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Abstract

The Ornicopter is a single rotor helicopter
without reaction torque. This is achieved by
forced flapping of the blades. To investigate the
resulting vibrations due to the forced flapping
the expressions for the forces and moments that
act about the rotor hub will be derived.
Expressions for the forced flapping moment, the
flapping angle and the flapping power will be
derived as well.

Based on these expressions three
different Ornicopter rotor concepts will be
analyzed: the double teeter, the 2x2 anti-
symmetrical and the three bladed I-plane
configuration. The 2x2  anti-symmetrical
configuration yields the most favorable
vibration results.

1 Notations

Restricted to those not defined in the text or in
the figures:
c, Derivative of the lift coefficient for a

blade element w.r.t. the angle of attack
C, Derivative of the lift coefficient w.r.t.

the angle of attack
dD_  Profile drag on a blade element

1 Moment of inertia of the blade w.r.t. the
flapping hinge

Lift on a blade element

Rotor radius

Angle of attack

Flapping angle

Pitch angle

Azimuth angle

TR ®E

yo, Air density
Q Angular speed of the rotor

2 General introduction

The engine torque supplied to a conventional
helicopter rotor necessitates complex and costly
anti-torque devices - such as tailrotors - to
prevent spinning of the fuselage. During
previous research [1][2] it has Dbeen
demonstrated that the Ornicopter is a single
rotor helicopter without reaction torque, and
therefore does not need an anti-torque device.
To achieve this torqueless situation, the
rotor blades of the Ornicopter will be forced to
flap up and down, a motion that might cause
severe vibrations in the forces and moments that
act about the rotor hub. In this paper expressions
for these forces and moments will be derived,
and it will be shown that most of the vibrations
can be cancelled out by choosing an appropriate

number of blades and flapping sequence of the
blades.

3 Design formulas for the Ornicopter

First some expressions for the essential, basic
Ornicopter quantities will be derived: the
mechanical flapping moment (i.e. the moment
applied by the mechanical flapping mechansim
to the Ornicopter blade), the flapping angle and
the mechanical flapping power. These
expressions will subsequently be used to derive
expressions for all six dynamic fluctuating force
and moment components about the rotor hub as
these are caused by one rotor blade. Finally it
will be indicated in what way the forces and
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moments that occur due to all rotor blades (the
entire rotor) can be calculated from the
expressions for the forces and moments as they
are caused by one single rotor blade.

3.1 Mechanical flapping moment, flapping
angle and mechanical flapping power

An expression for the mechanical flapping
power (P;) has been derived in the
accompanying paper [2] and is repeated below:

2z
0=P +P, —i I(Mﬂ ~IQB, )pdy (1)
0

O:E+Pp—Pﬂ (2)
Py =i 1, - 102, )pay (3)

0

Fig. 1: Aerodynamic forces and velocities on a blade
element at distance » from the rotor hub

Equation (1) in combination with the equation
of motion and its solution as derived in the
accompanying paper [2]:

. M M
+Q ="y L 4
B B 7 7 4)
M,=-M, +1Q° B, (5)

can be used to find an expression for the
mechanical flapping moment M and the
flapping angle f. In order to do so, the
aerodynamic moment is expressed as (see also
figure 1):

R
M, = jcla Océ,o(Qr)2 crdr (6)

0
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M =ZJQZ(9—i—£j 9)

with x the non-dimensional rotor radius, y the
Lock number, S’ the derivative of the flap

angle w.r.t. the azimuth angle and A; the non-
dimensional induced velocity defined as:

x=— (10)
pC, cR*
= fa 11
4 ; (11)
4B _df _B
ﬂ_dl// dQr  Q (12)
Vi
ﬂ’i:E (13)

If the non-dimensional aerodynamic flapping
moment (m,) and the non-dimensional
mechanical flapping moment (my) are defined
by:

M

M= (14)
M

my = sz} (15)

then, using equations (9), (14) and (15) equation
(5) can be written as:

A ot LY S

Now assume that:

m, = Acosy + Bsiny (17)
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B =L, +Ccosy +Ssiny (18)

Substitution of these equations into (16) gives:

Acosy + Bsiny = —§H+Zii +
(19)
+%(—Csinl// +Scos1//)+ B,
It can now be seen that:
4=Ls (20)
8
--Z¢ @1)

8

Thus, the non-dimensional mechanical flapping
moment as a function of the flapping
coefficients is given by:

mﬂ=%Sumw—%Cﬁnw (22)

By combining equations (17), (18), (20) and
(21) a relation can be found between the
maximum flapping angle (f._.) and the

max

maximum non-dimensional flapping moment
(mg,,):

_7r

2
mﬂmax = A +B 8 max

(23)
The final step is to substitute equations (17),
(18) and (23) into the expression for the
flapping power (3):

Kf , I0°8
= = =———m 24
ﬂmax 2 }/ M max ( )
Recapitulating, since P; and P, can be

calculated, equation (2) gives an expression for
the flapping power Pj. Once P; is known,
equation (24) can be used to calculate the
maximum flapping angle and maximum non-
dimensional flapping moment.

3.2 Moments and forces on the rotor hub

The expressions for the flapping power,
mechanical flapping moment and flapping angle

can now be used to derive the forces and
moments as these are caused by each rotor blade
about the rotor hub. The expressions that will be
derived in his section are valid for one single
rigid rotor blade with a central flapping hinge
during hover.

3.2.1 Roll moment and pitch moment

abogt the rotor hub

Exerted by the mechanism

T M, _React10n moments
on the blade

Fig. 2: Pitch and roll moment about the rotor hub due to
the mechanical flapping moment

Using figure 2 and equations (15), (18), (20)
and (21) the expressions for the non-
dimensional roll moment (m,) and non-
dimensional pitch moment (m,) about the rotor
hub caused by one single rotor blade are:

M, M M,
m = sin 25
P ar  or Y (25)

m, =— 17/6C+%(Ssm2t//+Ccos2t//) (26)

Mp Mﬂ
m, = 0 = 0 cosy (27)

Y Y .
S8+ Scos2y —Csin2 28
My =16 16( v v) (28)

3.2.2 Torque

Looking at figure 3 the torque (dQ) that is
caused by a blade element at distance 7 from the
rotor hub can be expressed as (assuming small
angles):

dQ =-2Q0° B'fr*dm+dLor+dD,r  (29)



Expressions for the lift, profile drag and inflow
angle will be given below and will subsequently
be substituted into equation (29). The lift on a
blade element is given by (see also figure 1):

dL=c, {9 AR ﬁB pQr)Ycdr  (30)
“ r

2
dL:%Q [{H—ﬁ— '}xzdx 31)

s ”forque exerted by the blade

;/ / on the rotor hub
' \
! Q ‘l

Q’B"Brdm+Q’rdm+Q%rB' 2dm

Fig. 3: Top view of the forces acting on a blade element
(including inertia forces) at a distance r from the rotor
hub.

The profile drag on a blade element is given by:

1
dD, = ¢, p(Qr) cdr (32)

1
dD, :cdpEszR3xzcdx (33)

And the inflow angle ¢ is given by:

ZiQRwL,BQr:ﬁ_I_ﬂ, (34)
x

v+ p
Qr Qr

Substitution of the above equations in equation
(29) yields the resulting torque per blade
element:

dQ = -2Q° B'Br*dm +
7/ 2 ﬂ“i ' ﬂ“i ' 3
+=-Q° 10 ——- —+ dx +
2 { x ﬁL ’3}” (33)

1
+ey, EszR4x3cdx
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Integration and conversion to the non-
dimensional torque (g) gives:

0 '
A~ =-2pp+
y| p” {0 24 0 A
2l R B I A
+2{ 4 +ﬂ(4 3j+ '(3 2j}r (36)
—  pRc
+Cp, 27

Substitution of equation (18) (and its
derivatives) into (36) yields:

q :q_—Z,BO[—Csinw+Scosw]+
+sin21//[;/%—(52 —Cz)}r
2 2
—cos 2w[2SC+y%}+ (37)

6 22
Csiny + S cos e
2( y t//)(4 3 j

With the non-dimensional torque g given by:

(38)

3.2.3 Vertical force
The resulting vertical force (dV) on the hub
caused by a blade element is derived using
figure 4. Assuming small angles, the following
expression results:

dV =dL—-Q’ B'rdm (39)

Using the relation for the lift as in equation (30)
it is calculated that:

17/ 2 2 nn
'([E |: —— }x dx-Q°p jrdm (40)
A,
V:% {‘Z = ﬂ QB'S, (41
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dL

20 BB'rdm - dD, Qlrdm + Q2rf' 2dm

*B" rdm + Q*rBdm

Fig. 4: Side view of the forces acting on a blade element
(including inertia forces) at a distance r from the rotor
hub.

In which S;; is the first moment of the blade
about the flapping hinge. Using the expressions

for the flapping angle and converting to the non-
dimensional vertical force (v) it is derived that:

1Q 2

S;’él [Ccosy + Ssiny]

, [—Csiny/+Scosy/

: } 42)

—+

In which the average non-dimensional vertical
force (v ) is given by:

y=2|0 A (43)
213 2
3.2.4 In-plane forces

The radial in-plane force (dFy) caused by a
blade element on the rotor hub can, using figure
5, be expressed as:

dF, =dLB —Q’ B"Brdm +
—Q%rdm —Q*rf"* dm

(44)

=77 QB Brdm+Ordm+ O *dm

Fig. 5: Top view of the forces acting on a blade element
(including inertia forces)

Using the relation for the lift as given by
equation (31), and integrating yields for the
non-dimensional radial force (fz):

Ry |:9 ﬂ“z} Y '
fo=TR 140 %)\ 7 B+
Q 2 (45)

_gsbl[ﬁlllg+1+ﬂ’2]

The tangential component (dF7) of the force
acting on the rotor hub caused by a blade
element can be derived the same way, looking at
figure 5:

dF, =2Q° ff'rdm —dLp — dD, (46)

Substitution of equations (31) and (33), and
integrating gives for the non-dimensional
tangential force f7:

F,.R S,R ,
Y
fT IQZ I ﬂﬂ
(e (0_,\_B"
2[1"(2 ﬂfjw& l") 37 @)
A
6C,a

Instead of expressing the in-plane forces on the
hub in a radial and tangential component, it is
also possible to express them in a H; and D;
component, in the longitudinal and lateral
direction respectively (see figure 5). The non-
dimensional H; force component on the rotor
hub (#;) is calculated as:

H.R .
h. = 7 = frcosy + f,siny (48)
By substitution of equations (45) and (47) the
average h; force (h,)can be obtained from

equation (48), and is given by the following
expression:

-rcfo 2],e(0,),

403 2| 43
(49)

—lSﬂ _szR Cp,
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The fluctuating part of the 4; force (4h;) is also
derived from equation (48) and, after some
calculation, given by:

0 A
w-[fo-4ha o

S, R
— CoSy +
18 ey
c, pR*
; 7C2—7&(9—LJ—1wpcsmw+
6 272 6 1
9_A4 E_zsﬂo N
2 6 2
Sb/R 3Cﬂo_(3_ j }00521//"‘
(50)

(0 _ANS v Ch
2\3 2)2 6 2

+w35ﬁo_7(9_lj§}smzw

1 2 2\3
S, R
+{bI’(S2 +C2)}COS3I/I+

+ {2 S’;R SC}sin 3w

The non-dimensional D; component on the rotor
hub (d;) is calculated in exactly the same
manner, using figure 5:

D,R

d, = 10° = fr cosy — frsiny (51

Substitution of equations (45) and (47) gives for
the average d; (d,):

‘Z:_ﬁ{g_i}_ﬁ(g_%j"'
413 2 4\3

Reference blade

Fig. 6: Notations and symbols for the summation
formulas.
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And the fluctuating part (4d;) can be expressed
as:

C,,pR*
Ad, :{752 —72[(9—/1‘)—éwfc}cosy/+

SRsin +
i 4

(33)

_SuR 3Ch, +f(——/lj sin 2y +
I 2 2

R
+ {S%ZSC}COS&// +

+{S”T’R(S2 —Cz)}sin&y

3.3 Summation formulas

So far, the effects of only one single rotor blade
have been considered. This section will show
how the forces and moments that are acting on
the rotor hub can be calculated for a rotor with
multiple blades. The obvious way to do this is to
calculate the contribution of each blade to the
force or moment separately, and to sum these
contributions to arrive at a resulting force or
moment. The notations and symbols necessary
for the summation formulas are explained below
and in figure 6.

In figure 6 yy is the azimuth angle of the
reference blade, this azimuth angle will be used
as the non-dimensional time. y; is the azimuth
angle of the k" blade, and k ranges from:

k=0,1,.,N-1 (54)

where N is the number of blades of the rotor.
The relation between y; en y is given by:

27
‘//kzl//o+kW=W0+kAl// (55)

The expressions for the forces and moments that
have been developed in the previous sections
are valid for each rotorblade. In order to be able
to use them for the summation, in each equation
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w has to be replaced by 4, and C and S have to
be replaced by C; and S;. Additionally, the
summation of the different contributions of the
different blades, has to be performed at the same
point in time. Therefore it is necessary to
rewrite all expressions to the non-dimensional
time .

It is emphasized that contrary to the case
of the conventional helicopter, the coefficients
C; and S, are not the same for the different
blades. This is because in the Ornicopter
configuration the different blades no longer
have the same tip path plane.

To clarify the explanation given above, a
general example is given of the summation
formula for a force:

F=Ccosny+Ssinny (56)

N-1
ZF:zCk cosny, + S, sinny,  (57)
k=0

N-1
ZF = ch cos(ny, +nkAy)
k=0

+8, sin(ny, + nkAy)

(58)

When the coefficients C; and S; are known, as
well as the number of blades and the difference
in azimuth angle between the blades, equation
(58) gives the summation formula to calculate
the forces (or moments) that act on the rotor hub
as a result of multiple rotor blades.

4 Configuration analysis based on vibrations

For a feasible Ornicopter concept all the average
values of the forces and moments on the rotor
hub caused by the entire rotor need to equal zero
(except for the vertical force). By choosing an
appropriate number of blades and an appropriate
flapping sequence of the blades these average
values can indeed be reduced to zero. In this
section three different Ornicopter configurations
will be analyzed. Once the average values of
these configurations are proven to be equal to
zero, the fluctuating parts of the forces and
moments about the rotor hub will be calculated.

And finally, the configuration that causes the
least vibrations will be identified.

4.1 Double teeter configuration

The double teeter configuration has been chosen
as a concept because of the relative simplicity of
its forced flapping mechanism. The principle of
the double teeter configuration is depicted in
figure 7. As indicated by its name, the rotor
consists of two teeters: the two opposite blades
are connected like a see-saw, which means that
if one blade is flapping upwards, the opposite
blade is flapping downwards. All four of the
blades are forced to flap with a 1-P frequency.
At the moment in time that one of the two
teeters is at its maximum flapping angle, the
other teeter will be in the neutral position, as
shown in figure 7. The tip path planes of the two
teeters are anti-symmetrically tilted with respect
to the shatft.

Fig. 7: Principle of the four bladed double teeter rotor.

——----]-

+

1
1
'
===
\
\
\

Fig. 8: Definition of the rotor blades k=0, 1, 2, 3

As can be seen from figure 7 the following
holds for the number of blades and the
difference in azimuth angle:

N =4 and Al//=% (59)



The blades are numbered as indicated in figure
8. Now assume that the tip path plane of blade
k=0 1is described by the following expression:

P =C,cosy,+S,siny, (60)

If Sy is chosen to be zero Cy can be calculated
using equation (23) (since in this case

ﬁmax = CO):
8
S, =0 and C0=;mﬂmax (61)

Using figures 7 and 8, the coefficients for the
other blades (k=1,2,3) can now be derived as
well. Since the tip path plane of blades k=0 and
k=2 are equal, the coefficients of the flapping
angle will also be the same for both blades:

C,=C,and S,=S,=0 (62)

The other two blades (k=1 and k=3) share the
same tip path plane as well, however they rotate
in a different tip path plane than blades k=0 and
k=2. At the azimuth angle at which blades k=0
and k=2 are at their highest point (y=0), at that
same azimuth angle blades k=1 and k=3 will be
at their lowest point (see figure 7), hence:

C,=-Cyand §, =0 (63)
C,=—C,and S, =0 (64)

The above results in the following flapping
equations for each of the blades:

B, =C,cosy, (65)
B, =-C, cosy, (66)
B, =C,cosy, (67)
By =-C,cosy, (68)

Now the flapping equations for all four rotor
blades are known, it is possible to calculate the
forces and moments that this configuration
causes about the rotor hub. Substituting the
coefficients into the equations in paragraph 3.2
and using the summation formulas as given in
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3.3 yields the total forces and moments due to
all four rotor blades. As an example:
6

S, =
=0 (69)

+ L (5, sin 2y, +kap)+ C, cos2y, + kay)

—le+

[u—

Zm, = %CO cos2y, (70)

Some calculation now yields:

Som, :%c0 sin 2y, (71)
D Ag=0 (72)
D> Av=0 (73)
> h =0 (74)

. R
D" Ah, :(%1’+ SbI’ 6ﬂ0jC0 cos2y, +

(75)
Jr%C0 sin 2y
>.d,=0 (76)
Zd, —%CO cos2y, +
(77)
—(SZ;R 6.3, +7/—}L’AJC0 sin 2y,

4.2 2x2 anti-symmetrical configuration

Although the forced flapping mechanism of the
2x2 anti-symmetrical configuration will be more
complicated than that of the double teeter
configuration, this configuration is considered
because of its expected favorable vibration
characteristics. The rotor in anti-symmetrical
configuration consists of four blades as well, but
now the two opposite blades are flapping in the
same direction. So (looking at figure 9) if blade
k=0 is flapping upwards, blade k=2 is flapping

8
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upwards as well, while at the same time the two
other blades will be flapping downwards, and
vice versa. The blades will pass through the
neutral position at the same moment in time.

Fig. 9: Principle of the 2x2 anti-symmetrical rotor.

For the anti-symmetrical configuration
the following expressions hold:

N=4and Al//=% (78)

Again, assume that the tip path plane of blade
k=0 1is described by by equation (60) S, is
chosen equal to zero, and Cj is given by (61).
When looking at figure 9, it can be seen
that blade k=2 is rotating in a different tip path
plane than blade k=0. At the azimuth angle at
which blade k=0 is at its highest point (y=0), at
that same azimuth angle , blade k=2 will be at
its lowest point. This tip path plane can be
described by the following coefficients:

C,=-C,and S, =S, =0 (79)

Blade k=3 is rotating in a different tip path
plane as well. At the azimuth angle at which
blade k=0 is at its highest point (y=0), at that
same azimuth angle blade k=3 is at its neutral
point and flapping upwards (see figure 9), so:

C,=0and S, =C, (80)

At the azimuth angle at which blade k=0 is at its
highest point, blade k=1 is at its neutral point as
well, but is flapping downwards:

C,=0and S, =-C, (81)
With the coefficients known, the resulting

forces and moments about the rotor hub can
again be calculated:

dm, =0 (82)
>m, =0 (83)

3 A= 4C02(sin 2y, + %cos 2://0] (84)

> Av=0 (85)
> h =0 (86)
> Ak =0 (87)
2.d; =0 (88)
D Ad; =0 (89)

4.3 Three bladed 1-plane configuration

For this three bladed configuration the three
blades are always in one plane although each
blade rotates in a different tip path plane (see
figure 10). This configuration is considered
because of the simplicity of its forced flapping
mechanism (consisting of a swash plate rotating
at twice the rotation speed of the rotor [3]).

Fig. 10: Principle of the three bladed 1-plane rotor, blade
k=0 is at its maximum flapping angle, blade k=1 is
flapping upwards, blade k=2 is flapping downwards.



The number of blades and difference in

azimuth angle are for this configuration given
by:

N =3 and Aw:% (90)

Again, assume that the tip path plane of blade
k=0 1is described by equation (60). Sy is chosen
to be equal to zero, meaning that Cy is given by
(61). The movements of the other two blades
(k=1 and k=2) for this configuration are
described by the following flapping coefficients:

C 3
C, = —70 and S, = —\/;C0 (91)

C 3
C, = —70 and S, = \/;CO (92)

The resulting forces and moments are given by:

Sm, = 3%00 cos 2y, (93)
Som, =37 7 C, sin 2y, (94)
2.8g=0 (95)
> Av=0 (96)
> h =0 97)

ZAh j/CO siny, +* C oo sin 2y +
+§CO cos2y/0(%+3ﬂo S”I’RJ %
>.d, =0 (99)

ZAd C cosyy +7 Y.c,B, cos 2y, +
M( sx) O
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4.4 Comparison of the different
configurations

Considering the facts that a 2-P vibration is
easier to damp than a 1-P vibration, that a
torque fluctuation is easier to damp than a
vibration in roll or pitch direction, and taking
the order of the magnitude of the vibration into
account, it is concluded that the 2x2 anti-
symmetrical configuration is the best choice
from a vibrations point of view. Especially since
the torque vibration that is present is not an
uncommon vibration, it also occurs in single
teeter helicopters.

5 Conclusions

Expressions have been derived for the
mechanical flapping moment, the flapping angle
and the mechanical flapping power.
Subsequently expressions for all six dynamic
fluctuating force and moment components as
these are caused by one rotor blade on the rotor
hub have been derived. These expressions can
be used to calculate the forces and moments that
are caused on the rotor hub by the entire rotor.
Using these expressions three different
Ornicopter configurations have been analyzed.
Whereas all three Ornicopter configurations
satisfy the requirement that the average forces
and moments about the rotor hub have to be
equal to zero, the vibrations that result for each
configuration differ considerably. It can be
concluded that the 2x2 anti-symmetrical
configuration is the most favorable
configuration from a vibration point of view.
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