 

the cross section at x/c=0.5 is shown. The 
lower figure shows a close-up near the leading 
edge. The secondary vortex and the separation 
point are observed. In Fig.10, the computed 
pressure coefficient distribution of the upper 
surface is compared with the experiment. 
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Except for 90% chord distribution, the present 
results agree qualitatively with the experiment. 
The negative pressure coefficient peak caused 
by the secondary separation is also observed 
around the 90% spanwise location in the 
computational results.  
Figure.11 shows the aerodynamic coefficients 

vs. angle-of-attack. The pitching moment 
coefficient Cm (nose-up positive) is defined 
around the reference point x/c=0.5. They are in 
good agreement with the experimental results.  

 

3.2.1 AOA=50[deg] case  
Simulation at an angle-of-attack 50 deg. 

was performed to capture the vortex 
breakdown on the delta wing. Figure 12 shows 
the instantaneous streamlines over the delta 
wing. The straight streamlines from the apex 
show the existence of the vortex core, and the 
spiral streamlines observed above the aft body 
indicate the vortex breakdown. The bursting 
point location x/c=0.5 predicted by the present 
results, compares well with predictions by the 
Navier-Stokes equations (x/c=0.4) [3]. These 
results demonstrate that GILBM has the 
capability to accurately simulate the vortex 
breakdown phenomena. and that it will become 
a useful analysis tool for low-speed high-
angle-of-attack flow problems. 

 

4 Conclusions  
In order to solve the flow around three-

dimensional delta wing configuration, a multi-
block version of the three-dimensional 
generalized form of Interpolation supplemented 
LBM (GILBM) code was constructed. Before 
solving delta wing, code validation was 
performed by solving 3D lid-driven cavity 
problem and the present results are consistent 
with the previous study. Using this code, flow 
around a delta wing with a sweep angle of 76 
deg is solved.  Well known flow structures 
around delta wing, such as separation line on the 
upper surface, vortex breakdown are simulated 
successfully by the present code.  
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Figure 1 : Three dimensional cavity simulation 
at Re=100 
 
 
 
 
 
 

 
 
Figure 2 : Velocity profiles for Re=100 on 
vertical centerline and horizontal centerline 
 
 

 
 
 

 
 
Figure 3 : Three dimensional cavity simulation 
at Re=400 
 
 
 
 
 
 

 
 
Figure 4 : Velocity profiles for Re=400 on 
vertical centerline and horizontal centerline 
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Figure 5 : Three dimensional cavity simulation 
at Re=1000 
 
 
 
 
 
 

 
 
Figure 6 : Velocity profiles for Re=1000 on 
vertical centerline and horizontal centerline 
 
 

 
Figure 7 : Computational grid and surface grid 
for the Delta wing configuration 
 
 

 
Figure 8: Surface oilflow patterns  

Upper : Current result 
 Lower :  Experiment by Hummel [2] 

 
 

 
 
Figure 9: Computed pressure and velocity field 

in cross flow plane at x/c=0.5 
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Figure 10: Comparison of Cp distribution with 

the experiment at AOA=20.5[deg] 
 
 
 
 
 
 

 
 
Figure 11: Aerodynamic coefficients vs. angle-
of-attack 

 
Figure 12: Surface pressure distribution and the 

streamlines from the apex  
(upper: side view lower: top view) 

 


