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Abstract  

In this study, non-linear iterative eigen-
frequency analysis and modal-strain-energy-
based damping characterization have been 
established for free vibration problems of 
composite laminated beams and plates with 
delaminations using multilayered isoparametric 
plate/shell finite elements. In the present finite 
element formulation, either of the un-
delaminated displacement continuities or the 
delamination discontinuities at ply interfaces of 
laminates is modeled by invoking the penalty 
function method. Both of the material and state-
change nonlinearities arising respectively from 
the frequency-dependent material properties 
and the over-lapping contact states at 
delaminated interfaces may be taken care of in 
the iterative manner. As the numerical examples, 
two types of delaminated carbon fiber 
reinforced plastic (CFRP) composite beams 
were taken from the existing literature. Each of 
the plies of the laminates with or without 
delaminations was modeled with an individual 
plate/shell element under the displacement 
assumption of first-order-shear-deformable 
(FOSD) model. Fairly good agreements 
between the present FE numerical results and 
the existing experimental measurements were 
basically confirmed for the natural resonant 
frequencies and modal shapes in the broad 
range of frequency. In addition, the modal loss 
factors predicted by the present FE indicated 
that damping performance tends to be improved 

just by the existence of delaminations. This is 
probably because of the transverse shear strain 
energy concentrations in the delaminated beams. 
This fact also implies that the delamination can 
be effectively used as ultimate damping material 
without any thickness and weight gains. 

1  Introduction 
Vibration analysis and damping characterization 
of composite laminated structures with damages 
and failures such as delaminations have been 
attracting much attention for more than two 
decades and is still one of the vital topics around 
the relevant research fields. The dynamic 
responses such as resonant frequencies, modal 
shapes and damping performance (modal loss 
factors) of composite laminates not only can tell 
us their structural integrity in terms of barely 
invisible damages such as embedded multiple 
delaminations but also may be one of the 
highest priorities when we think of letting 
composite laminates evolve smart materials and 
intelligent structures [1,2]. 

Up to the present, quite a few experimental, 
theoretical and numerical investigations on 
dynamics behaviors of composite laminates 
with delaminations have been carried out. Some 
of the earliest works for analytical modeling of 
free-vibrating composite laminated beams with 
a delamination were made by Ramkumar et al. 
[3], Wang et al. [4], and Mujumdar and 
Suryanarayan [5]. The so-called “free model”, 
first proposed by Ramkumar et al. [3] and then 
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modified later on by Wang et al. [4], is based on 
a straightforward combination of four 
Timoshenko beams connected to each other at 
the delamination fronts with flexural/ 
longitudinal kinematical couplings enforced. 
This “free model” was applied to natural 
frequencies and corresponding modal shapes at 
a few lower-order bending modes of some 
delaminated beams and then compared with 
experimental results, leaving a few technical 
difficulties in the delamination modeling. In 
order to avoid physically un-realistic 
overlapping situations at the delaminated 
interfaces and still keep a linear model, the so-
called “constrained model” was next proposed 
by Mujumdar and Suryanarayan [5] and its 
accuracy improvement was confirmed through 
several case studies by several researchers [6,7]. 
Among them, Shen and Grady [8] investigated 
vibration phenomena in CFRP cross-ply 
laminated cantilever beams with a single 
through-width delamination introduced at mid-
span with its length and its inter-ply location 
varied. They employed two different analytical 
vibration models, model A and model B, which 
were essentially based on the aforementioned 
“constrained” and “free” models, respectively, 
and then also carried out a corresponding 
experimental study to verify their predictions 
obtained by their analytical models. Another 
type of attempt for analytical modeling of 
delaminated beams was the one for post-
buckled beams with delamination [9-11]. This 
kind of modeling methodology is important 
from a practical point of view. In addition, it 
happens to be free from the physically un-
realistic over-lapping states. 

Experimental measurements of dynamic 
characteristics in delaminated composites such 
as natural frequency, modal shape and damping 
coefficient, on the other hand, have also been 
carried out [12-17]. For instance, Kimpara et al. 
[17] employed the vibration pattern imaging 
technology for precisely measuring the resonant 
frequencies and the corresponding modal shapes 
over the wide range of frequency to assess the 
structural integrity of CFRP unidirectional and 
quasi-isotropic laminated cantilever beams with 
a delamination. It should be noted that all of 

these experimental investigations have revealed 
the non-linearity, more or less, in vibrations of 
delaminated composite beams/plates and 
consequently implied the limitations of the 
aforementioned “linear” analytical models 
(whichever “free” or “constrained” model). 

Recently, a few attempts for non-linear 
modeling of delaminated composite beams have 
been made. Luo and Hanagud [18,19] proposed 
a “piecewise linear spring model”, which, they 
said, could simplify the problem while keeping 
the significant non-linear features of the 
vibrations of delaminated beam. This 
generalized model includes both of the “free” 
and the “constrained” models as its special cases. 
By using this “piecewise linear spring model”, 
they analytically obtained vibration responses of 
delaminated composite beams in either 
frequency or time domain. Żak et al. [20] 
analyzed vibration of a laminated composite 
plate with closing delamination using the finite 
element method. In their finite element model, 
contact constrains between delaminated layers 
were introduced by using the penalty function 
method. They employed Fast Fourier Transfer 
(FFT) analysis to obtain dynamic responses in 
frequency domain of the delaminated plate 
analyzed from the ones in time domain. 
However, they did not perform the eigen-value 
analysis using their finite element models. In 
addition, in contrast with resonant frequencies 
and modal shapes, damping performance such 
as modal loss factors for those composite 
laminates with delamination was not evaluated 
in those investigations mentioned above, even 
though that dynamic quantity is generally said 
to be more sensitive to delamination. 

In this study, free vibration eigen-value 
analysis and modal-strain-energy-based (MSE-
based) damping characterizations will be 
conducted for composite laminated beams with 
delaminations by using the multilayered 
isoparametric plate/shell finite elements of the 
present authors [21]. In the present finite 
element formulation, the displacement 
continuity constrains at the layer interfaces are 
enforced by invoking the penalty function 
method [20,21]. The natural resonant 
frequencies and the corresponding modal shapes 
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will be obtained by solving generalized free-
vibration eigen-value problems and the modal 
loss factors are estimated by modal strain 
energy (MSE) method [21]. Both of the material 
and the state-change non-linearity arising 
respectively from the frequency-dependent 
material properties and the over-lapping contact 
states at the delaminated interfaces may be 
taken care of in the iterative manner. As the 
numerical examples, the series of delaminated 
CFRP cross-ply and quasi-isotropic composite 
cantilever beams respectively investigated by 
Shen & Grady [8] and Kimpara et al. [17] will 
be considered. Each of the plies of the laminates 
will be modeled with an individual plate/shell 
element based on the displacement assumption 
of first-order-shear-deformable (FOSD) model. 

2  Finite Element Formulation 
In Fig.1, the present eight-node multilayered 3-
D degenerated plate/shell finite element is 
schematically shown. 

The geometry of reference surface of kth 
layer within an element can be expressed as, 
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The local displacements (u’, v’, w’) in kth 
layer are defined as the following first-order-
shear-deformable (FOSD) assumptions. 
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The rest of the finite element development 
procedure for composite laminated structures 
has already been established and hence it will 
not be repeated herein. One can refer to the 
works by Panda [22] and the present authors 
[21] for further details. 

In the present finite element formulation, 
the displacement continuity constrains at the 
layer interfaces are enforced by invoking the 
penalty function method [20,21], in which the 
adhesions between the adjacent laminae can be 
achieved with the penalty parameter α  set to be 
very large (say 108 in the case of double 
precision arithmetic), while the delaminated 
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Fig.1. The present multilayered plate/shell finite 
elements. 
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states at the lamina interfaces can easily be 
modeled with that parameter α set to be zero as 
illustrated in Fig.2. 

The natural resonant frequencies and the 
corresponding modal shapes can be obtained by 
solving the generalized free-vibration eigen-
value problems. From the finite element 
equations of motion governing the free vibration 
response of laminates, the following generalized 
eigen-problem can be finally derived: 

 ( ) 2,λ λ ω− ⋅ = =K M d 0   (5) 

where K and M are, respectively, the global 
stiffness and mass matrices. After solving the 
above generalized eigen-problem by using an 
efficient solution algorithm such as the subspace 
iteration scheme [23], the lowest n eigen-values,  

  2 ; 1, 2, ,m m m nλ ω= =  

and the corresponding eigenvectors dm can be 
extracted. 

Further, modal loss factor estimation by the 
modal strain energy method (MSE) [21], is also 
implemented into the present FE program. 
According to this method, The modal loss factor 
of a laminated plate, c

mη , at the mth mode is 
estimated by summing the products of the 
material loss factor, ( )k

mη , for each constituent 
lamina and the fraction of the modal strain 
energy stored in that lamina as the following: 

 ( ) ( ) ( )
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c k k k
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k k
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where ( )k
mW  is the strain energy stored in kth 

layer under the mth mode shape. 

In Fig.3, the numerical analysis program 
flow of the present finite element calculation is 
schematically charted. In this calculation flow, 
first the number of layers for modeling the 
laminate should be specified. If it is preferable, 
the laminate can be numerically modeled as an 
equivalent-single-layer (ESL) plate/shell by 
smearing the layer-by-layer-different material 
properties. However, the composite laminated 
structures with delaminations should always be 
modeled as multilayered plate/shells since such 
laminated structures will inherently exhibit 
multilayered mechanical behaviors. Both of the 
material and the state-change non-linearity 
arising from the frequency-dependent material 
properties and the over-lapping contact states at 
the delaminated interfaces respectively may be 
taken care of in the iterative manner as shown in 
the flow chart. How many iterations will be 
needed for convergence in this non-linear 
calculation is considerably problem-dependent, 
but in cases of commonly-used composite 
laminated coupons with a single through-width 
delamination, a few iterations seem to be 
sufficient to converge the solution. 

interface k

layer k+1

layer kG.P. 1
α = 108

G.P. 2
α = 108 G.P. 3

α = 0

Fig.2. Adhesion and delamination modelings by 
the penalty function method. 

Prepare input data file

Solve free vibration eigenvalue problem (without damping)
Obtain trial resonant frequency for the considering mode

Check modal shape by FEMAP (general-purpose postprocessor)
Calculate modal strain energy stored in each ply
Calculate modal loss factor by modal strain energy method

Converged ?

Check frequency-dependent
material properties

Modify frequency-dependent
material properties
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Choose layer discretization type :  ML or ESL ?
Set displacement model for each layer :  FOSD

Obtain true resonant frequency and mode shape for the mode

Determine the resonant mode to be extracted

Make frequency-independent matrices :  M,  Kα,  F,  ...

Make frequency-dependent matrix :  Kd

Make interfacial penalty matrix :  Kα

Modify penalty parameters
at the over-lapping 

delamination interfaces
Check over-lapping

delamination interfaces

Fig.3. Program flow chart of the present non-
linear iterative finite element free-
vibration eigen-value analysis. 
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3 Numerical Examples  

3.1 CFRP cross-ply laminates (1st bending) 
As first of the numerical examples, a series 

of delaminated CFRP cross-ply composite 
cantilever beams, which were experimentally as 
well as analytically investigated by Shen and 
Grady [8], were picked up. The beam 
dimensions, its cross-ply laminate stacking 
sequence, the artificially induced delaminated 
regions and elastic/damping material properties 
are all together shown in Fig.4. A single 
through-width delamination is introduced at the 
mid-span of the laminate with its length (a = 0, 
1, 2, 3, and 4inch) and through-thickness 
location (IF00, IF01, IF02, and IF03) varied. In 
the present finite element analysis, each of 8 
plies of the laminates was modeled by an 
individual plate/shell element with the 
displacement assumption of first-order-shear-
deformable (FOSD) model. As mentioned 
earlier, adhesions or delaminations at layer 
interfaces was introduced by setting the penalty 
parameter to be virtually infinite or zero. 

In Fig.5 (a) and (b), resonant frequencies 
and modal loss factors at the first bending 
vibration mode obtained by the present FEM are 
shown. Note that the error bars shown in the 
graph for the resonant frequencies indicate the 
differences between the present FEM results 
and the existing experimental results [8]. As can 
be seen, fairly good agreements between the 
present FE results and the existing experimental 

measurements were basically confirmed for the 
natural resonant frequencies at this lowest order 
vibration mode of this type of laminates with or 
without delamination, and general tendency of 
decrease in resonant frequency and increase in 
modal loss factor can be clearly seen when a 
delamination is introduced within the laminate. 
In addition, the modal loss factors predicted by 
the present FE indicated that damping 
performance was apt to be improved (in the 
largest cast of IF01(4in), by 33.6%) just by the 
existence of delaminations. Those damping 
performance improvements should be attributed 
to the shear strain energy concentrations in the 
delaminated beams. Since the material loss 
factor under shear deformation, LT 0.016η = , is 
assumed to be eight times larger than that under 
extension in the reinforcing fiber direction, 

L 0.002η = , the more shear strain energy is 
stored in the laminates, the more damping 
performance will be realized. 

Finally, in Fig.6(a) through (d), normalized 
modal shapes at the first bending mode for the 
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composite beams with a delamination at IF02 
with its length varied are shown. Fairly good 
agreements between the modal shapes obtained 
by the present FE and those taken from the 
experimental report can be seen again. As can 
be seen, an opening mode in the delaminated 
region could be obtained by the present FEM, 
which was also experimentally observed. 

3.2 CFRP quasi-isotropic laminates (higher-
order modes) 

As the other numerical example, a series of 
delaminated CFRP quasi-isotropic composite 
laminated cantilever beams, which were 
experimentally as well as numerically with the 
conventional FEM investigated by Kimpara et 
al. [17], was next considered. The beam 
dimensions, its laminate stacking sequence, the 
artificially induced delaminated regions and 
elastic/damping material properties are all 
together shown in Fig.7. A single through-width 
delamination in the central plane, IF00, is 
introduced at the mid-span of the [45/-45/0/90]S 
quasi-isotropic laminates with its length (a = 0, 
50, and 100mm) varied. In the present finite 
element analysis, each of 8 plies of the 
laminates was modeled by an individual 
plate/shell element with the FOSD displacement 
assumption. 

In Fig.8 (a) through (d), resonant 
frequencies and modal loss factors for intact or 
delaminated (a = 50 or 100mm) beams in the 
broad range of frequency, i.e. at eight ‘bending-
only’ from #01 to #08 modes and another eight 
‘bending-with-torsion’ from #01 to #08 modes, 
are summarized. Note that the error bars shown 
in the first two graphs for the resonant 
frequencies indicate the differences between the 
present FEM numerical results and the existing 
experimental results obtained with the vibration 
pattern imaging (VIP) sensor technology [17]. 
As can be seen, fairly good agreements between 
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Fig.6. Normalized modal shapes (at 1st bending
mode) for delaminated at IF02. 

0˚               
90˚               
90˚               
0˚               

IF00

45˚               
-45˚               

-45˚               
45˚               

400mm

200mm

75mm

a

a
2

1.25mm

EL = 112 GPa ET = 7.75 GPa

GLT = 4.66 GPa νLT = 0.34

ρ = 1660 kg/m3

ηLT = 0.016ηL = 0.002 ηT = 0.010

h = 0.15625 mm

a = 0, 50, 100 mm

Fig.7. Delaminated CFRP quasi-isotropic beams 
(Kimpara et al. Ref.17). 



 

7  

NON-LINEAR VIBRATION AND DAMPING CHARACTERIZATIONS 
OF DELAMINATED COMPOSITE LAMINATES BY USING 

MULTILAYERED FINITE ELEMENTS

the present FE results and the existing 
experimental measurements were basically 
confirmed for the natural resonant frequencies 
in these broad range of vibration modes of this 
type of laminates with or without delamination, 
and general tendency of decrease in resonant 
frequency and increase in modal loss factor can 
be nearly consistently observed when a 
delamination is introduced into those laminates. 
In addition, the modal loss factors predicted by 
the present FE indicated that damping 
performance was more significantly improved 
under the bending-with-torsion modes than 
under the bending-only modes, although the 
absolute values of the modal loss factors under 
the latter modes are always large compared to 
those under the former ones. This is probably 
because the bending-with-torsion modes are 
more sensitive to delamination than the 
bending-only modes, and hence may be more 
useful for delamination detection by examining 
the damping performance change. 

Finally, in Fig.9 and 10, the two typical 
cases of modal shapes at the ‘bending-only’ 8th 
mode and the ‘bending-with-torsion’ 5th mode 
are respectively shown and compared to the 
corresponding experimental measurements. The 
detailed procedure for obtaining the actual 
vibration mode patterns by using VPI sensor in 
the experiment can be referred to the literature 
[17]. Agreements of the present FE numerical 
results with those of the experiment are 
remarkably good. The experiment tends to give 
higher resonant frequencies for the same 
vibration mode when compared to those 
predicted by the present FEM. This is probably 
because the frequency-dependent material 
properties are no longer negligible at those 
higher-order frequency modes and therefore 
more stiff elastic moduli should be used as an 
input data for the numerical calculations when 
one wants to bring together the numerical and 
experimental results in terms of the resonant 
frequency as well as the modal shapes. 
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4 Conclusions 
In this study, non-linear iterative free 

vibration eigen-value analysis and modal-strain-
energy-based damping characterization have 
been conducted for composite laminated beams/ 
plates with delaminations by using multilayered 
isoparametric degenerated plate/shell finite 
elements of the authors. In the present finite 
element formulation, the displacement 
continuity constrains at the layer interfaces are 
enforced by invoking the penalty function 
method As typical numerical examples, two 
types of delaminated CFRP composite 
laminated cantilever beams were numerically 
investigated by the developed FEM program. 
Each of the plies of the laminates was modeled 
by an individual plate/shell element with the 
displacement assumption of first-order-shear-
deformable (FOSD) model. Very good 
agreements between the present FE numerical 
results and the existing experiments were 
basically confirmed for the natural frequencies 
and modal shapes in the broad range of 
frequency. In addition, the modal loss factors 
predicted by the present FE indicated that 
damping performance tended to be improved by 
existence of delaminations. The reason for this 
damping improvements is probably due to the 
transverse shear strain energy concentrations in 
the delaminated beams. This fact apparently 
shows that the delamination can be effectively 
used as ultimate damping materials without any 
thickness and weight gains. 

References 

[1] Chattopadhyay A, Swann C, Kim, H S and Han Y. 
Characterization of Delamination in Using Damage 
Indices. Proceedings of International Conference on 
Computational & Experimental Engineering and 
Sciences (ICCES'03) , Corfu, 2003. 

[2] Tan P and Tong L. Modelling for Delamination 
Detection in a Laminated Composite Beam Using 
Piezoelectric Layers. Proceedings of 14th 
International Conference on Composite Materials 
(ICCM/14), San Diego, 2003. 

[3] Ramkumar R L, Kulkarni S V  and Pipes R B. Free 
Vibration Frequencies of a Delaminated Beam, 34th 
Annual Technical Conference. 1979 Reinforced 

Plastics/Composites Institute, The Society of the 
Plastics Industry Inc., Section 22-E, pp 1-5, 1979. 

[4] Wang J T S, Lin Y Y and Gibby J A. Vibrations of 
Split Beams. Journal of Sound and Vibration, Vol. 84, 
No. 4, pp 491-502, 1982. 

[5] Mujumdar P M and Suryanarayan S. Flexural 
Vibrations of Beams with Delaminations. Journal of 
Sound and Vibration, Vol. 125, No. 3, pp 441-461, 
1988. 

[6] Tracy J J and Pardoen G C. Effect of Delamination 
on the Natural Frequencies of Composite Laminates. 
Journal of Composite Materials, Vol. 23, No. 12, pp 
1200-1215, 1989. 

[7] Hu J S and Hwu C. Free Vibration of Delaminated 
Composite Sandwich Beams. AIAA Journal, Vol. 33, 
No. 10, pp 1911-1918, 1995. 

[8] Shen M H and Grady J E. Free Vibration of 
Delaminated Beams. AIAA Journal, Vol. 30, No. 5, 
pp 1361-1370, 1992. 

[9] Yin W-L and Jane K C. Vibration of a Delaminated 
Beam-Plate Relative to Buckled States. Journal of 
Sound and Vibration, Vol. 156, No. 1, pp 125-140, 
1992. 

[10] Chen H-P. Free Vibration of Prebuckled and 
Postbuckled Plates with Delamination. Composites 
Science and Technology, Vol. 51, pp 451-462, 1994. 

[11] Chang T-P and Liang J-Y. Vibration of Postbuckled 
Delaminated Beam-Plates. International Journal of 
Solids and Structures, Vol. 35, No. 12, pp 1199-1217, 
1998. 

[12] Lee B T, Sun C T and Liu D. An Assessment of 
Damping Measurement in the Evaluation of Integrity 
of Composite Beams. Journal of Reinforced Plastics 
and Composites, Vol. 6, No. 4, pp 114-125, 1987. 

[13] Grady J E and Meyn E H. Vibration Testing of 
Impact-Damaged Composite Laminates. Proceedings 
of 30th AIAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics and Materials  Conference, pp 
2186-2193, 1989. 

[14] Nagesh Babu G L and Hanagud S. Delamination in 
Smart Structures - A Parametric Study on Vibrations. 
Proceedings of 31st AIAA/ASME/ASCE/AHS 
Structures, Structural Dynamics and Materials  
Conference, pp 2417-2426, 1990. 

[15] Hanagud S and Luo H. Modal Analysis of 
Delaminated Beam. Proceedings of SEM Spring 
Conference on Experimental Mechanics, Baltimore, 
pp 880-887, 1994. 

[16] Luo H and Hanagud S. Delamination Detection 
Using Dynamic Characteristics of Composite Plates. 
Proceedings of 36th AIAA/ASME/ASCE/AHS 
Structures, Structural Dynamics and Materials  
Conference, pp 129-139, 1995. 

[17] Kimpara I, Kageyama K, Suzuki T, Ohsawa I and Ide 
K. Vibration Mode Analysis of Delaminated 
Composite Laminates by Means of Vibration Pattern 



KOHJI SUZUKI, ISAO KIMPARA, KAZURO KAGEYAMA 

10 

Imaging and Finite Element Method. Zairyo (Journal 
of the Society of Materials Science, Japan), Vol. 43, 
No. 487, pp 476-481, 1994, (in Japanese). 

[18] Luo H and Hanagud S. Delaminated Beam Nonlinear 
Dynamic Response Calculation and Visualization. 
Proceedings of 38th AIAA/ASME/ASCE/AHS 
Structures, Structural Dynamics and Materials  
Conference, Vol. 1, 1997, pp 490-499, 1997. 

[19] Luo H and Hanagud S. Dynamics of Delaminated 
Beams. International Journal of Solids and 
Structures, Vol. 37, pp 1501-1519, 2000. 

[20] Zak A, Krawczuk M and Ostachowicz W. Vibration 
of a Laminated Composite Plate with Closing 
Delamination. Key Engineering Materials, Vols. 167-
168, pp 17-26, 1999. 

[21] Suzuki K, Kageyama K, Kimpara I, Hotta S, Ozawa 
T, Kabashima S and Ozaki T. Vibration and 
Damping Prediction of Laminates with Constrained 
Viscoelastic Layers - Numerical Analysis by a 
Multilayer Higher-Order-Deformable Finite Element 
and Experimental Observations. Mechanics of 
Advanced Materials and Structures, Vol. 10, No. 1, 
pp 45-73, 2003. 

[22] Panda S. and Natarajan R. Analysis of Laminated 
Composite Shell Structures by Finite Element 
Method. Computers and Structures, Vol. 14, pp 225-
230, 1981. 

[23] Bathe K J. Finite Element Procedures. Prentice Hall, 
London, Chaps. 11, 1996. 

 


