
24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
   

CONTROLLING LINEAR FLEXIBLE SYSTEMS 
DYNAMICS BY USING ACTIVE 

CONTROL WITH OPTIMAL CONTROL THEORY 
 

Rifki  
Department of Aeronautics and Astronautics Engineering 

Institute of Technology Bandung  
 

Keywords: optimal input signals, optimal trajectory, performance index, linear regulator, 
nonzero set point tracking 

 
 
Abstract  

Controlling flexible systems dynamics is 
always a challenge in developing a control 
system. Maneuvers done by a flexible system 
will induce unwanted vibrations residue, which 
usually disturb the system performances. Thus 
in order to control the dynamics of the system; 
active control systems were developed by using 
optimal control theory. These controllers 
generate optimal input signals, which drive the 
systems to follow optimal trajectories that 
minimize the performance indexes and satisfy 
certain criterions. Linear regulator and nonzero 
set point tracking were the criterions used in 
this research. The applications of these 
controllers on the flexible systems improve the 
flexible systems dynamics. 

1 General Introduction 

1.1 Background  
On very flexible systems, vibrations have 

become a more challenging problem because 
unwanted vibrations can easily induce these 
kinds of system. Vibrations are usually 
unwanted because, at certain levels, they cause 
disturbances on system performances, e.g. 
changes on satellites attitude. They can even 
cause structural failures on big structures, such 
as bridges, aircraft wings, tall buildings, solar 
panels etc. Therefore, in order to control these 
unwanted vibrations, methods need to be 
developed. 

 
Fig. 1. Satellite with Flexible Solar Panels 

Some methods that are used to control the 
vibrations on flexible systems, such as adding 
system stiffness, adding dampers into the 
system and using input shaping method, have 
been developed. In this research, active 
vibrations control that uses optimal control 
theory were developed. These controllers 
generate optimal input signals that drive the 
flexible systems to follow optimal trajectories 
that minimize the performance indexes and 
satisfy certain criterion. 

1.2 Used assumptions 
In this research, the flexible systems were 

modeled as 2-Degree of Freedom (DOF) and 4-
DOF linear time-invariant spring-mass systems 
with zero damping characteristic ( 0=ζ ). The 
effects of friction on the systems were 
considered negligible and external force was 
given to only one of the masses at the time. All 
state variables were assumed could be used as 
feedback, therefore the systems were considered 
observable. Linear regulator and nonzero set 
point tracking were the criterions used in this 
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research. These two criterions were used to 
develop two different controllers separately. 

1.3 General procedures 
In doing this research, the linear time-

invariant flexible systems equations of motion 
were first derived. Then, the normal mode of the 
flexible systems were analyze. State spaces of 
the systems were then formed based on the 
equations of motion. The controllability and the 
observability of the systems were tested first 
before the implementation of the optimal 
control theory. All simulations were done by 
using MATLAB® and SIMULINK®. The 
simulations results were then analyzed.  

2 Experiment 

2.1 Equations of motion 
This experiment used the following 

physical models to derive the mathematical 
model of the linear time-invariant flexible 
systems in the form of equations of motion. 

 
Fig. 2. 2-DOF Spring-Mass System 

 
Fig. 3. 4-DOF Spring-Mass System 

By using Newton’s second law of motion 
and free body diagram, the following general 
form of equations of motion for 2-DOF and 4-
DOF are obtained. 

[ ]{ } [ ]{ } { }iFXKXM =+&&  (1) 

Where subscript i define onto which mass the 
external force was being applied. Several 
equations of motion were obtained. 

2.2 Normal mode analysis 
The linear time-invariant flexible systems 

used in this research have the following 
configurations. The 2-DOF system has a 
configuration as the following. 

m1 (kg) m2 (kg) k (N/m) 
2 3 3 

There are two configurations for 4-DOF system. 
The followings are the first and second 
configuration respectively. 
m1 

(kg)
m2 

(kg)
m3 

(kg)
m4 

(kg) 
k1 

(N/m) 
k2 

(N/m)
k3 

(N/m)
1 1.2 1.5 1 2 1.8 2.2 
1 1.2 1.5 1 3 2.7 3.3 

With the help of MATLAB®, by using the 
equation of motion with zero external force, the 
normal mode of the linear time-invariant 
flexible systems were analyzed. The for 2-DOF 
system, the eigen values are as the following. 

1λ  2λ  
2.5 0 

Hence, the natural frequencies are as the 
following. 

1ω  (Hz) 2ω  
0.2516 0 

The normal modes are as the following. 

 
Fig. 4. 2-DOF System Normal Modes 

While for the 4-DOF systems, for the first and 
second configuration the following eigen 
values, respectively, are obtained 

1λ  2λ  3λ  4λ  
5.3031 3.6667 0 1.0635 
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7.9547 5.5 0 1.5953 
  Therefore, the following natural frequencies 
for both configurations, respectively, are 
obtained. 

1ω  2ω  3ω  4ω  
0.3665 0.3048 0 0.1641 
0.4489 0.3733 0 0.201 

Consequently, the following normal modes are 
obtained for system with the first configuration. 

 
Fig. 5. 4-DOF System, First Configuration, Normal 

Modes 

4-DOF system with the second configuration 
has similar normal modes.  

2.3 State space 
In the control system application, it is more 

convenient to use state space. Hence, the linear 
time-invariant flexible systems equations of 
motion were then transform into state spaces. 
The general form of the systems state spaces 
was then obtained. 
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Where subscript i define onto which mass the 
external force was being applied. Several state 
spaces were obtained. 

2.4 Optimal control theory application 
Before the application of the optimal 

control theory, the linear time-invariant flexible 
systems controllability and observability have to 
be tested first. The controllability of the systems 
can be tested by using the controllability Matrix. 

[ ]BABAABBS n 12 −= L  (3) 

Where n is the number of the state variables. 
For a system to be completely controllable, it is 
necessary and sufficient that the controllability 
matrix has a rank of n. By using MATLAB®, it 
could be seen that all flexible systems 
controllability matrixes have a rank of n. 

While for the observability, because all the 
state variables were assumed could be used as 
feedback, the systems were assumed observable. 

Since the controllability and observability 
condition of the linear time-invariant flexible 
systems had been tested, the optimal control 
theory could then be applied onto the systems 
accordingly. There were two criterions used in 
this research. They were linear regulator and 
nonzero set point tracking.  

The linear regulator controllers were 
developed by finding a solution for the 
following equations. 

( ) )(tGxtu =∗  (4) 

( ) ( ) ( )[ ]∫ += ft

t

TT dttRuutQxtxJ
0

 (5) 

With 

PBRG T1−−=  (6) 

 
Fig. 6. Flexible System with Linear Regulator 

Controller Block Diagram 

The nonzero set point tracking controllers 
were developed by finding a solution for the 
following equations. 

 ( ) 0
1 )0()( zHtGxtu c
−∗ +−=  (7) 

( ) ( ) ( )[ ]∫ ′′+′′= ft

t

TT dttuRutxQtxJ
0

 (8) 

With 
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PBRG T1−−=  (9) 

( ) ( ) BAEH c
10 −

−=  (10) 

 
Fig. 7. Flexible System with Nonzero Set Point 

Tracking Controller Block Diagram 

Both, linear regulator and nonzero set point 
tracking solution were obtained by solving 
Riccati’s equations. 

PAPAPBPBRQ TT ++−= −10  (11) 

MATLAB® was used to solve Riccati’s 
equations.  and  are respectively state and 
input weighting matrixes. Several weighting 
matrixes were used in this research. They were 

, , 

Q R

[ ] nnIQ ×= [ ] nnIQ ×=10 [ ] nnIQ ×= 100 , 
,  and [ ]01.0=R [ ]1=R [ ]10=R .  

For 2-DOF system, the solutions for linear 
regulator criterion were obtained by varying  
over a constant  and also by varying  
over a constant , while the external 
force was applied to only one of the masses. 
The same processes were repeated for the other 
mass.  The nonzero set point tracking criterion 
solutions were obtained in a similar way. 

Q
[ ]1=R R
[ ] nnIQ ×=

For 4-DOF systems, for both 
configurations, the solutions for linear regulator 
criterion were obtained by varying Q  over a 
constant , while the external force was 
applied to only one of the masses. The same 
processes were repeated for the other mass.  The 
nonzero set point tracking criterion solutions 
were obtained in a similar way. For the systems 
with linear regulator criterion, the external force 
was considered as a disturbance. 

[ ]1=R

 
Fig. 8. Impulse Disturbance for Linear Regulator (F 

vs. time) 

SIMULINK® was then used to simulate the 
linear time-invariant flexible systems dynamics, 
which had been equipped with controllers that 
were developed by using the optimal control 
theory. The following simulation blocks, 
respectively, were used to represent the 4-DOF 
linear time-invariant flexible systems, which 
had been equipped with the control systems that 
were developed by using linear regulator and 
nonzero set point tracking criterion. The set 
points for 2-DOF systems were 4 m, 6 m and 8 
m. For the 4-DOF systems, the set points for the 
systems with the first configuration were 4 m, 6 
m and 20 m. While systems with the second 
configuration had the following set points, 2.5 
m, 4 m and 13 m. 

 
Fig. 9. Simulation Block of the 4-DOF Systems 

with Linear Regulator Controller 

 
Fig. 10. Simulation Block of the 4-DOF Systems 
with Nonzero Set Point Tracking Controller 
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3 Results and Discussions 

3.1 2-DOF Linear time-invariant flexible 
systems 

3.1.1 Linear regulator 

3.1.1.1 Variation of Q  over a constant [ ]1=R  
For 2-DOF systems with external force 

being applied onto the first mass, the following 
results were obtained. 

x1 x2 v1 v2 

Q= [I ] 1.2191 0.1951 2.4241 1.77
Q=10* [I ] 5.089 -0.6169 5.5096 3.9898
Q=100* [I ] 18.351 -4.2089 13.1683 12.5312

Optimal Gain (G )

 

 
Fig. 11. Total inputs on m1 and optimal control 

signal, for  variations (F vs. time) Q

 
Fig. 12. m1 and m2 optimal trajectories with F on m1 

for  variations (x vs. time) Q

 
Fig. 13. m1 and m2 optimal velocities with F on m1 

for  variations (v vs. time)  Q

x1 x2 x1 x2 

Q= [I ] 0.626 0.645 20 18
Q=10* [I ] 0.228 0.24 12.5 11
Q=100* [I ] 0.074 0.079 15 13.5

Peak Response (m) Settling Time (sec)

 
Simulations showed that bigger  caused 

the systems to reached their destinations faster 
and, consequently, bigger inputs were needed. 

Q

2-DOF systems with external force being 
applied onto the second mass gave similar 
simulation results. 

3.1.1.2 Variation of  over a constant R
[ ] nnIQ ×=  
For 2-DOF systems with external force 

being applied onto the first mass, the following 
results were obtained. 

x1 x2 v1 v2 

R=0.01 18.351 -4.2089 13.1683 12.5312
R=1 1.2191 0.1951 2.4241 1.77
R=10 0.2943 0.1529 1.1302 1.0459

Optimal Gain (G )

 

 
Fig. 14. Total inputs on m1 and optimal control 

signal, for  variations (F vs. time) R

 
Fig. 15. m1 and m2 optimal trajectories with F on m1 

for  variations (x vs. time) R
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Fig. 16. m1 and m2 optimal velocities with F on m1 

for  variations (v vs. time) R

x1 x2 x1 x2 

R=0.01 0.074 0.08 9.5 8
R=1 0.626 0.645 20 18
R=10 1.305 1.5 32 30

Peak Response (m) Settling Time (sec)

 
Bigger  caused smaller inputs; 

consequently caused the systems to take more 
time to reached their destinations. 

R

2-DOF systems with external force being 
applied onto the second mass gave similar 
simulation results. 

3.1.2 Nonzero set point tracking 

3.1.2.1 Variation of Q  over a constant [ ]1=R  
The simulations were done for several 

maneuver destinations, which were 4 m, 6 m 
and 8 m.  

H c (0) -1

x1 x2 v1 v2 z0

Q= [I ] 1.2191 0.1951 2.4241 1.77 1.4142
Q=10* [I ] 5.089 -0.6169 5.5096 3.9898 4.4721
Q=100* [I ] 18.351 -4.2089 13.1683 12.5312 14.1421

Optimal Gain (G )

 

 
Fig. 17. Optimal input on m1 for variations of  (F 

vs. time) 
Q

 
Fig. 18. m1 and m2 optimal trajectories with F being 
applied on m1 for variation of Q  (x vs. time) 

 
Fig. 19. m1 and m2 optimal velocities with F being 
applied on m1 for variation of Q  (v vs. time) 

x1 x2 x1 x2 

Q= [I ] 4.206 4.215 15 13
Q=10* [I ] 4.224 4.282 7.5 6
Q=100* [I ] 4.253 4.463 10 8

Peak Response (m) Settling Time (sec)

 
Simulations showed that bigger  caused 

the systems to reached their destinations faster 
and, consequently, bigger inputs were needed. 

Q

The simulation results for the other 
maneuver destinations were similar. These 
results were obtained from 2-DOF systems 
simulation with external force being applied 
onto the first mass. Systems with external force 
being applied onto the second mass gave similar 
simulation results. 

3.1.2.2 Variation of  over a constant R
[ ] nnIQ ×=  
The simulations were done for several 

maneuver destinations, which were 4 m, 6 m 
and 8 m. 

H c (0) -1

x1 x2 v1 v2 z0

R=0.01 18.351 -4.2089 13.1683 12.5312 14.1421
R=1 1.2191 0.1951 2.4241 1.77 1.4142
R=10 0.2943 0.1529 1.1302 1.0459 0.4474

Optimal Gain (G )
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Fig. 20. Optimal input on m1 for variation of  (F 

vs. time) 
R

 
Fig. 21. m1 and m2 optimal trajectories with F being 
applied on m1 for variation of  (x vs. time) R

 
Fig. 22. m1 and m2 optimal velocities with F being 
applied on m1 for variation of  (v vs. time) R

x1 x2 x1 x2 

R=0.01 4.253 4.463 10 8
R=1 4.206 4.215 15 13
R=10 4.211 4.206 25 21

Peak Response (m) Settling Time (sec)

 
Bigger  caused smaller inputs; 

consequently caused the systems to take more 
time to reached their destinations. 

R

The simulation results for the other 
maneuver destinations were similar. These 
results were obtained from 2-DOF systems 
simulation with external force being applied 
onto the first mass. Systems with external force 
being applied onto the second mass gave similar 
simulation results. 

3.2 4-DOF Linear time-invariant flexible 
systems 

3.2.1 Linear regulator 
The following results were obtained from 

4-DOF systems, the first configuration, 
simulations where the external force was 
applied only to the first mass. 

x1 x2 x3 x4

Q= [I ] 2.5067 -1.3278 0.8703 -0.0492
Q=10* [I ] 9.1646 -4.7401 1.4541 0.4459
Q=100* [I ] 28.724 -12.378 0.5025 3.152

v1 v2 v3 v4

Q= [I ] 2.4522 1.3316 1.3415 1.1709
Q=10* [I ] 5.3225 5.3461 3.1512 3.662
Q=100* [I ] 12.548 19.0956 9.3155 11.2876

Optimal Gain (G )

Optimal Gain (G )

 

 
Fig. 23. Total input on m1 and optimal control 
signals, for variations of Q  (F vs. time) 

 

 
Fig. 24. m1, m2, m3 and m4 optimal trajectories with 

F on m1 for Q  variations (x vs. time) 
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Fig. 25. m1, m2, m3 and m4 optimal velocities with F 

on m1 for Q  variations (v vs. time) 

x1 x2 x3 x4

Q= [I ] 0.3 0.407 0.565 0.56
Q=10* [I ] 0.1 0.136 0.187 0.186
Q=100* [I ] 0.032 0.043 0.06 0.06

x1 x2 x3 x4

Q= [I ] 25 23 19 18
Q=10* [I ] 22 20 18 17
Q=100* [I ] 21 20 18 17

Peak Response (m)

Settling Time (sec)

 
Simulations showed that bigger Q  caused 

the systems to reached their destinations faster 
and, consequently, bigger inputs were needed. 

The simulations were also done for the 
systems with external force given to the second, 
third and forth mass, the results were similar. 
The 4-DOF systems with the second 
configuration also had similar simulation 
results. 

3.2.2 Nonzero set point tracking 
The following results were obtained from 

4-DOF systems, the second configuration, 
simulations where the external force was 
applied only to the first mass. The maneuver 
destinations were 2.5 m, 4 m and 13 m. 

H c (0) -1

x1 x2 x3 x4 z0

Q= [I ] 2.5322 -1.4685 1.0377 -0.1014 2
Q=10* [I ] 10.103 -6.1804 2.2308 0.1716 6.3246
Q=100* [I ] 32.657 -17.344 1.8304 2.856 20

v1 v2 v3 v4

Q= [I ] 2.4626 1.0771 1.2458 1.0275
Q=10* [I ] 5.4959 4.4315 2.6004 3.1787
Q=100* [I ] 12.857 16.7328 7.1824 9.8663

Optimal Gain (G )

Optimal Gain (G )

 

 
Fig. 26. Optimal input on m1 for variations of Q  (F 

vs. time) 

 

 
Fig. 27. m1, m2, m3 and m4 optimal trajectories with 

F on m1 for Q  variations (x vs. time) 
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Fig. 28. . m1, m2, m3 and m4 optimal velocities with 

F on m1 for Q  variations (v vs. time) 

x1 x2 x3 x4

Q= [I ] 2.662 2.64 2.66 2.677
Q=10* [I ] 2.711 2.735 2.864 2.827
Q=100* [I ] 2.712 2.75 2.886 2.846

x1 x2 x3 x4

Q= [I ] 16 14 13 12
Q=10* [I ] 13 12 11.5 11
Q=100* [I ] 13 12 11.5 11

Peak Response (m)

Settling Time (sec)

 
Simulations showed that bigger Q  caused 

the systems to reached their destinations faster 
and, consequently, bigger inputs were needed. 

The simulation for the other destinations 
gave similar results. Simulations were also done 
for the systems with external force given to the 
second, third and forth mass, the results were 
similar. The 4-DOF systems with the first 
configuration also had similar simulation 
results. The maneuver destinations for the 
systems with the first configuration were 4 m, 6 
m and 20 m. 

4 Conclusions  
The application of control systems that 

were developed by using linear regulator 
criterion on linear flexible systems can reduce 
vibration residues, which are caused by force 
vibration, well. 

Linear flexible systems can do rest-to-rest 
maneuver with several destinations; the 
destinations are used as the set points, by using 
the controllers that were developed by using 
nonzero set point tracking criterion. Vibration 
residues, which are caused by the rest-to-rest 
maneuvers, can also be controlled by using 

control systems that were developed by using 
nonzero set point tracking criterion. 

Variations on states weighting matrix Q  
will be varying states trajectories optimization. 
The bigger the value given to Q  the more 
optimal the states trajectories will; lesser time 
needed to reach their destinations. Variations on 
inputs weighting matrix  will be varying input 
signal, which will drive the systems to follow 
optimal trajectories, optimization. The bigger 
the value given to , the more optimal will the 
input signals be; smaller inputs needed by the 
systems to reach their destinations. 

R

R

The best control system that was obtained 
from this research was acquired by using  

[ ] nnIQ ×= *10 and 1=R . Inputs and trajectories 
that are achieved by controllers, which are 
developed by using this combination of 
weighting matrixes, are the most optimal ones; 
compare to inputs and trajectories achieved by 
using other controllers developed in this 
research. 
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6 Nomenclatures 

6.1 Notations 

A  System dynamics Matrix 
A  Closed loop system dynamics matrix 
B  Inputs matrix 
E  Controlled variables matrix 
F  External force 
{ }iF  Force vector on i-mass 
G  Feed back gain 

( )0cH   to  transfer function ( )tu '0
∗

0z
J  Performance Indexes 
[ ]K  Stiffness matrix 
k  Stiffness coefficient 
[M ]  Mass matrix 
m  Mass 
P  Riccati’s equation solution 
Q  State variables weighting matrix 
R  Input weighting matrix 
S  Controllability matrix 
t  Time variable 
( )tu  Input vector 
( )tu∗  Optimal input vector 

v  Velocity 
{ }X  Displacements vector 
{ }X&&  Accelerations vector 
( )tx  State variable vector 
( )tx∗  Optimal trajectories vector 

x  State variable or displacement 
0z  Set points 

6.2 Greeks 

λ  Eigen value 
ω  Angular frequency 
ζ  Damping characteristic 

6.3 Superscript 
-1 Inverse of a matrix 
* Optimal or minimum 
‘ Shifted variables 
T  Transpose of a matrix 

6.4 Subscript 
0 Initial conditions 
f  Final conditions 
i  Define onto which mass the external 

force was being applied 
n  Number of state variables 

10 


