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Abstract  

In this article, a new reduced-order modeling 
approach is presented. This approach is based 
on fluid eigenmodes and without using the static 
correction. Vortex lattice method is used to 
analyze unsteady flows over two-dimensional 
airfoils and three-dimensional wings. 
Eigenanalysis and reduced-order modeling are 
performed using conventional method with and 
without the static correction technique. In 
addition to the conventional method, 
Eigenanalysis and reduced-order modeling are 
also performed using the new proposed method, 
i. e., without static correction requirement. 
Numerical examples are presented to 
demonstrate the accuracy and computational 
efficiency of the proposed method. Based on the 
obtained results, it has been shown that the 
accurate reduced order models of unsteady 
flows can be constructed without using the static 
correction technique. 

1 Introduction 

Reduced-order modeling (ROM) is a 
conceptually novel and computationally 
efficient technique that is recently used in 
analysis of unsteady flows. Unsteady flow 
eigenmodes are used to construct reduced-order 
unsteady flow models similar to the normal 
mode analysis in structural dynamics. Although 
the modal analysis of structures is quite routine, 
the modal analysis of unsteady flows is still in 
the developing stage. The advantage to a modal 
approach is that one may construct a reduced-
order model by retaining only a few of the 
original modes. Eigenanalysis of unsteady 
potential flows about flat airfoils, cascades and 

wings has been applied by Hall [1]. He 
constructed reduced-order models based on 
unsteady incompressible vortex lattice method 
and found that in order to obtain satisfactory 
results, the static correction technique must be 
used. Romanowski and Dowell [2] applied 
ROM to the subsonic unsteady flows based on 
the Euler equations about a NACA 0012 airfoil. 
ROM of unsteady viscous flow in a compressor 
cascade based on the coupled potential flow and 
boundary-layer approximation has been applied 
by Florea et al. [3], and the status of ROM of 
unsteady aerodynamic systems has been 
reviewed by Dowell et al. [4]. 

Behbahani-nejad [5] and Esfahanian and 
Behbahani-nejad [6] applied ROM to the 
subsonic unsteady flows about complex 
configurations using boundary element method. 
They indicated that the number of zero 
eigenvalues of unsteady model is equal to the 
number of elements that lie on the body. Hence, 
some of the eigenmodes which are equal to the 
body's elements behave exactly in quasistatic 
fashion and ROM without the static correction 
can not generate satisfactory results even with 
the large number of eigenmodes. On the other 
hand, ROM based on body and its wake 
eigenmodes (conventional ROM) can give 
satisfactory results if and only if the static 
correction technique is applied. However, when 
the static correction technique is applied, the 
quasisteady part of the solution must be 
computed for each time step which alteres the 
efficiency of ROM. By constructing reduced-
order model based only on the wake 
eigenmodes, the body qusistatic eigenmodes are 
removed and satisfactory results will be 
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obtained without using the static correction 
technique. 

In this context a new formulation based on 
vortex lattice method is presented by which the 
eigenvalue problem is defined based only on the 
unknown wake vortices. The eigenvalues of the 
new eigensystem are nonzero and therefore the 
new system has no quasistatic eigenmodes. 
Eigenanalysis results show that the eigenvalues 
of the proposed method are equal to the 
corresponding nonzero eigenvalues of the 
conventional method. To demonstrate the 
present approach, reduced-order models are 
constructed for unsteady flows over a two 
dimensional airfoil and a three dimensional 
wing. The results show that the present ROM 
can accurately and more efficiently analyze 
unsteady flows in comparison with the 
conventional reduced-order models. 

2 Eigenanalysis and ROM 

In vortex lattice method (VLM) for unsteady 
flow computations, the following matrix quation 
can be obtained [1] 

11 ++ =Γ+Γ nnn wBA  (1) 

where Γ  is the vector of vortex strengths, w  is 
the known downwash, and A  and B  are known 
sparce matrices. When Γ  is computed from 
Eq.(1), unsteady lift can be calculated as [7] 
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where 
dx

d
x

Γ=)(γ  and b  is semichord of the 

airfoil. For zero downwash, One can set 
t

i
iex λ=Γ , and t

i
iez ∆= λ to obtain the following 

generalized eigenvalue problem 

0=+ iii BxAxz  (3) 

where iλ  and iz  are thi  eigenvalues in λ -plane 

and z -plane respectively and ix  is the 

corresponding eigenvector. More generally 
Eq.(3) can be written as 

0=+ BXAXZ  (4) 

where Z  is a diagonal matrix containing the 
eigenvalues and X  is a matrix that its columns 
are the right eigenvectors. On the other hand, 
the left eigenvectors satisfy the following 
relation 

0=+ YBYZA TT  (5) 

where Y  is a matrix that its rows are the left 
eigenvectors. If the eigenvectors are normalized 
suitable, they satisfy the orthogonality 
conditions 

ZBXYIAXY TT −==  (6) 

The dynamic behavior of the fluid can be 
represented as the sum of the individual 
eigenmodes, i.e., 

Xc=Γ  (7) 

where c  is the vector of normal mode 
coordinates. Substitution of Eq. (7) into Eq. (1), 
premultiplying by TY , and making use of the 
orthogonality condition gives a set of N  
uncoupled equations for the modal coordinates 
c , i.e. 

11 ++ =− nTnn wYZcc  (8) 

Now one may construct a reduced-order model 
by retaining only a few of the original modes. 
However, the above reduced-order model does 
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not produce satisfactory results unless the static 
correction technique is applied. Therefore, it is a 
normal procedure to decompose the unsteady 
solution into two parts. One part is equivalent to 
the response of the system if the disturbance is 
quasisteady, and the other part is the dynamic 
part. Therefore, the unsteady solution can be 
defined as the following equation 

nn
s

n
d

n
s

n

cX+Γ=

Γ+Γ=Γ  (9) 

The quasistatic portion sΓ  is given by 

[ ] nn
s wBA =Γ+  (10) 

Thus, Eq. (7) is replaced by 

( )n
s

n
s

TnTn
d

n
d BAYwYZcc Γ+Γ−=− +++ 111  (11) 

3 ROM without Static Correction 
Requirement 

Esfahanian and Behbahani-Nejad studies  show 
that the existence of zero eigenvalues in the 
eigensystem is the main reason for applying 
static correction technique [6]. Here, another 
approach is proposed. The proposed method 
removes zero eigenvalues by defining a new 
eigenvalue problem that its eigenvalues are the 
same as the nonzero eigenvalues of the previous 
eigensystem. If bΓ  and wΓ  are defined as the 

vector of body's and wake vortex strengths 
respectively, one can write 
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and therefore 

1
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It can be shown that matrices 11B  and 12B  are 
zero and therefore Eq. (14) results in   
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The above equation gives 
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Substitution of Eq. (17) into Eq. (15) results in 
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or 

11 ++ =Γ+Γ n
new

n
wnew

n
wnew wBA  (19) 

where 

12
1

112122 AAAAAnew
−−=  (20) 

12
1
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n
b

n
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1121
11

1121
−+− −−=  (22) 

Because Eq. (19) is versus wΓ , the 

corresponding eigensystem has no zero 
eigenvalue. Therefore one may construct 
accurate reduced-order models without using 
the static correction technique. 

4 Results and Discussion 

4.1 Present Vortex Lattice Model  

In this section the results are presented to 
validate the proposed unsteady vortex lattice 
model. The unsteady lift due to plunging motion 
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of an isolated airfoil is computed for a range of 
reduced frequencies and compared with the 
Theodorsen exact solution as shown in Fig. 1. 
The airfoil is modeled using 20 vortex elements. 
The wake length is taken to be 10 chord lengths 
and it is discretized using 200 vortex elements. 
The apparent mass effects have been added to 
Theodorsen circulatory lift function to obtain 
circulatory and noncirculatory lift [7]. The 
results are quite satisfactory for the range of 
reduced frequencies considered here. 

The lift acting on the airfoil due to a step 
change in airfoil downwash (Wagner problem) 
is considered to validate the present vortex 
lattice computations in time domain. As is 
shown in Fig. 2, the present vortex lattice model 
results are in perfect agreement with the Wagner 
function. Moreover, Fig. 2 shows the indicial 
response of a rectangular wing due to rigid-body 
plunging motion in comparison with the 
corresponding results presented in Ref. [1]. As 
in Ref. [1], the wing aspect ratio is 5.0 and it is 
modeled with eight vortex elements in the 
streamwise direction, and 10 in the spanwise 
direction. The wake is taken to be five chords 
long and is modeled using 40 vortex elements in 
the streamwise direction and 10 in spanwise 
direction. As is shown in the figure, the results 
of the present 3-D vortex lattice model are in 
good agreement with those of Ref. [1].  

4.2 Eigenanalysis  

The results of conventional and present 
eigenanalysis are presented in this section. 
Eigenvalues of the proposed method are shown 
in Fig. 3 in comparison with those of the 
conventional method for 2D airfoil. Moreover, 
in Fig. 4 the eigenvalues of the proposed 
method and conventional method are plotted 
with respect to the eigenvalues numbers. The 
results show that the eigenvalues of the 
proposed method are the same as the nonzero 
eigenvalues of the conventional method. In the 
proposed eigenanalysis, the eigensystem is 
interpreted only by the wake elements. 

Therefore, there are not any zero eigenvalues 
related to the body's elements. On the other 
hand, in the conventional method, the 
eigensystem is constructed using the airfoil 
elements as well as the wake elements. 
Therefore, there are 20 zero eigenvalues related 
to the body's elements, and 200 nonzero 
eigenvalues related to the wake elements. 

Eigenvalues of vortex lattice model of 
unsteady flow about the three dimensional wing 
are plotted in Fig. 5. Similarly, as is shown in 
the figure the nonzero eigenvalues of 
conventional eigenanalysis are the same as the 
eigenvalues of the proposed method. Some of 
the nonzero eigenvalues in the figure which do 
not coincide with the eigenvalues of the 
proposed method, are corresponded to the wing 
elements and indeed they must be zero, but the 
numerical errors in computational problem 
made them nonzero eigenvalues. 

4.3 Reduced Order Models  

Next, we use the eigenvalues computed in the 
previous section to construct reduced order 
aerodynamic models. At first we review the 
conventional reduced order models (CROM). 
Figures 6 and 7 illustrate the unsteady lift 
predicted using the reduced order modeling 
technique without the static correction for 2D 
airfoil and 3D wing, respectively. As expected 
and shown in the figures, CROM without the 
static correction can not produce satisfactory 
results even if a large number of modes are 
used. It is due to the fact that the effects of the 
eigenmodes corresponding to the zero 
eigenvalues may be only considered using static 
correction. 

The accuracy of the proposed method is 
shown in Fig. 8 where the unsteady lift of the 
airfoil predicted using the CROM with static 
correction  and the present reduced order 
models (PROM) are compared. As is shown in 
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the figure, PROM without static correction, can 
produce satisfactory results as accurate as 
CROM with static correction technique. That is 
due to the absence of zero eigenvalues in the 
new eigensystem. Figure 9 illustrates the effect 
of number of modes for the present method. As 
is shown, the exact solution can be produced 
when large number of modes is used. The 
unsteady lift of the 3D wing predicted using 
CROM with static correction, and PROM are 
compared in Fig. 10. The figure reveals that the 
same accuracy will be obtained for the 3D wing.  

The efficiency of the proposed method will 
be more clear if the method is used in the time 
domain analysis. CROM and PROM are used to 
predict the unsteady lift in time domain due to 
plunging motion with reduced frequency k=0.5. 
Computational results of the lift variation during 
some heaving oscillation cycles of the airfoil are 
presented in Fig. 11. The results of the PROM 
and CROM with static correction are in perfect 
agreement with those of the direct method. 
However, the results of CROM without the 
static correction show considerable error, which 
is expected. Figure 12 presents the same 
comparison for the 3D wing. Similarly, the 
results of PROM show the same accuracy as 
CROM with the static correction.  

4.4 Efficiency Analysis 

Finally, the efficiency of PROM is presented for 
both frequency and time domains. To clarify the 
efficiency analysis, CPU times for PROM and 
CROM with static correction are compared. In 
addition, CPU times for eigenvalue 
computations and ROM are presented 
separately. Table 1 and 2 indicate CPU times in 
seconds for the 2D airfoil and the 3D wing. For 
each case, ROM is performed in the time 
domain (TD) and in the frequency domain (FD). 
The results are based on numerical 
computations using a P3-1000 MHz with 1 GB 
RAM. Results presented in tables 1 and 2 reveal 

that the proposed method can analyze either 
eigensystem or ROM more efficiently than 
CROM with the static correction. Efficiency of 
the proposed method from eigenanalysis point 
of view is due to the fact that the resulting 
eigensystem has a smaller rank than the 
conventional method, since it is represented 
based only on the wake elements. Therefore, the 
proposed method will be more efficient when 
the ratio of number of body's elements to the 
number of wake elements be increased. The 
application of the proposed method for ROM is 
more efficient than CROM because there is no 
need to compute the quasisteady solution in 
each time step. Hence, the present method will 
be more efficient as the time increases in the 
time domain analysis. 

5 Conclusion and Remarks  

Conventional reduced order modeling can 
generate satisfactory results when the static 
correction is used. This effect is due to the 
existence of zero eigenvalues in z-plane. It is 
shown that the existence of zero eigenvalues 
depend on the number of computational 
elements on the body. For implementation of 
static correction one needs to find quasisteady 
solution in each time step. In the present work a 
reduced order model for unsteady flows is 
developed without need to the static correction 
technique. In this method the numerical 
eigensystem is constructed using the wake 
variables only and the rank of the eigensystem 
is lower than the corresponding eigensystem in 
the conventional method. Therefore, the 
eigensystem in z-plane does not contain any 
zero eigenvalue and there is no need for the 
static correction.  

The results indicate that the proposed 
method is computationally more efficient than 
the conventional method which requires the 
static correction. Moreover, the obtained results 
indicate that the proposed method can produce 
satisfactory results as accurate as the 
conventional method. 
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Table 1: CPU Time for Eigenanalysis Computations 
 

Eigenanalysis 
Case 

Conventional Present 

TD 10 8 
2D 

FD 10 8 

TD 119 79 
3D 

FD 119 79 

 

 

Table 2: CPU Time for ROM Computations 

ROM 
Case 

Conventional Present 

TD 7.9 5.7 
2D 

FD 0.7 0.2 

TD 12.5 4.9 
3D 

FD 3.8 2.2 
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Fig. 1. Unsteady Lift Due to Plunging Motion of an 

Isolated Airfoil 
 

Non-Dimensional Time, T

N
o

n-
D

im
en

si
on

al
Li

ft
,L

/2
π

0 10 20 30
0.2

0.4

0.6

0.8

1

1.2

Wagner Function
Present 2D UVLM
3D Wing Ref [1]
Present 3D UVLM

 
Fig. 2. Lift Acting on the Airfoil Due to a Step 

Change in Airfoil Downwash 
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Fig. 3. Eigenvalues for 2D Airfoil 
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Fig. 6. Unsteady Lift for 2D Airfoil Predicted Using 

PROM Without the Static Correction 
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Fig. 4. Eigenvalues Versus Eigenvalues Numbers for 

2D Airfoil 
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Fig. 7. Unsteady Lift for 3D Wing Predicted Using 

PROM Without the Static Correction 
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Fig. 5. Eigenvalues for 3D Wing 
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Fig. 8. Unsteady Lift for 2D Airfoil Predicted Using 

CROM With Static Correction and  PROM 
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Fig. 9. The Number of Modes Effects on the 

Unsteady Lift for 2D Airfoil   
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Fig. 11. Lift Variation During Some Heaving 

Oscillation Cycles of the 2D Airfoil  
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Fig. 10. Unsteady Lift for 3D Wing Predicted Using 

CROM With Static Correction and PROM  
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Fig. 12. Lift Variation During Some Heaving 

Oscillation Cycles of the 3D Wing  


