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Abstract  
Bifurcation diagram of transonic flutter, either 
observed in the wind tunnel tests or predicted by 
the mathematical model, is classified as a sub-
critical Hopf bifurcation type, which means that 
the LCO type flutter may occur at lower dy-
namic pressure than the nominal flutter by more 
than 10 %. The present authors also developed 
the analytical method for the closed loop bifur-
cation diagram using a continuation method. 
Based on this method, the authors the possibility 
that the robust controller may bring about a 
larg decrement of LCO flutter dynamic pressure.  

1  Introduction 
In transonic regions, flutter often takes the form 
of a limit cycle oscillation (LCO) caused by the 
nonlinear behavior of the transonic aerodynam-
ics due to a shock wave moving on the wing 
surface coupled with the flow separation. The 
present authors have developed a nonlinear 
mathematical model that can explain the most of 
the bifurcation characteristics observed in the 
series of transonic wind tunnel tests executed at 
the National Aerospace Laboratory (NAL, now 
the Japan Aerospace Exploration Agency) for a 
high aspect ratio wing model [1].  

An efficient method to increase the flutter 
velocity in the transonic region may contribute 
greatly to aircraft performance improvement 
because in this region there is a phenomenon 
known as a transonic dip where the flutter ve-
locity drops significantly against a flight Mach 
number. Active control technology of flutter is 
one of the most promising technologies that en-
able to increase the flutter velocity. The present 

authors proposed a practical control law design 
method that produces a robust controller against 
the model uncertainty [2]. 

Bifurcation diagram of transonic flutter, ei-
ther observed in the wind tunnel tests or pre-
dicted by the mathematical model, is classified 
as a subcritical Hopf bifurcation type, which 
means that the LCO type flutter may occur at 
lower dynamic pressure than the nominal flutter, 
by more than 10 %. The present authors also 
developed the analytical method for the closed 
loop bifurcation characteristics using a 
continuation method [3]. Making use of these 
methods, the authors discusses in this paper the 
possibility of decrease in LCO flutter dynamic 
pressure caused by control, in particular, by a 
robust controller. 

2  Nonlinear Mathematical Model for Tran-
sonic Flutter 

2.1 Experimental Observation of Bifurcation 
in Transonic Flutter 

Figure 1 shows a wind tunnel model of a 
high aspect ratio wing. It has a leading edge- 
and a trailing edge-control surface (shown as 
hatching parts). They are used for active flutter 
control research [4]. The wing has an inflated 
middle part where two sets of electric motors 
for control are installed. For LCO investigation 
in the wind tunnel tests, a leading edge control 
surface is used as a source of excitation and 
wing response is measured by four accelerome-
ters and seven sets of torsion and bending strain 
gages, which are fixed along an aluminum spar 
of the wing. 
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Fig. 1 High aspect ratio wing model 

Fig. 4 Bifurcation diagram obtained 

Fig. 2 Time history of nominal flutter occurrence
during the increase of the wind tunnel pressure. 

Fig. 3 Quasi-steady decrease of the dynamic pressure 
at the saddle-node bifurcation 

In the series of wind tunnel experiments at 
the transonic wind tunnel of NAL, it was turned 
out that this wing behaves a typical transonic 
flutter. The wing has a minimum dynamic pres-
sure at a transonic region (transonic dip) and 
every flutter has the form of LCO. In each flut-
ter, when the tunnel pressure is increased as 
shown at the bottom time chart in Fig. 2 as a 
typical case of Mach 0.8, the wing jumps up to 
LCO at a specified (nominal) dynamic pressure 
as shown at the top chart in the figure. (Since 
this figure shows the active flutter test result [4], 
the LCO flutter is stopped right after its occur-
rence by activating a trailing edge control sur-
face as shown at the middle chart.) Successive 
investigation cleared that, even at lower dy-
namic pressure than the nominal pressure stated 
above, the wing can be brought into LCO state 
if it’s excited above a certain energy level. Once 
LCO state is attained, it is kept continuing even 
after removing the excitation. LCO thus attained 
is stabilized again if the tunnel pressure is fur-
ther decreased. These phenomena are presented 
in Fig. 3 where the LCO is established by a 
leading edge excitation as shown at the middle 
chart in this case, and continues to oscillate even 
after removing the excitation. Then LCO con-
tinues to oscillate during the quasi-steady de-
crease of the wind tunnel pressure until it ceases 
to rest at a certain value of the pressure. That 

point corresponds to a saddle-node bifurcation. 
Figure 4 summarizes these phenomena 

found in the tests as a bifurcation diagram 
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Fig. 5 Bifurcation diagram of the math model with opti-

mized parameters and the experimental results. 

where the LCO amplitude is depicted against 
the dynamic pressure. In this figure the stability 
boundary, or unstable limit cycle expressed by 
the crosses, has a deviation and the stable region 
under the boundary is rather narrow. Disturb-
ances around the wing such as turbulence in the 
wind tunnel flow, the flow separation occurred 
at the wing surface, etc., may decrease the stable 
region in the experimentally obtained diagram. 

2.2 Nonlinear Mathematical Modelling 
The first author et al. have developed a 

nonlinear mathematical model in the form of 2-
DOF, finite state nonlinear differential equation 
[6]. Introducing the fourth order nonlinearity to 
the generalized aerodynamic damping terms, 
they have obtained the following sixth order 
nonlinear differential equation, 

[ ] 6R, zqq, Bu;   xx∆AAxx T
NL ∈=++= &&  (1) 

where q is the generalized coordinates and z is 
the augmented variable expressing the unsteady 
aerodynamic delay. The matrix A is a linear part 
of the system matrix and is an ordinary matrix 
for flutter analysis. It takes a form as, 
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In eq. (4), M, C, and K are mass, structural 
damping, and stiffness matrices, respectively, 
used in the following fundamental aeroelastic 
equation of a flexible wing. 

afKqqCqM =++ &&&  (3) 

The aerodynamic term fa in right hand side 
is approximated by the finite state form: 
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where ),,( λλ −−=Λ Ldiag . 
The matrix ∆ANL in eq. (1) represents a 

nonlinear terms and has the following form. 
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where the diagonal components of the aerody-
namic damping part 
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where aa11 and aa22 are the aerodynamic damping 
coefficients for torsion and bending deflection, 
respectively. The parameters β’s and γ’s are free 
parameters to be determined for fitting the wind 
tunnel test data. When the parameters β’s and 
γ’s are set to be zero, the equation (1) is reduced 
to an ordinary linear flutter equation. 

Making a lots of efforts to search an opti-
mum combination of parameters, we have 
reached the values of β = -6.5e-3 and γ = 2.5e-5. 
Resulting bifurcation diagram is shown as a 
solid line in Fig. 5. In the figure experimental 
data are also plotted. The correspondence of the 
LCO between the math model and the experi-
ment is quite good; the amplitude of LCO is al-
most identical and the position of the saddle-
node bifurcation is exactly the same. There still 
remains a difference in unstable limit cycle; the 
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mathematical model has a wide stable area un-
der the unstable limit cycle, while the experi-
mental data shows a limited region of stability. 
As stated earlier, the main reason of this dis-
crepancy may exist in the noise effects. In real 
situation, even at the stable region disturbance 
may energize the wing to jump up to unstable 
region and push the wing to LCO state. 

Besides the state equation (1), the output 
equation is necessary to design the flutter con-
trol system since the states in the Eq. (1) com-
prises of the generalized coordinates which can-
not be observed directly. When the acceleration 
is used as an output, the output equation takes 
the form as follows, 

)(tvDuCxy ++=  (7) 

where the coefficient matrices are 
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3 Control Law Design for Flutter Suppres-
sion and Closed Loop Bifurcation Diagram 

3.1 LQG Controller Design 
To this multi-input and multi-output plant, 

the LQG synthesis method can be applied to ob-
tain the optimal full state/full order feedback 
control laws. For flutter control, the perform-
ance index can be defined by the system 
mechanical energy plus control cost as follows, 
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Since the state equation, the output equa-
tion and the performance index are provided in 
the standard form of the optimal output regula-
tor problem, the full-order output feedback con-
trol law can be derived as a combination of a 
regulator and Kalman estimator as follows [7]. 
First, the state feedback optimal regulator part 
can be expressed using an estimated state as, 

xKu ˆ1−=  (10) 

where the optimal gain K1 is given as, 

1
1
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and P1  is the solution to the following matrix 
Riccati equation. 

01
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As a state observer, the present synthesis 
method utilizes Kalman estimator; the dynamics 
of the estimator have the following formula. 

( )DuxCyKBuxAx −−++= ˆˆˆ 2
 (13) 

where the Kalman gain K2 is given by the other 
Riccati equation such as, 
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The order of this output feedback controller is 
the same as the plant. Since a full order control-
ler has in general too high an order to be im-
plemented in an on-board computer in read time 
sense, order reduction is necessary. Furthermore, 
there might be some state variables in the con-
trol law that makes a lesser contribution to the 
control performance. Using the order reduction 
method of a residualization and a balanced trun-
cation approximation, we can finally obtain the 
following form of reduced order output feed-
back control law. 

GyFzz +=&  (16a) 

Hzu =  (16b) 

3.2 Bifurcation Analysis for a Closed Loop 
System 

In this section the procedure of bifurcation 
analysis for a closed loop system is developed 
using a continuation method. The homogeneous 
equation is derived from the open loop equation 
with a control law. Substituting the control law, 
eq. (13) into the state equation (1) with the out-
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Fig. 6 Bifurcation diagram of the closed loop 
system with LQG controller 

put equation (7), we can obtain the following 
homogeneous equation for closed loop system, 
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where )21 pdpdpdpdF C(DK)KB(D)A(D)(DA −−=  
should be noticed as constant. Even though the 
dimension of the system has increased to double, 
a continuation method can be applied as an open 
loop system since the equation is the same form 
as a homogeneous one. Figure 6 shows the re-
sults of the analysis obtained for the case of 
LQG controller. In this figure an open loop bi-
furcation is depicted as well in thin solid line, 

while the closed loop bifurcation is in thick 
solid line. In designing the LQG controller, the 
design dynamic pressure is set at 30.9 kPa, and 
the weight for control is selected as 5000.  

Figure shows that the closed loop system 
comprosed of the nonlinear system and a linear 
control law can be analyzed by a continuation 
method as well as an open loop system. The 
closed loop bifurcation diagram is almost 
shifted to the right and the open loop dynamic 
pressure of 27.9 kPa can be increased to 33.4 
kPa implying 19.7% improvement. 

3.3 Robust Controller Design 

3.3.1 Design Procedure 
Robust stabilization method was applied to 
manage a mathematical model insufficiency. 
The design specification was determined to ex-
tend the open loop flutter dynamic pressure at 
Mach 0.8 by 10.7% within an allowable control 
surface activation of 1 deg deflection and 90 
deg/sec angular velocity. Furthermore, in case 
of robust design, the specification should be sat-
isfied against 10% deviation of aeroelastic pa-
rameters of the first and the second mode stiff-
ness which have the critical effect to plant sta-
bility. 

Robust stability control design based on 
left coprime factors approach was applied to this 
wing model and the reduced order controller 
was obtained by the residualization method 
yielded control laws with a certain level of ro-
bustness [4]. The design process combines clas-
sical open-loop shaping principle with an robust 
stabilization problem in the normalized coprime 
factors framework [7]. Main contents of the 
procedure are summarized here. 

Let the nominal plant model P(s) has a 
normalized left coprime factorisation such as, 

)()()( 1 sNsMsP −=  (19) 

where 

IsNsNsMsM TT =−+− )()()()(  (20) 

for all s, and ∞∈ RHsNsM )(),( are asymptoti-
cally stable proper real rational functions. The 
uncertainties in the plant can be represented in 
terms of additive stable perturbations NM ∆∆ , to 
the factors in a coprime factorization of the 
plant. Then representing the plant )(~ sP as, 

)()(~ 1
NM NMP ∆+∆+= −  (21) 

},|),({ εε <∆∈∆∆∆=∆≡
∞∞RHD MN

 (22) 

the sufficient condition of the controller that can 
stabilize the perturbed is given as 
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Fig. 7 Bode diagram of the final controller 
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Let a minimal realization of a proper plant 
be P(s) = (A, B, C, D), and X, Y be the positive 
definite solutions of the following algebraic 
Riccati solutions, 
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and the maximum value of a stability mar-
gin maxε given by the following equation, 
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where ( )XYλmax  is a Hankel norm, i. e., a 
maximum eigenvalue of the product of the posi-
tive definite solutions, X, Y. Choosing the stabil-
ity margin ε  such that max0 εε << , then, the 
state space realization of a central control-
ler )(sK I  can explicitly be given, using Doyle’s 
notation, as  
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In order to incorporate performance objec-
tives in the design process, input and output 
shaping functions Wi(s), Wo(s) are introduced 
just before and after the normal plant. The ex-
tended plant is thus given as Ge(s) = Wo(s)P(s) 
Wi(s) so that feedback controller can be given as 

)()()()( sWsKsWsK oIie +  (29) 

where a controller KI(s) is obtained from Eq. 
(16) by substituting a plant dynamics P(s) with 
Pe(s) = (Ae, Be, Ce, De). The maximum stability 
margin for an extended plant can be expressed 
accordingly as  

( )( ) 2
1

maxmax 1 −+= eee YXλε  (30) 

3.3.2 Robust Controller Design 
Robust controller was designed first by setting 
an output shaping filter as a constant as Wo = 1, 
2, 3, 5 resulting a performance of a full order 
controller as shown in Table 1. 
 
Table 1 Full-order controller performances 

oW  maxε  rmsδ  [deg] rmsδ&  [deg/s] 

1 0.3786 0.2408 50.46 

2 0.3929 0.3222 78.01 

3 0.3788 0.3991 105.5 

5 0.3401 0.5282 159.6 

 
According to the design criteria of control sur-
face activation of 1 deg deflection and 90 
deg/sec angular velocity, we decided to choose 
Wo = 2.  

Preventing an excessive control surface 
movement at a higher frequency, we placed a 

first order low pass filter as a compensator as 

1)202(
2)(

+×
=

s
sWo π

 (31) 

Furthermore, applying a notch filter in order to 
preventing a coupling to the third mode with the 
controller, we finally obtained the compensator , 
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Fig. 8 Bode diagram of the controller used in 
wind tunnel test 

 
Fig. 9 Bifurcation diagram of the closed 
loop system with robust controller 

 
Fig. 10 Bifurcation diagram of each designed 
point (robust control) 

Figure 7 shows the Bode diagram of this con-
troller where the design parameters are: maxε = 
0.3443, rmsδ =0.2384deg, and rmsδ& = 36.72deg/s. 
The stability margin therefore is ε = 0.95× 

maxε = 0.327 and the order of the controller re-
sults in 22. 

The Bode diagram of the controller that 
was used in the transonic wind tunnel testing 
carried out at NAL and attained 10.9% increase 
of flutter speed [4] is shown for comparison in 
Fig. 8. The controller is reduced to the order of 
eight. Comparing both figures we can see that 
the controller gains are almost at the same level 
and the newly designed controller would not 
enforce any excessive deflection to the control 
surface, which might prevent the control system 
locked. 

3.3.3 Bifurcation Diagram for Robust Controller 
Applying the same procedure as the LQG con-
troller, we can depict the closed loop bifurcation 
diagram for the robust controller thus designed. 
For the robust controller, the total order has in-
creased as much as 38th order. In figure 9 the 
bifurcation diagrams are compared for an open 
loop system (I), LQG controller (II) and a robust 
controller (III). In this particular numerical set-
up of the design parameters, the robust control-
ler attained the higher increase of flutter dy-
namic pressure than the LQG controller. 
 

4 Possible Decrease of Flutter Dynamic Pres-
sure due to Control 
In designing the control law, the nominal closed 
loop flutter dynamic pressure can be increased if 
the design dynamic pressure is set at higher 
value. However, the problem may occur that the 
saddle-node bifurcation point will not be in-
creased so much as the nominal point and the 
stability boundary will also be decreasing as 
shown in Fig. 10.  

In Fig. 10 the design dynamic pressures are 
increased from the left to the right as 30.9, 33.1, 

34.3, 35.5 kPa, respectively. In case of LQG 
controller, the trend of saddle-node bifurcation 
is similar to the robust controller, but the posi-
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Fig. 11 Bifurcation diagram of each designed 
point (LQG control) 

 
Fig. 12 Bifurcation diagram of the closed 
loop system with robust controller 

tion of the stability boundary is not so much 
changed as in the robust controller as shown in 
Fig. 11. In this figure, the design dynamic pres-
sures are changing in the same way as the robust 
controller. 

We tried to analyze the bifurcation diagram 
for the control law that used in the previous 
wind tunnel tests as described in the section 
3.3.2 [4]. Figure 12 shows the results of analysis, 
which shows that even though the nominal flut-
ter dynamic pressure can be increased, the sad-
dle-node point is not increased anymore. 
Though the saddle-node bifurcation has not 
been verified in the wind tunnel tests, this figure 
make caution about the possibility of great re-
duction of the effect of the control in saddle-
node point and the stability boundary. 

5 Conclusions 
The analytical method of the closed loop bifur-
cation diagram for the nonlinear system with a 
linear controller is developed using a continua-
tion method. When the robust controller is ap-
plied, it’s possible that the stability margin will 
not increase so much as a nominal flutter dy-
namic pressure in that a dynamic pressure of a 
saddle-node point is almost the same as for an 
open loop system. Even if the dynamic pressure 
can be increased by a certain amount, the LCO 
flutter may occur at a low dynamic pressure of 
no significant increase to an open loop LCO 
flutter. 
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