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Abstract  ρ  Air density 

Ω  Angular speed of the rotor The Ornicopter is a single rotor helicopter 
without reaction torque. This is achieved by 
forced flapping of the blades. To investigate the 
resulting vibrations due to the forced flapping 
the expressions for the forces and moments that 
act about the rotor hub will be derived. 
Expressions for the forced flapping moment, the 
flapping angle and the flapping power will be 
derived as well. 

2  General introduction  

The engine torque supplied to a conventional 
helicopter rotor necessitates complex and costly 
anti-torque devices - such as tailrotors - to 
prevent spinning of the fuselage. During 
previous research [1][2] it has been 
demonstrated that the Ornicopter is a single 
rotor helicopter without reaction torque, and 
therefore does not need an anti-torque device. 

 Based on these expressions three 
different Ornicopter rotor concepts will be 
analyzed: the double teeter, the 2x2 anti-
symmetrical and the three bladed 1-plane 
configuration. The 2x2 anti-symmetrical 
configuration yields the most favorable 
vibration results.  

To achieve this torqueless situation, the 
rotor blades of the Ornicopter will be forced to 
flap up and down, a motion that might cause 
severe vibrations in the forces and moments that 
act about the rotor hub. In this paper expressions 
for these forces and moments will be derived, 
and it will be shown that most of the vibrations 
can be cancelled out by choosing an appropriate 
number of blades and flapping sequence of the 
blades.  

1  Notations 
Restricted to those not defined in the text or in 
the figures: 

αl
c  Derivative of the lift coefficient for a 
 blade element w.r.t. the angle of attack 

αl
C  Derivative of the lift coefficient w.r.t. 
 the angle of attack 

3  Design formulas for the Ornicopter 

First some expressions for the essential, basic 
Ornicopter quantities will be derived: the 
mechanical flapping moment (i.e. the moment 
applied by the mechanical flapping mechansim 
to the Ornicopter blade), the flapping angle and 
the mechanical flapping power. These 
expressions will subsequently be used to derive 
expressions for all six dynamic fluctuating force 
and moment components about the rotor hub as 
these are caused by one rotor blade. Finally it 
will be indicated in what way the forces and 

pdD  Profile drag on a blade element 
I  Moment of inertia of the blade w.r.t. the 
 flapping hinge 
dL  Lift on a blade element 
R  Rotor radius 
α  Angle of attack 
β  Flapping angle 
θ  Pitch angle 
ψ  Azimuth angle 
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moments that occur due to all rotor blades (the 
entire rotor) can be calculated from the 
expressions for the forces and moments as they 
are caused by one single rotor blade.  

3.1 Mechanical flapping moment, flapping 
angle and mechanical flapping power  
An expression for the mechanical flapping 
power (Pfl) has been derived in the 
accompanying paper [2] and is repeated below:  
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Fig. 1: Aerodynamic forces and velocities on a blade 

element at distance r from the rotor hub 

Equation (1) in combination with the equation 
of motion and its solution as derived in the 
accompanying paper [2]: 

I
M

I
M fla +=Ω+ ββ 2&&  (4) 

0
2βΩ+−= IMM fla  (5) 

can be used to find an expression for the 
mechanical flapping moment Mfl and the 
flapping angle β. In order to do so, the 
aerodynamic moment is expressed as (see also 
figure 1): 
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with x the non-dimensional rotor radius, γ the 
Lock number, β ′  the derivative of the flap 
angle w.r.t. the azimuth angle and λi the non-
dimensional induced velocity defined as: 
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If the non-dimensional aerodynamic flapping 
moment (ma) and the non-dimensional 
mechanical flapping moment (mfl) are defined 
by: 

I
M

m a
a 2Ω
=  (14)

I
M

m fl
fl 2Ω
=  (15)

then, using equations (9), (14) and (15) equation 
(5) can be written as: 
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Now assume that: 

ψψ sincos BAm fl +=  (17)
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ψψββ sincos0 SC ++=  (18)

Substitution of these equations into (16) gives: 

( ) 0cossin
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68
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It can now be seen that: 

SA
8
γ

=  (20)

CB
8
γ

−=  (21)

Thus, the non-dimensional mechanical flapping 
moment as a function of the flapping 
coefficients is given by: 

ψγψγ sin
8

cos
8

CSm fl −=  (22)

By combining equations (17), (18), (20) and 
(21) a relation can be found between the 
maximum flapping angle ( maxβ ) and the 
maximum non-dimensional flapping moment 
( ): 

maxflm

22
max BAm fl += max8

βγ
=  (23)

The final step is to substitute equations (17), 
(18) and (23) into the expression for the 
flapping power (3): 

2
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2
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γ

Ω
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Recapitulating, since Pi and Pp can be 
calculated, equation (2) gives an expression for 
the flapping power Pfl. Once Pfl is known, 
equation (24) can be used to calculate the 
maximum flapping angle and maximum non-
dimensional flapping moment. 

3. 2 Moments and forces on the rotor hub 
The expressions for the flapping power, 
mechanical flapping moment and flapping angle 

can now be used to derive the forces and 
moments as these are caused by each rotor blade 
about the rotor hub. The expressions that will be 
derived in his section are valid for one single 
rigid rotor blade with a central flapping hinge 
during hover. 

3.2.1 Roll moment and pitch moment 

 

Reaction moments 
about the rotor hubMr 

Exerted by the mechanism 
on the blade Mp 

Mfl 
ψ 

Fig. 2: Pitch and roll moment about the rotor hub due to 
the mechanical flapping moment 

Using figure 2 and equations (15), (18), (20) 
and (21) the expressions for the non-
dimensional roll moment (mr) and non-
dimensional pitch moment (mp) about the rotor 
hub caused by one single rotor blade are: 

ψsin22 Ω
=

Ω
=

I
M

I
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r  (25)
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1616
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1616
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3.2.2 Torque 
Looking at figure 3 the torque (dQ) that is 
caused by a blade element at distance r from the 
rotor hub can be expressed as (assuming small 
angles): 

rdDrdLdmrdQ p++′Ω−= ϕββ 222  (29)
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Integration and conversion to the non-
dimensional torque (q) gives: 

Expressions for the lift, profile drag and inflow 
angle will be given below and will subsequently 
be substituted into equation (29). The lift on a 
blade element is given by (see also figure 1): 
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Substitution of equation (18) (and its 
derivatives) into (36) yields: 
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Torque exerted by the blade 
on the rotor hub 

Q 

2Ω2β'βrdm = Coriolis dLβ 
ψ 

dLϕ+dDp 

Ω2β''βrdm+Ω2rdm+Ω2rβ' 2dm  With the non-dimensional torque q  given by: 
Fig. 3: Top view of the forces acting on a blade element 
(including inertia forces) at a distance r from the rotor 

hub. 
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 (38)The profile drag on a blade element is given by: 
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3.2.3 Vertical force 
The resulting vertical force (dV) on the hub 
caused by a blade element is derived using 
figure 4. Assuming small angles, the following 
expression results: And the inflow angle ϕ is given by: 
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Using the relation for the lift as in equation (30) 
it is calculated that: Substitution of the above equations in equation 
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Using the relation for the lift as given by 
equation (31), and integrating yields for the 
non-dimensional radial force (fR): 

dL 

2Ω2
 ββ' rdm - dDp Ω2rdm + Ω2rβ' 2dm 
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Fig. 4: Side view of the forces acting on a blade element 
(including inertia forces) at a distance r from the rotor 

hub. The tangential component (dFT) of the force 
acting on the rotor hub caused by a blade 
element can be derived the same way, looking at 
figure 5: 

In which Sbl is the first moment of the blade 
about the flapping hinge. Using the expressions 
for the flapping angle and converting to the non-
dimensional vertical force (v) it is derived that: 
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Substitution of equations (31) and (33), and 
integrating gives for the non-dimensional 
tangential force fT: 
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In which the average non-dimensional vertical 
force ( v ) is given by: 
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3.2.4 In-plane forces 
The radial in-plane force (dFR) caused by a 
blade element on the rotor hub can, using figure 
5, be expressed as: 

Instead of expressing the in-plane forces on the 
hub in a radial and tangential component, it is 
also possible to express them in a Hi and Di 
component, in the longitudinal and lateral 
direction respectively (see figure 5). The non-
dimensional Hi force component on the rotor 
hub (hi) is calculated as: 
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By substitution of equations (45) and (47) the 
average hi force ( ih )can be obtained from 
equation (48), and is given by the following 
expression: 
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Fig. 5: Top view of the forces acting on a blade element 
(including inertia forces) 
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The fluctuating part of the hi force (∆hi) is also 
derived from equation (48) and, after some 
calculation, given by: 

And the fluctuating part (∆di) can be expressed 
as: 
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3.3  Summation formulas 
So far, the effects of only one single rotor blade 
have been considered. This section will show 
how the forces and moments that are acting on 
the rotor hub can be calculated for a rotor with 
multiple blades. The obvious way to do this is to 
calculate the contribution of each blade to the 
force or moment separately, and to sum these 
contributions to arrive at a resulting force or 
moment. The notations and symbols necessary 
for the summation formulas are explained below 
and in figure 6. 

The non-dimensional Di component on the rotor 
hub (di) is calculated in exactly the same 
manner, using figure 5: 

ψψ sincos2 RT
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Substitution of equations (45) and (47) gives for 
the average di ( id ): 
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 (52) In figure 6 ψ0 is the azimuth angle of the 
reference blade, this azimuth angle will be used 
as the non-dimensional time. ψk is the azimuth 
angle of the kth blade, and k ranges from: 

1,...,1,0 −= Nk  (54)
Blade k

where N is the number of blades of the rotor. 
The relation between ψ0 en ψk is given by: 

ψk 

ψψπψψ ∆+=+= k
N

kk 00
2  (55)ψ0 

Reference blade 
The expressions for the forces and moments that 
have been developed in the previous sections 
are valid for each rotorblade. In order to be able 
to use them for the summation, in each equation 

 
Fig. 6: Notations and symbols for the summation 

formulas. 
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ψ has to be replaced by ψk, and C and S have to 
be replaced by Ck and Sk. Additionally, the 
summation of the different contributions of the 
different blades, has to be performed at the same 
point in time. Therefore it is necessary to 
rewrite all expressions to the non-dimensional 
time ψ0. 
 It is emphasized that contrary to the case 
of the conventional helicopter, the coefficients 
Ck and Sk are not the same for the different 
blades. This is because in the Ornicopter 
configuration the different blades no longer 
have the same tip path plane. 
 To clarify the explanation given above, a 
general example is given of the summation 
formula for a force: 

ψψ nSnCF sincos +=  (56)

∑∑
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+=
1

0
sincos

N

k
kkkk nSnCF ψψ  (57)
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When the coefficients Ck and Sk are known, as 
well as the number of blades and the difference 
in azimuth angle between the blades, equation 
(58) gives the summation formula to calculate 
the forces (or moments) that act on the rotor hub 
as a result of multiple rotor blades. 

4  Configuration analysis based on vibrations 

For a feasible Ornicopter concept all the average 
values of the forces and moments on the rotor 
hub caused by the entire rotor need to equal zero 
(except for the vertical force). By choosing an 
appropriate number of blades and an appropriate 
flapping sequence of the blades these average 
values can indeed be reduced to zero. In this 
section three different Ornicopter configurations 
will be analyzed. Once the average values of 
these configurations are proven to be equal to 
zero, the fluctuating parts of the forces and 
moments about the rotor hub will be calculated. 

And finally, the configuration that causes the 
least vibrations will be identified. 

4.1 Double teeter configuration 
The double teeter configuration has been chosen 
as a concept because of the relative simplicity of 
its forced flapping mechanism. The principle of 
the double teeter configuration is depicted in 
figure 7. As indicated by its name, the rotor 
consists of two teeters: the two opposite blades 
are connected like a see-saw, which means that 
if one blade is flapping upwards, the opposite 
blade is flapping downwards. All four of the 
blades are forced to flap with a 1-P frequency. 
At the moment in time that one of the two 
teeters is at its maximum flapping angle, the 
other teeter will be in the neutral position, as 
shown in figure 7. The tip path planes of the two 
teeters are anti-symmetrically tilted with respect 
to the shaft. 

β
β&

β
β&

β
β&

β
β&

=0 Ω 
>0 <0 

=0 

>0 =0 

=0 <0 

 
Fig. 7: Principle of the four bladed double teeter rotor. 

2 
2 ψ2 1 

1 ψ3 
3 ψ1 

3 0 ψ0 
0 

 
Fig. 8: Definition of the rotor blades k=0, 1, 2, 3 

As can be seen from figure 7 the following 
holds for the number of blades and the 
difference in azimuth angle: 

4=N  and 
2
πψ =∆  (59)
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The blades are numbered as indicated in figure 
8. Now assume that the tip path plane of blade 
k=0 is described by the following expression: 

0000 sincos ψψβ SC +=  (60)

If S0 is chosen to be zero C0 can be calculated 
using equation (23) (since in this case 

0max C=β ): 

00 =S  and max0
8

flm
γ

=C  (61)

Using figures 7 and 8, the coefficients for the 
other blades (k=1,2,3) can now be derived as 
well. Since the tip path plane of blades k=0 and 
k=2 are equal, the coefficients of the flapping 
angle will also be the same for both blades: 

02 CC =  and  002 == SS (62)

The other two blades (k=1 and k=3) share the 
same tip path plane as well, however they rotate 
in a different tip path plane than blades k=0 and 
k=2. At the azimuth angle at which blades k=0 
and k=2 are at their highest point (ψ=0), at that 
same azimuth angle blades k=1 and k=3 will be 
at their lowest point (see figure 7), hence: 

01 CC −=  and 01 =S  (63)

03 CC −=  and 03 =S  (64)

The above results in the following flapping 
equations for each of the blades: 

000 cosψβ C=  (65)

101 cosψβ C−=  (66)

202 cosψβ C=  (67)

303 cosψβ C−=  (68)

Now the flapping equations for all four rotor 
blades are known, it is possible to calculate the 
forces and moments that this configuration 
causes about the rotor hub. Substituting the 
coefficients into the equations in paragraph 3.2 
and using the summation formulas as given in 

3.3 yields the total forces and moments due to 
all four rotor blades. As an example: 

( ) (( )ψψψψγ

γ

∆++∆++

+−= ∑∑
=

kCkS

Cm

kk

k
kr

00

3

0

2cos2sin
16

16

)

 
(69)

00 2cos
4

ψγ Cmr =∑  (70)

Some calculation now yields: 

00 2sin
4

ψγ Cmp =∑  (71)

0=∆∑ q  (72)

0=∆∑ v  (73)

0=∑ ih  (74)

ψ
γβ

ψβ
γλ

2sin
3

2cos6
2

0
0

000

C

C
I
RS

h bli
i

+

+





 +=∆∑

(75)

0=∑ id  (76)

000

00
0

2sin
2

6

2cos
3

ψ
γλ

β

ψ
γβ

C
I
RS

Cd

ibl

i








 +−

+=∑
 (77)

4.2 2x2 anti-symmetrical configuration 

Although the forced flapping mechanism of the 
2x2 anti-symmetrical configuration will be more 
complicated than that of the double teeter 
configuration, this configuration is considered 
because of its expected favorable vibration 
characteristics. The rotor in anti-symmetrical 
configuration consists of four blades as well, but 
now the two opposite blades are flapping in the 
same direction. So (looking at figure 9) if blade 
k=0 is flapping upwards, blade k=2 is flapping 
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upwards as well, while at the same time the two 
other blades will be flapping downwards, and 
vice versa. The blades will pass through the 
neutral position at the same moment in time. 

0=∑ rm  (82)

0=∑ pm  (83)







 +=∆∑ 00

2
0 2cos

16
2sin4 ψγψCq  (84)

0=∆∑ v  (85)

0=∑ ih  (86)

0∑ =∆ ih  (87)

0=∑ id  (88)

0∑ =∆ id  (89)

2 
k = 2 β

 
Fig. 9: Principle of the 2x2 anti-symmetrical rotor. 

 For the anti-symmetrical configuration 
the following expressions hold: 

4=N  and 
2
πψ =∆  (78)

Again, assume that the tip path plane of blade 
k=0 is described by by equation (60) S0 is 
chosen equal to zero, and C0 is given by (61). 

When looking at figure 9, it can be seen 
that blade k=2 is rotating in a different tip path 
plane than blade k=0. At the azimuth angle at 
which blade k=0 is at its highest point (ψ=0), at 
that same azimuth angle , blade k=2 will be at 
its lowest point. This tip path plane can be 
described by the following coefficients: 

02 CC −=  and  002 == SS (79)

Blade k=3 is rotating in a different tip path 
plane as well. At the azimuth angle at which 
blade k=0 is at its highest point (ψ=0), at that 
same azimuth angle blade k=3 is at its neutral 
point and flapping upwards (see figure 9), so: 

03 =C  and 03 CS =  (80)

At the azimuth angle at which blade k=0 is at its 
highest point, blade k=1 is at its neutral point as 
well, but is flapping downwards: 

01 =C  and 01 CS −=  (81)

With the coefficients known, the resulting 
forces and moments about the rotor hub can 
again be calculated: 

4.3 Three bladed 1-plane configuration 
For this three bladed configuration the three 
blades are always in one plane although each 
blade rotates in a different tip path plane (see 
figure 10). This configuration is considered 
because of the simplicity of its forced flapping 
mechanism (consisting of a swash plate rotating 
at twice the rotation speed of the rotor [3]). 

 
Fig. 10: Principle of the three bladed 1-plane rotor, blade 

k=0 is at its maximum flapping angle, blade k=1 is 
flapping upwards, blade k=2 is flapping downwards. 

β 1 2β

k = 0 

Ω 
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β 3 
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β

β β
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2 
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4.4 Comparison of the different 
configurations 

The number of blades and difference in 
azimuth angle are for this configuration given 
by: Considering the facts that a 2-P vibration is 

easier to damp than a 1-P vibration, that a 
torque fluctuation is easier to damp than a 
vibration in roll or pitch direction, and taking 
the order of the magnitude of the vibration into 
account, it is concluded that the 2x2 anti-
symmetrical configuration is the best choice 
from a vibrations point of view. Especially since 
the torque vibration that is present is not an 
uncommon vibration, it also occurs in single 
teeter helicopters. 

3=N  and 
3

2πψ =∆  (90)

Again, assume that the tip path plane of blade 
k=0 is described by equation (60). S0 is chosen 
to be equal to zero, meaning that C0 is given by 
(61). The movements of the other two blades 
(k=1 and k=2) for this configuration are 
described by the following flapping coefficients: 

2
0

1
C

C −=  and 01 4
3CS −=  (91)

2
0

2
C

C −=  and 02 4
3CS =  (92)

5  Conclusions 
Expressions have been derived for the 
mechanical flapping moment, the flapping angle 
and the mechanical flapping power. 
Subsequently expressions for all six dynamic 
fluctuating force and moment components as 
these are caused by one rotor blade on the rotor 
hub have been derived. These expressions can 
be used to calculate the forces and moments that 
are caused on the rotor hub by the entire rotor. 
 Using these expressions three different 
Ornicopter configurations have been analyzed. 
Whereas all three Ornicopter configurations 
satisfy the requirement that the average forces 
and moments about the rotor hub have to be 
equal to zero, the vibrations that result for each 
configuration differ considerably. It can be 
concluded that the 2x2 anti-symmetrical 
configuration is the most favorable 
configuration from a vibration point of view.  

The resulting forces and moments are given by:  

00 2cos
16

3 ψγ Cmr =∑  (93) 

00 2sin
16

3 ψγ Cmp −=∑  (94) 

0=∆∑ q  (95) 

0=∆∑ v  (96) 

0=∑ ih  (97) 
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i
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4
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4
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γλ

ψ

ψβγψγ

 (98) 

0=∑ id  (99) 
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


−−+
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I
RS
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bli

i

000
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0
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4
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4

β
γλ

ψ
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 (100) 
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