
24th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

MULTILEVEL DISTRIBUTED STRUCTURE OPTIMIZATION

J.O. Entzinger*, R. Spallino** , W. Ruijter*
* University of Twente, Mechanical Engineering Department, ** AIRBUS Deutschland GmbH

Keywords: Genetic Algorithms, Neural Networks, Optimisation, Composite Structures, Aerospace
Structures

Abstract

An iterative optimisation routine for aircraft
structures using Genetic Algorithms (GAs) and
Neural Networks (NNs) is presented. In this
setup the NNs form a response surface, approx-
imating the key mechanical properties of sub-
structures. NNs are updated every iteration. The
GA uses these NNs in the optimisation to quickly
determine the feasibility of different variants. All
found optimal substructures are checked using a
Finite Element (FE) calculation. When the FE
outputs differ too much from the NN approxima-
tions the solution is added to the NN training set,
thus improving the NN’s performance.

Main advantages of the algorithm are firstly
the possibility to take into account many topo-
logically distinct designs and secondly the flexi-
bility to quickly evaluate the influence of updated
loads or different design restrictions (e.g. mate-
rials, access holes) on the optimum. The benefit
of the feedback of inaccurately estimated panel
properties (according to the FE verification) is the
improvement of accuracy and convergence. Also
this principle drastically reduces the number of
datasets (i.e. FE calculations) needed to train the
NNs initially.

Two levels are implemented: a global level
containing the structure as a whole, and a local
level to describe the composite panels the struc-
ture is made of more accurately. On the global
level a coarse mesh can be used, for it is only
needed to derive the loading of the panels. On
the local level more detail is needed, for linear
static buckling and local strains must be analysed
accurately.

On the local level all panel optimisations (in-
cluding the time-consuming FE checks) are mu-
tually independent and can therefore be paral-
lelised. This speeds up the process significantly
when using multiple computers to distribute the
workload. In our setup 7-27 machines were used,
enabling overnight optimisation of a large struc-
ture.

Full scale optimisations have been success-
fully performed on a major substructure of a rep-
resentative aircraft design under static loadcases.

1 Introduction

For this research project a combination of Ge-
netic Algorithms (GAs) and Neural Networks
(NNs) has been applied to iteratively optimise an
aircraft structure by optimising the (more or less
similar) panels it consists of.

The GAs are chosen for their robustness and
flexibility. Because they don’t need any gradi-
ent information, GAs allow a mixture of contin-
uous and discrete parameters so different topolo-
gies and even different design principles (plate or
trusswork) can be handled. The drawback of this
algorithm is the number of evaluations needed,
which urges for a response surface such as a
NN to approximate the outputs of Finite Element
(FE) analyses in a fast and accurate way.

When a NN with fixed architecture and train-
ing sets is trained with a grid of FE solutions, the
errors of the NN estimates appeared quite large.
Therefore, a setup with feedback of optima found
by the GA has been implemented, so accurate FE
values are added to the NN’s training set when
NN’s the accuracy is insufficient. This means less

1

J.O. ENTZINGER*, R. SPALLINO** , W. RUIJTER*

initial datasets can be used and the NN is only
trained to a higher accuracy in the places where
the GA expects an optimum. The iterative char-
acter of the routine, which optimises all panels
and then re-derives the panel loadings from the
structure based on the ‘optimised’ design, clearly
shows the benefit of a (locally) accurate response
surface, for the panels to be evaluated are very
alike.

The proposed setup is more broadly usable,
in fact, it is well usable to handle problems which
have the following properties:

• The structure can be divided into smaller,
approximately independent components.

• Parametric models are available for both
the structure and its components.

• Load paths (or component loads) are to
some extent dependent of component de-
signs.

• Optimisation constraints are applied at the
component level.

• Multiple topologies may be allowed for a
component.

2 Structural Mechanics Problem

Two mechanics problems have to be analysed in
the optimisation process:

1. A global level structure analysis with rela-
tively coarse meshes, used to obtain load-
ings for components

2. A local level component analysis with finer
meshes, used to obtain the buckling multi-
plier and the maximum local strain level

All analyses are done automatically using para-
metric models, for wich linear static FE calcula-
tions are performed.

The assembly of an aircraft’s vertical tail
plane (VTP) structure out of skins ribs and spars
is shown in figure 1.

A parameterised panel is shown in figure 2.
The panels are made of composite material and

PSfrag replacements

Rib

Skin

Spar

Fig. 1 VTP structure assembly of ribs skins and
spars

analysed using layered shell elements. Typi-
cal design parameters are length, width, mate-
rial properties, topology, stiffener/hole positions,
stiffener heights and panel thickness. Topologies
are distinct in the number of transverse stiffeners,
the number of longitudinal stiffeners, the number
of holes and their ordering on the panel. Length
and width become height and width respectively
in the global structure.

PSfrag replacements Transverse stiffener
Bending

Width

Shear

x1 Length
x2

x3

Longitudinal
stiffener

x
yz

Fig. 2 Parameterised panel

3 Neural Networks

A (feedforward) neural network can be seen as
a curve-fitting technique based on an analogy

2

Multilevel Distributed Structure Optimization

with the (human) brain. A set of known inputs
and outputs (the training set) is used to set the
coefficients in the NN. This process, called
training, is a form of non-linear least squares
fitting. A reason to choose NNs as a response
surface is the fact that they can map virtually
any function without any a priori knowledge
of the relationship between inputs and outputs.
When sigmoid functions are used as transfer
functions, the NN’s ability to generalize (i.e.
accurately map function samples outside the
training dataset) from a small amount of inputs
is much larger than conventional techniques
like fitting with polynomials or fourier-series.
Another difference is that sigmoid functions are
capable of handling discontinuities in the output,
but it is suspected that the quality of the fit is
better with ‘sleek’ functions.

Most function mapping artificial NNs are of
the Feed-Forward (FF) type and have neurons
grouped in layers. Each neuron has a transfer
function (e.g. a sigmoid function) operating on
the neuron’s input. In FF-NNs only neurons
in successive layers are interconnected. This
results in the typical shape shown in figure 3
with one input layer (receiving an input vector
x typically representing design variables), one
output layer (producing output vector y which is
an approximation of the mechanical response of
a component, the exact value of which are targets
vector t) and an arbitrary number of hidden
layers. As the lines in the figure point out, the
response of a neuron transfer function depends
on weighted inputs (by weights matrices w) and
a bias value (by bias matrix b) which acts as an
offset to the neuron’s input. The NNs employed
have so-called back-propagation training algo-
rithms, this means that the contribution of each
connection weight is determined by passing er-
rors in a backward manner through the network.
The errors are then minimised by employing an
iterative scheme such as Levenberg-Marquardt
iteration.

The topic of neurocomputing (i.e. the com-
puter simulation of neural networks) has been

PSfrag replacements

Hidden Layer

Signal processing direction

x y t

Error BP direction

wH wM

bH bM

Fig. 3 Typical shape of an artificial neural net-
work

extensively analysed in literature, the reader is
referred to [1] and [2] for more specific informa-
tion on the background and operation of Neural
Networks (NN) in engineering applications.

4 Genetic Algorithms

Genetic algorithms are guided random search
techniques that work analogous to biological evo-
lution. Much of the GA terminology is derived
from the biological counterpart, e.g. there are in-
dividuals, populations, genes and fitnesses. An
individual represents an element in the solution
space. The individual’s genes determine its loca-
tion (i.e. specify all parameter values) and its fit-
ness indicates the performance of the individual
with respect to the objective and the constraints.
Individuals are grouped in populations.

Assuming that a recombination of genetic
material from well performing individuals cre-
ates favourable offspring, a GA uses selection
and variation to reach a solution to an optimi-
sation problem. Selection is applied by assign-
ing a higher probability to the genetic material
of favourable individuals of getting passed on to
the next generation. Variation is accomplished by
means of crossover and mutation, i.e. recombina-
tion of genetic material from selected individuals,
respectively random changes in genes.

The algorithm starts by creating an initial
population consisting of individuals with ran-
domly assigned genes. The fitness of each
individual is determined using an appropriate
evaluation function, which is a value depend-

3

J.O. ENTZINGER*, R. SPALLINO** , W. RUIJTER*

ing on the objective (weight in this project)
and penalties (which are given depending on
constraint violation). Selection, crossover and
mutation are applied consecutively to generate
a new population (the next generation). This
process is repeated until convergence is reached,
that is, until a certain solution dominates the
population.

A GA can handle more general classes of
functions than most traditional mathematical
programming search techniques. Whereas
the latter use characteristics of the problem
(e.g. gradients and continuity), GAs don’t
require such assumptions. They can handle also
non-differentiable and discontinuous functions.
Because of the use of mutation and the fact that
GAs operate on a population instead of a single
starting point, GAs are less likely to get stuck in
a local optimum. However, increased random-
ness comes with decreased convergence speed,
therefore GAs typically require more function
evaluations than gradient based optimisers. This
is the reason for using a response surface such as
NNs instead of direct FE calculations.

A genetic algorithm has been proven to be an
effective way of solving a wide range of of non-
differentiable problems. The reader is referred to
[3] for an application in composite structures, and
[4] for a civil engineering application. The GA
operators used for this paper are derived from a
Matlab implemented GA by Houck et. al. [5].

5 Optimisation Strategy

5.1 Local level

Every panel in the structure is optimised for min-
imal structural weight using the routine as dis-
played in figure 4. The NNs are used in the eval-
uation function for estimating the buckling load
and maximum local strain for a panel proposed
by the GA. Each topology is represented by one
NN.

When the buckling load is lower than the
applied load, or when the local strain exceeds
its maximum allowed value, the solution is pe-

nalised. This way the panel’s geometry is less
likely to persist in the population, so the algo-
rithm tends to panels that don’t violate the con-
straints. On termination of the GA loop the best
panel found is checked with a FE analysis, to
make sure the NN’s estimate is accurate. If this
is not the case, the NN is retrained with the in-
formation just obtained from the FE check. The
NN aims to achieve a certain error level (a user
defined threshold), if this value is not reached
within a given number of training cycles the num-
ber of neurons in the NN hidden layer is in-
creased. After all panels have been checked, the
optimisation is started again with improved NNs,
or returns to the structure analysis when all found
optimal panels appeared accurately estimated by
the NNs.

Genetic

Algorithm

Neural

Network

Generate

Initial population

Selection

Cross-over

Mutation

Basic

Neural Network

Terminate?

Optimum

matches

FE analysis?

Yes YesNo

No

Training
Initial FE-data

Generation

Evaluation

function

Fig. 4 Component level layout

5.2 Additional rules

To avoid repetition of equal FE analyses in subse-
quent feedback iterations, the following rules are
applied:

• The topology of the optimal panel solution

4

Multilevel Distributed Structure Optimization

is excluded in the next feedback iteration,
forcing the optimiser to search in different
regions of the design space. This improves
the accuracy of the set of NNs.

• Once a NN for a certain topology is re-
trained, all panels for which this topol-
ogy was excluded re-add it to their search
space.

• Once a feasible solution (judging from FE)
has been found, the next solution must be
lighter. This way, the optimiser can find
optima that are approximated too conser-
vative by the NN. Example: Normally a
lighter panel which doesn’t satisfy the con-
straints (according to the NN approxima-
tion of its properties) gets a penalty, so it
is found unfavourable. However, when all
solutions which are not lighter than the op-
timum also get a penalty, the lighter panel
might still be found as optimum. When
this optimum is checked by a FE analy-
sis, it might appear feasible (i.e. not vio-
lating any constraints) and badly approxi-
mated by the NN.

5.3 Global level

No optimisation takes place on the global struc-
tural level. On this level all components (pan-
els) are assembled and the loading of each com-
ponent is derived from the global model for a
number of different loadcases. A representative
load is calculated for each panel. After loads for
each component have been obtained from a struc-
ture analysis, the components are optimised us-
ing the iterative procedure of optimising, check-
ing and retraining the NNs as described in §5.1.
The newly found ‘optimal’ panels are put into the
global structural model to obtain the new load-
ing conditions for all panels. The optimisation is
done again, but with updated loads as long as the
loads obtained from the global structure change.

5.4 Distributed computing implementation

Since all panel optimisations are independent,
the local level process (§5.1) can be parallelised

to a large extent using multiple computers, thus
speeding up the overall optimisation process.
This means that the GA panel optimisation, but
more importantly, the time-consuming FE checks
of optima and NN (re)training cycles are dis-
tributed among several computers in a LAN. The
aforementioned procedures are implemented in
a distributed manner as shown in the following
pseudo code routine:

main(){
if(no datasets loaded){

tasklist(make initial NN datasets);
}
while(structure loadpaths keep changing AND

it1<max structure it){
task(Structure analysis);
while(components not accurate

AND it2<max component it){
tasklist(Optimize components);
tasklist(Check optima w. FE);
tasklist(Retrain NNs);
it2++;

}
it1++;

}
}

In this routine the task() and
tasklist() commands indicate that a
queue of tasks is formed of which all the
members are sent to the slave machines to be
executed.

6 Optimisations

The results of three optimisation runs are pre-
sented. Results are obtained using a Java imple-
mentation of the proposed distributed computing
optimisation algorithm written at the University
of Twente.

6.1 Setups

1. A (large) series of components only (spar
panels) using the additional rules in §5.2.
PATRAN/NASTRAN analyses are used on
7 HP-UX machines @400MHz.

2. A structure run (as introduced in §5.3)
using simple skin optimisation (thickness
only) for 18 skins. All 9 ribs and 18 spars
are fully optimised (parameters are stated
in §2). ANSYS analyses are used on 20
windows machines @2.6GHz.

5

J.O. ENTZINGER*, R. SPALLINO** , W. RUIJTER*

3. As 2. but for 36 skins, 18 ribs and 36 spars,
using 27 windows machines @2.6GHz.

6.2 Optimisation constraints

Linear buckling and local strain constraints have
to be satisfied for all panels. Extra constraints for
the respective setups are:

1. In all spars except the 6 lower ones (front
and rear) access holes are required.

2. Topologies 9b and 19-21 as shown in figure
5 are not taken into account.

3. In all spars except the 4 upper ones
(front and rear) access holes are required
and no longitudinal stiffeners are allowed.
Topologies 9b and 19-21 as shown in figure
5 are not taken into account.

It must be mentioned that the structure optimi-
sations (setup 2 and 3) a non-realistic global
loadcases and constraints and are used for testing
and illustrative purposes only. The components
only run is an early actual optimisation run.

Loading:

• Spars: combined shear and bending

• Ribs: shear only

• Skins: combined compression and shear

• Structure: global torsion and bending load-
cases

Topologies used for spar panels are depicted in
figure 5. Panels are rotated 90 degrees compared
to the global structure. For ribs only topologies
with transverse stiffeners are taken into account
(rib topologies differ in no. of stiffeners only).

New topologies can easily be added. Also
topologies using trusswork instead of composite
panels could be implemented, however this is be-
yond the scope of the current research.

7 Results

Some typical features of the optimisation results
are highlighted.

PSfrag replacements

2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

9b 19 20 21

1

Fig. 5 Panel configurations that can be chosen in op-
timisation

7.1 Convergence

A components only optimisation (setup 1) with
application of the extra rules mentioned in §5.2
typically converges in 50-80 feedback iterations
(depending on the problem complexity) and takes
about 18 hours to complete on 7 HP-UX worksta-
tions.

The structure optimisations (setups 2 and 3)
needed 2-3 structure iterations to converge, using
a fixed number of 35 component (NN feedback)
iterations. With an average FE solving time of ca.
1 minute per panel the optimisations completed
in 8-9 hours.

Runtimes are indications. During the process
some machines were not available all the time.
Also the speed is strongly dependent on the mesh
sizes used. Nevertheless, it is clear that overnight
optimisation of a complete structure is possible
when enough computers are available.

7.2 Optimised design

A picture of the optimised spars is shown in fig-
ure 6. Keep in mind that all configurations are
rotated 90 degrees compared to the ones depicted
in figure 5. It is clear that for larger panels, more
stiffeners are chosen to prevent buckling. A re-

6

Multilevel Distributed Structure Optimization

markable fact is the appearance of holes in panels
where they were not required, probably due to the
weight the hole itself saves. Surrounding a hole
by stiffeners seems by far the best option when a
hole is required. Addition of new topologies with
one or more holes, more than 2 transversal stiff-
eners and 2 or more longituninal stiffeners might
be attractive for upper panels in the rear spar, ac-
cording to this result.

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y Z

X

Y Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y Z

(a) Front spar

X

Y Z

X

Y Z

X

Y

Z

X

Y

Z

X

Y Z

X

Y Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

(b) Rear spar

Fig. 6 Optimised designs (with realistic load-
cases)

In figure 7 the optimised structure designs
are depicted. As can be seen more stiffeners
are chosen in the lower panels, for they typically
have a higher loading. The influence of stiffener
placement can be clearly seen in the rear spar of
the first structure, which has longitudinal stiffen-
ers placed divergently towards the lower end (to-
wards higher bending).

(a) Setup 2 (b) Setup 3

Fig. 7 Optimised designs (loadcases are not re-
alistic)

8 Conclusions

• The proposed program can be a powerful
design tool as it allows overnight evalua-
tion of design decisions such as:

– Use of different materials

– Different hole placement throughout
the structure

– Use of different variables (i.e. fixed
or variable stiffener heights)

– Allowance of different topologies

• The effect of load changes on the optimal
design can be quickly evaluated

• The feedback of the FE outputs of prelimi-
nary optima to the NN is essential to reach
an accurate optimum

• The use of additional rules (see §5.2)
greatly improves the efficiency and effec-
tiveness of the optimisation

7

J.O. ENTZINGER*, R. SPALLINO** , W. RUIJTER*

• The robustness of the routine is not proven,
though the fact that optima can be repro-
duced whithin narrow bounds with differ-
ent initial NN training sets and other GA
random seeds indicates convergence to a
global optimum

• Integrated structure optimisation is rela-
tively efficient, for later iterations benefit
of (locally) well trained NNs from previous
iterations (due to the fact that only loading
changes).

• Neural Network training time can become
dominant for NNs with large datasets (typ-
ically favourable topologies with many
variables)

9 Acknowledgement

The contributions of Jeroen Hol and Jelmer Wind
are highly appreciated.

References

[1] W.M. Jenkins. Neural network-based approxi-
mations for structural analysis. Developments
in Neural Networks and Evolutionary Computing
for Civil and Structural Engineering, pages 25–
35, 1995.

[2] L. Ziemianski Z. Waszczyszyn. Neural networks
in mechanics of structures and materials - new re-
sults and prospects of applications. Proceedings
of European Conference on Computational Me-
chanics, München, 1999.

[3] S. Rizzo R. Spallino. Optimal design of lami-
nated composite plates. Computer Aided Opti-
mum Design of Structures IV, Boston, 1999.

[4] G. Giambanco R. Spallino, S. Rizzo. Evolu-
tion strategies for the shakedown optimal design
of r.c. framed structures. European Congress on
Computational Methods in Applied Science and
Engineering, Barcelona, 2000.

[5] M.G. Kay C.R. Houck, J.A. Joines. A Genetic
Algorithm for Function Optimization: A Matlab
Implementation. GAOTv5 Manual (Genetic Al-
gorithm Optimization Toolbox), 1998.

8

