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Abstract

In regard to aeroelastic applications the other-
wise common yet computationally expensive ap-
proach of time-accurately solving the unsteady
Reynolds-averaged Navier-Stokes equations is
not feasible. However, a numerical method based
on the small disturbance formulation of these
governing equations, as presented here, can pro-
vide an efficient and accurate tool for predicting
aerodynamic loading. The triple decomposition,
which separates unsteady flow into a steady mean
part, a periodic perturbation and a turbulent com-
ponent, serves as the theoretical basis for their
derivation. Assuming the periodic perturbation is
small in comparison to the mean flow, higher or-
der perturbation terms emerging through the de-
composition process of the instantaneous Navier-
Stokes equations are disregarded. Furthermore,
arising turbulent correlation terms are approxi-
mated through an eddy viscosity approach, yield-
ing the time-linearized governing equations for
perturbed flow at high Reynolds number. The
Spalart-Allmaras turbulence model is selected for
describing the perturbed as well as the mean
eddy viscosity throughout the flow field. With
the restriction of the time dependent quantities to
harmonic behavior the linearized perturbed flow

Copyright c© 2004 by A. Pechloff and B. Laschka. Pub-

lished by the International Council of the Aeronautical Sci-

ences, with permission.
∗ Dipl.-Ing. Univ., Research Assistant
† Prof. em. Dr.-Ing.

equations are recast in the frequency domain as
the small disturbance Navier-Stokes equations.
Thus, the initial unsteady problem is reduced to a
steady one for the perturbation part. Insight into
the numerical aspects of the small disturbance
Navier-Stokes method (FLM-SD.NS) is provided
in a compact manner. Initial validation of FLM-
SD.NS is performed with a harmonically pitch-
ing NACA 64A010 airfoil in transonic turbulent
flow. Computational results are in good agree-
ment with experimental data, as well as time-
accurate Reynolds-averaged Navier-Stokes solu-
tions provided by the comparative solver FLM-
NS and FLOWer. Reductions in computational
time up to an order of magnitude in comparison
to FLM-NS are observed.

1 Introduction

Within the aeroelastic analysis process a thor-
ough investigation of the effects of unsteady air
loads on lifting structures demands the broad
variation of such parameters as Mach number,
Reynolds number, incidence angle, amplitude,
frequency and eigenmode. When employing
conventional time-accurate Euler or Reynolds-
averaged Navier-Stokes methods, computational
effort for the necessary permutations becomes
prohibitively high. As periodicity of the flow is
obtained only after having calculated a number
of cycles per case, simulations at low frequen-
cies become especially time consuming. Histori-
cally, the inherent problem of computational cost
has been dealt with by utilizing methods relying
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on less complex flow models. Inviscid numerical
solutions of the linear potential, transonic small
disturbance or full potential equations are effi-
ciently calculated and nowadays in widespread
aeroelastic use. In recent years such approaches
have been supplemented by the introduction of
small disturbance Euler methods, which provide
inviscid flow modelling of a higher order, while
retaining an efficient solution process.

Originating from the field of turbomachin-
ery, principal investigations based on the small
disturbance Euler equations were perfomed by
Hall and Crawley [9] for flutter/forced response
in two-dimensional cascade flows. Under the as-
sumption of harmonic motion a frequency fomu-
lation yields linear variable coefficient equations
for the complex amplitude of the field quanti-
ties. Consequently, the elimination of the time
dependency allows for an efficient numerical in-
tegration and supports the customary aeroelas-
tic modal methods. Furthermore, Lindquist and
Giles [15] have shown the suitability of the small
disturbance Euler equations for providing high
quality resolution of transonic discontinuities.

A succesful transfer of this approach to the
external flow problem in the field of aircraft aero-
dynamics was realized at the Institute for Fluid
Mechanics (Technische Universität München),
where the small disturbance Euler solver FLM-
SDEu was developed by Kreiselmaier [12]. Val-
idation results for select airfoils and wings per-
forming pitching motions in the sub-, trans- and
supersonic flow regime have demonstrated the
ability of FLM-SDEu to provide a fast means for
accurately predicting unsteady forces. In the con-
tinuing process of establishing FLM-SDEu as a
common aeroelastic tool, cooperation with the
aircraft industry has resulted in various studies
regarding the unsteady air loads associated with a
high performance aircraft wing. Specifically, the
aerodynamic effects of various eigenmodes [22],
of rigid body motions [25], as well as flap effi-
ciency with [25] and without external store [2]
have been investigated using FLM-SDEu.

Unfortunately, the afore mentioned inviscid
methods reach their limitation when confronted
with flow fields exhibiting significant viscous ef-

fects, such as flow separation or shock boundary
layer interaction. As even efficient approaches
based on viscous-inviscid coupling possess evi-
dent shortcomings in such cases and traditional
time domain solutions of the Reynolds-averaged
Navier-Stokes equations become unwieldly, ex-
tension of a small disturbance Euler method to
viscous flow becomes a promising alternative.
Once again, the development of a numerical
solver based on the the small-disturbance Navier-
Stokes equations was pioneered by the turboma-
chinery sector, where Clark and Hall [6] initially
utilize such a method for investigating stall flutter
in two-dimensional cascades and prove its feasi-
bility. Recently, the German Aerospace Center
(DLR) has taken up and extended this approach
[21]. As the application to the field of aircraft
aerodynamics becomes reasonable, the small dis-
turbance Navier-Stokes method FLM-SD.NS is
developed from the existing inviscid solver FLM-
SDEu by supplementing the additional viscous
algorithms. Additionally, the treatment of high
Reynolds number flow requires the incorporation
of a turbulence model in appropriate formulation.
The initial study is restricted to two-dimensional
flows.

2 Theory

2.1 The Navier-Stokes Equations

Unsteady compressible viscous flow is governed
by the Navier-Stokes equations. Accounting for
mesh movement, the system of partial differential
equations are expressed in non-dimensionalized
strong conservation form for a body fitted curvi-
linear coordinate system:

∂Q
∂τ

+
∂F
∂ξ

+
∂G
∂η

=
∂Fv

∂ξ
+

∂Gv

∂η
. (1)

Denoting the determinant of the coordinate trans-
formation’s Jacobian withJ = xξ yη− xη yξ, the
curvilniear state vector of conservative variables
Q is specified in relationship to its Cartesian
counterpartq as

Q = Jq = J(ρ, ρu, ρv, ρe)T . (2)
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Density ρ, the velocity componentsu and v in
Cartesianx- andy-direction, as well as the spe-
cific total energye are identified as the prim-
itive dependent variables composingq. Non-
dimensional time is represented byτ. The vec-
tors F, G represent the convective andFv, Gv
the viscous fluxes inξ- andη-direction, respec-
tively. For the sake of compactness the gener-
alized curvilinear coordinateψ is introduced, al-
lowing for a common formulation of the convec-
tive flux with

Eψ =




ρθψ
ρuθψ +Jψxp
ρvθψ +Jψyp
H θψ−Jψt p


 . (3)

By substitutingψ with ξ or η, the convective
fluxes in the individual directions are obtained,
i.e. F = Eξ,G = Eη. In analogy the generalized
viscous flux vector becomes

Evψ =




0
Jψxτxx+Jψyτyx

Jψxτxy+Jψyτyy

JψxΠx +JψyΠy


 , (4)

with Fv = Evξ andGv = Evη. In Eq. (3)θψ sub-
stitutes for the generalized contravariant velocity
modfied byJ, while H represents the total en-
thalpy per unit volume:

θψ = Jψxu+Jψyv+Jψt , H = ρe+ p. (5)

Furthermorep denotes the static pressure, con-
sidered the fifth primitive dependent variable.
The components of the Cartesian shear stress ten-
sor τxx, τyy andτxy=τyx appearing in Eq. (4) are
given for a Newtonian fluid under consideration
of Stoke’s hypothesis by

τxx = µ

(
4
3

∂u
∂x
− 2

3
∂v
∂y

)
, τyy = µ

(
4
3

∂v
∂y
− 2

3
∂u
∂x

)
,

τxy = µ

(
∂u
∂y

+
∂v
∂x

)
,

(6)
with µ being the molecular viscosity. Energy
fluxes resulting from shear stress work and heat
transfer are represented in Eq. (4) through

Πx = uτxx+vτxy−qx , Πy = uτyx+vτyy−qy . (7)

The elements of the Cartesian heat flux vectorqx

andqy obey Fourier’s law of heat conduction:

qx =
−γ

γ−1
µ
Pr

∂T
∂x

, qy =
−γ

γ−1
µ
Pr

∂T
∂y

. (8)

For air the ratio of specific heatsγ is set to1.4 and
the Prandtl numberPr to 0.72. Assuming a calor-
ically perfect gas, connectivity between the static
temperatureT andp is achieved through the ther-
mal equation of stateT = p/ρ. Supplemented by
the caloric equation of state and the definition for
e, an additional relationship betweenp and the
conservative variables is derived:

p = (γ−1)
[

ρe− (ρu)2 +(ρv)2

2ρ

]
. (9)

Final closure of the the equation system is pro-
vided through Sutherland’s law for the molecular
viscosity, formulated in respect to aerodynamic
flows as

µ= µ∞ T
3
2

1+S
T +S

, with µ∞ =
√

γ
Ma∞

Re∞
lRe∞ . (10)

The Sutherland constant is defined byS =
110[K]/T∞, with T∞ being the dimensional
freestream static temperature in Kelvin. Com-
pressible similarity to real flow conditions is re-
alized per initialization of the freestream velocity
with u∞ =

√γ Ma∞. The freestream Mach and
Reynolds number,Ma∞ and Re∞ respectively,
as well as the characteristic lengthlRe∞ used in
the formation ofRe∞, determine the freestream
molecular viscosityµ∞. Consequently, adjust-
ment ofµ∞ through these parameters allows for
viscous similarity.

In consideration of a finite volume approach
for discretizing the Navier-Stokes equations on a
structured grid,J appearing in Eq. (2) represents
the volume of an individual cell, whereas the gen-
eralized metric termsJψx andJψy in Eq. (3-5)
are the Cartesian components of the cell face nor-
mal vector for theψ-direction. Additionally,Jψt

gives the time rate of change resulting from cell
face movement for this vector. Specific definition
of the metric terms is provided in [12]. Velocity
and temperature gradients appearing in Eq. (6)
and Eq. (8), respectively, are not subjected to the
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curvilinear transformation, as a direct evaluation
in the Cartesian coordinate system is numerically
feasible.

2.2 Derivation and Linearization of the Per-
turbed Flow Governing Equations

2.2.1 The Triple Decomposition

Considering the periodic oscillation of an aerody-
namic body under steady freestream conditions,
the imposition of an organized unsteadiness onto
the viscous flow field can be observed. In regard
to the numerical simulation of this problem, the
disturbance is mathematically introduced into the
instantaneous Navier-Stokes equations Eq. (1) by
way of the metric terms. Embedded in a compu-
tational grid, the body’s movement corresponds
to a dislocation of its discretized boundary, sub-
sequently deforming the initial mesh. There-
fore, it becomes possible to separate the motion
of the spatial coordinate for each individual grid
point into a steady mean and periodically per-
turbed component, distinguished bȳand ˜ re-
spectively:

x(ξ,η,τ) = x̄(ξ,η)+ x̃(ξ,η,τ) ,
y(ξ,η,τ) = ȳ(ξ,η)+ ỹ(ξ,η,τ) . (11)

As J and the generalized metric termsJψx,y,t are
directly calculated from the coordinates, they can
be reformulated in a similar manner as

J = J̄+ J̃ , Jψx,y,t = Jψx,y,t + J̃ψx,y,t . (12)

Due to the fact that the disturbance is externally
imposed, the frequency of the unsteady turbulent
flow’s underlying organized oscillation is known.
In the following the period of oscillation is identi-
fied byT. Postulating the negligibility of higher
harmonics in the response, a triple decomposi-
tion of the flow development as suggested by
Laschka [14] becomes feasible. An arbitrary in-
stantaneous field quantityΦ is separated into a
steady mean component̄Φ, a periodic perturba-
tion Φ̃ and a turbulent fluctuationΦ′:

Φ(ξ,η,τ) = 〈Φ(ξ,η,τ)〉+Φ′(ξ,η,τ)
= Φ̄(ξ,η)+ Φ̃(ξ,η,τ)+Φ′(ξ,η,τ)

(13)

After substituting each individual primitive vari-
able in the instantaneous Navier-Stokes equa-
tions Eq. (1) with their equivalent decomposed
quantity according to Eq. (13), disjoined appli-
cation of the phase average

〈Φ(ξ,η,τ)〉 = lim
N→∞

1
N

N

∑
n=1

Φ(ξ,η,τ+n·T) (14)

and the time average

Φ̄(ξ,η) =
1
T

Z τ+T

τ
Φ(ξ,η, τ̌)dτ̌ (15)

yields two distinct sets of equations, governing
unsteady and steady mean flow, respectively. In
both cases the existent turbulent fluctuations are
exclusively composited into averaged correlation
terms, the necessary mathematical identities for
this process having been provided by Telionis
[24]. With the emergence of these turbulent cor-
relations additional unknowns are introduced into
the system, presenting a problem of closure that
will require further handling. By subtracting the
time averaged equation system from the phase
averaged one, the governing equations for the pe-
riodic perturbed flow are obtained, or as formu-
lated symbolically with the arbitrary flow quan-
tity:

Φ̃(ξ,η,τ) = 〈Φ(ξ,η,τ)〉 − Φ̄(ξ,η) . (16)

2.2.2 Treatment of Higher Order Perturbation
Terms and Turbulent Correlations

In order to demonstrate the technique described
in 2.2.1 the convective flux inξ-directionF = Eξ
is selected. Reformulating the vector’s second
componentF2 as

F2 = Jξt(ρu) + Jξx(ρu2 + p) + Jξy(ρuv)
= F20 + F21 + F22 ,

(17)
the termF21 representing the transformed mo-
mentum in Cartesianx-direction is chosen for the
specific analysis. Decomposing the metric and
the primitive quantities constitutingF21 in accor-
dance with Eq. (12) and Eq. (13), while sub-
sequently applying the phase average Eq. (14),
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yields

〈F21〉 = (Jξx + J̃ξx)(ρ̄ū2 +2ρ̄ūũ+2ρ̃ũū

+ ρ̃ū2 + ρ̄ũ2 + ρ̃ũ2 + 〈〈ρ〉u′u′ 〉+ 〈 p〉) .
(18)

In obtaining Eq. (18) the following considera-
tions have been made: First, the density fluctu-
ationρ′ has been omitted, as for non-hypersonic
freestream Mach numbers and insignificant heat
transfer the turbulence structure is similar to that
of incompressible flows (Morkovin [16]). Sec-
ond, simple mathematical identities [24] applied
after the averaging process allow for the elimi-
nation of many correlation products between the
mean, perturbed and turbulent quantities. Con-
sequently, the influence of turbulence on the mo-
mentum is reduced to the single remaining aver-
aged term〈〈ρ〉u′u′ 〉 identified as a component of
the unsteady Reynolds stress tensor.

Under the assumption of small disturbances,
i.e. the degree of unsteadiness imposed onto the
flow leads to only minor variations of the mean
steady state, higher order perturbation terms ap-
pearing in Eq. (18) are deemed negligible. In this
regard, terms composited through multiple per-
turbed primitive quantities, e.g.Jξx2ρ̃ũū, as well
as terms combining a perturbed metric with a per-
turbed primitive quantity, e.g.̃Jξx ρ̃ū2, are disre-
garded. This process marks a linearization in re-
spect to the time-dependent quantities, indicated
through an additional∗ when rewritting〈F21〉:

〈F21〉∗ = Jξx(ρ̄ū2 +2ρ̄ūũ+ ρ̃ū2

+ 〈〈ρ〉u′u′ 〉+ 〈 p〉∗)
+ J̃ξ

∗
x(ρ̄ū2 + 〈ρ〉u′u′+ p̄∗) .

(19)

Likewise, succesive deomposition, time averag-
ing with Eq. (15) and linearization yields the
steady mean part of termF21:

F̄∗21 = Jξx(ρ̄ū2 + 〈ρ〉u′u′+ p̄∗) . (20)

In analogy〈ρ〉u′u′ is identified as a steady com-
ponent of the Reynolds stress tensor. Further-
more, emerging linearized phase and time aver-
ages of the static pressure,〈p〉∗ and p̄∗ respec-
tively, constitute additional unknowns. By sub-
tracting Eq. (20) from Eq. (19) as per Eq. (16)

the sought after linearized perturbation of term
F21 is obtained to

F̃∗21 = 〈F21〉∗− F̄∗21

= Jξx(2ρ̄ūũ+ ρ̃ū2 + p̃∗)+ J̃ξ
∗
x(ρ̄ū2 + p̄∗)

+ Jξx
˜〈ρ〉u′u′+ J̃ξ

∗
x 〈ρ〉u′u′ ,

(21)
with p̃∗ = 〈p〉∗− p̄∗ being the equivalent formu-
lation for the static pressure. The periodic pertu-
bation of the Reynolds stress component is incor-
porated into Eqn. (21) through

˜〈ρ〉u′u′ := 〈〈ρ〉u′u′ 〉 −〈ρ〉u′u′ , (22)

as defined by Acharaya [1] and Norris [17].
Localizing the viscous flux vector term corre-

sponding toF21 in

Fv2 = Jξxτxx+Jξyτyx = Fv21+Fv22 (23)

asFv21, subsequent application of the triple de-
composition and linearization results in

F̃∗v21 = 〈Fv21〉∗− F̄∗v21 = Jξx τ̃∗xx+ J̃ξ
∗
x τ̄∗xx (24)

for the perturbation part. Through basic mathe-
matical manipulation of the emerging perturbed
flow governing equations the Reynolds stress
terms isolated in Eq. (21) are extracted and in-
troduced into Eq. (24). Alignment with the cor-
responding shear stress terms yields

F̃∗v21 = Jξx(τ̃∗xx− ˜〈ρ〉u′u′)+ J̃ξ
∗
x(τ̄∗xx−〈ρ〉u′u′)

= Jξx τ̃∗tot,xx+ J̃ξ
∗
x τ̄∗tot,xx ,

(25)
with τ̃∗tot,xx and τ̄∗tot,xx representing the compos-
ited linearized perturbed and mean total shear
stress, respectively. Extending Boussinesq’s as-
sumption to the perturbed flow analysis, the con-
tribution of the Reynolds stress to the total shear
stress is approximated through the perturbed and
mean velocity gradients in conjunction with a de-
composed eddy viscosity. The perturbed compo-
nent being expressed as

τ̃∗tot,xx = (µ̄+ µ̄t)
(

4
3

∂ũ
∂x
− 2

3
∂ṽ
∂y

)

+ (µ̃∗+ µ̃∗t )
(

4
3

∂ū
∂x
− 2

3
∂v̄
∂y

)
,

(26)
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while the mean part retains the familiar formula-
tion:

τ̄∗tot,xx = (µ̄+ µ̄t)
(

4
3

∂ū
∂x
− 2

3
∂v̄
∂y

)
. (27)

Consequently, the problem of closure in respect
to the unknown Reynolds stresses is reduced to
the modelling of the perturbed and mean eddy
viscosities,µ̃∗t and µ̄t respectively. Furthermore,
a law governing the perturbed molecular viscos-
ity µ̃∗ has to be derived. The steady componentµ̄
is obtained directly from Eq. (10) when inserting
the mean static TemperaturēT∗.

In this context, triple decomposition and lin-
earization of the energy equation contained in Eq.
(1) is far more complex than for the momentum
equations. Undergoing the previously described
process, a variety of turbulent energy correlation
terms, such as Reynolds stress work and turbu-
lent heat fluxes, have to be localized in the con-
vective fluxes and appropriately incorporated into
the viscous fluxes. TakingΠx from Eq. (7), for
example, we obtain

Π̃∗
x = ūτ̃∗tot,xx+ v̄τ̃∗tot,xy+ ũτ̄∗tot,xx+ ṽτ̄∗tot,xy− q̃∗tot,x

(28)
for the perturbed component, while the mean part
yields

Π̄∗
x = ūτ̄∗tot,xx+ v̄τ̄∗tot,xy− q̄∗tot,x . (29)

Again falling back on Boussinesq, turbulent heat
flux terms are accounted for in the composites
q̃∗tot,x and q̄∗tot,x through the perturbed and mean
temperature gradients in conjunction with the de-
composed eddy viscosity. Hence, the linearized
perturbation of the total heat flux is governed by

q̃∗tot,x =
−γ

γ−1

[(
µ̄
Pr

+
µ̄t

Prt

)
∂T̃∗

∂x
+

(
µ̃∗

Pr
+

µ̃∗t
Prt

)
∂T̄∗

∂x

]
,

(30)
with the steady counterpart formulated in famil-
iar fashion as

q̄∗tot,x =
−γ

γ−1

(
µ̄
Pr

+
µ̄t

Prt

)
∂T̄∗

∂x
. (31)

The newly introduced turbulent Prandtl number
Prt is set to0.9.

2.2.3 Time Domain Formulation

Consistent application of the triple decomposi-
tion to the instantaneous Navier-Stokes equa-
tions, while treating higher order terms and tur-
bulent correlations, results in the linearized gov-
erning equations of the perturbed flow [18]. Cast-
ing the equations in a strong conservation form
equivalent to Eq. (1) yields

∂Q̃∗

∂τ
+

∂F̃∗

∂ξ
+

∂G̃∗

∂η
=

∂F̃∗v
∂ξ

+
∂G̃∗

v

∂η
. (32)

Time dependency is now restricted to the un-
known perturbed quantities, which appear only
in linear combinations with provided mean quan-
tities throughout the equation system. In this re-
gard the transformed state vectorQ̃∗ decomposes
into

Q̃∗ = J̄ q̃∗+ J̃∗ q̄∗ , (33)

the linearized Cartesian vectors of the perturbed
and mean conservative variables,q̃∗ and q̄∗ re-
spectively, being

q̃∗ =
(
ρ̃, ρ̃u∗, ρ̃v∗, ρ̃e∗

)T
, q̄∗ = (ρ̄, ρu∗, ρv∗, ρe∗)T .

(34)
With the exception of density, elements appear-
ing in Eq. (34) are defined by use of perturbed
and mean primitive variables, e.g. the momen-
tum in Cartesianx-direction is given by

ρ̃u∗ := ρ̄ũ+ ρ̃ū, ρu∗ := ρ̄ū. (35)

2.3 Closing the Equation System

2.3.1 Pressure

Applying the techniques from 2.2.1 and 2.2.2 to
the thermal equation of state, connectivity be-
tween the perturbed static temperatureT̃∗ and
pressurep̃∗ is achieved per̃T∗ = (p̃∗− ρ̃T̄∗)/ρ̄
supplemented bȳT∗ = p̄∗/ρ̄. In analogy, for-
mulations for p̃∗ and p̄∗ as functions of the
decomposed conservative variables are obtained
through Eq. (9). Disregrading turbulent ki-
netic energy terms emerging from the averag-
ing process, the linearized law governingp̃∗ be-
comes equivalent to the one used for closing the
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small disturbance Euler equations [12]. Like-
wise, p̄∗ results directly from inserting the lin-
earized mean conservative variables composing
q̄∗ into Eq. (9).

2.3.2 Molecular Viscosity

As Sutherland’s law defies standard decompo-
sition into a perturbed and mean part due to
its mathematical nature, an alternative approach
based on a first order Taylor series expansion of
Eq. (10) about the mean static temperature is pur-
sued. Consequently, the perturbed molecular vis-
cosityµ̃∗ is calculated fromT̃∗ with

µ̃∗ =
∂µ
∂T

∣∣∣∣
T̄∗
· T̃∗ =

µ̄
T̄∗+S

[
3(T̄∗+S)

2T̄∗
−1

]
· T̃∗ ,

(36)
satisfying the small disturbance consideration.

2.3.3 Eddy Viscosity

In the present study the Spalart-Allmaras turbu-
lence model [23] is employed for calculating the
perturbed as well as the mean eddy viscosity
throughout the flow field. Constructed as one ad-
ditional partial differential equation its incorpora-
tion into the existing equation system is not only
straightforward, but more importantly lends it-
self to complete linearization [6]. As the model’s
auxiliary functions (fv1, fv2, fw) are all contin-
uosly differentiable, a Taylor series expansion
becomes feasible, when standard decomposition
fails. The basic turbulence model accounts for
convection, diffusion, production and destruction
of the eddy viscosityµt as formulated in terms of
the conservative working variableµ̆ := ρν̆, with ν̆
being its primitive counterpart. The relationship
betweenµt andµ̆ is given through

µt = µ̆ fv1 , with fv1 =
χ3

χ3 +c3
v1

and χ :=
µ̆
µ

. (37)

Written in strong conservation form for curvi-
linear coordinates the equation governingµ̆ be-
comes formally similiar to Eq. (1) and therefore
is easily included into the Navier-Stokes equation
system as

∂Q5

∂τ
+

∂F5

∂ξ
+

∂G5

∂η
=

∂Fv5

∂ξ
+

∂Gv5

∂η
+T5 . (38)

The fifth components of the solution vector, the
generalized convective and viscous flux vectors,
Q, Eψ andEvψ respectively, being specified to

Q5 = Jµ̆, E5ψ = µ̆θψ , Ev5ψ = Jψx τµ̆x+Jψy τµ̆y.
(39)

The viscous flux componentEv5ψ is constructed
to allow for second order diffusion in respect toµ̆,
with the appearing viscous shear stress equivalent
termsτµ̆x andτµ̆y defined through

τµ̆x =
µ+ µ̆

σ
∂
∂x

(
µ̆
ρ

)
, τµ̆y =

µ+ µ̆
σ

∂
∂y

(
µ̆
ρ

)
. (40)

Turbulent productionPµ̆, destructionDµ̆ and first
order diffusionFµ̆ are composited into the source
term

T5 = J(Pµ̆+Dµ̆+Fµ̆) , (41)

with production being governed by

Pµ̆ = cb1
˘|ω|µ̆ and ˘|ω|= |ω|+ µ̆

ρκ2d2 fv2 . (42)

In Eq. (42)d represents the distance of the con-
sidered field point to the nearest wall,|ω| sub-
stitutes for the magnitude of vorticity, whilefv2

provides near wall dampening:

|ω|=
∣∣∣∣
∂v
∂x
− ∂u

∂y

∣∣∣∣ , fv2 = 1− χ
1+χ fv1

. (43)

Furthermore, turbulent destruction is considered
through

Dµ̆ =−cwl fw
ρ

(
µ̆
d

)2

and fw = g

(
1+c6

w3

g6 +c6
w3

) 1
6

,

(44)
with the auxiliary expressions

g = r +cw2(r6− r) and r =
µ̆

ρ ˘|ω|κ2d2
. (45)

Utilizing the nabla operator~∇, first order diffu-
sion is expressed compactly as

Fµ̆ =
ρcb2

σ

[
~∇

(
µ̆
ρ

)]2

. (46)

The calibration constantscv1, σ, cb1, cb2, κ, cw1,
cw2 andcw3 appearing in Eq. (37-46) are given
in [23]. Only fully turbulent flow is considered

       7



ALEXANDER PECHLOFF , BORIS LASCHKA

in this context, i.e. no modelling of transition is
contained in the previous equations.

Consistent application of the discussed lin-
earization techniques to the Spalart-Allmaras tur-
bulence model yields a small disturbance formu-
lation for the equations governing the perturbed
eddy viscositỹµ∗t . In analogyµ̃∗t is dependent on
the perturbed as well as the mean component of
the working variable,̃̆µ

∗
andµ̆ respectively. Con-

forming with Eq. (35),̃̆µ
∗

itself decomposes into
linear terms of its perturbed and mean primitive
quantities˜̆µ∗ := ρ̄˜̆ν + ρ̃ν̆ Accordingly, µ̃∗t is ex-
pressed through

µ̃∗t = µ̆ f̃ ∗v1 + ˜̆µ∗ f̄v1 , with f̃ ∗v1 =
3χ̄2c3

v1

(χ̄3 +c3
v1)2

χ̃∗ (47)

and χ̃∗ := µ̄−2( µ̄˜̆µ∗− µ̃∗ µ̆) . (48)

As becomes evident in Eq. (47), mean values of
functions or supplemental quantities associated
with the Spalart-Allmaras turbulence model will
appear throughout the following linearized equa-
tions. Denoted bȳ , they are obtained directly
when expressing Eq. (37-46) for the steady state,
i.e. the formulation required when calculatingµ̄t .

The strong conservation form of Eq. (38) is
retained by the equation governing˜̆µ∗

∂Q̃∗
5

∂τ
+

∂F̃∗5
∂ξ

+
∂G̃∗

5

∂η
=

∂F̃∗v5

∂ξ
+

∂G̃∗
v5

∂η
+ T̃∗5 , (49)

allowing its incorporation into the linearized per-
turbed flow equation system Eq. (32). The fifth
component of the perturbed solution vectorQ̃∗
and generalized convective flux̃E∗ψ are derived
as

Q̃∗
5 = J̄ ˜̆µ∗+ J̃∗ µ̆, Ẽ∗5ψ = µ̆θ̃(1)

ψ + µ̆θ̃(2)
ψ + ˜̆µ∗ θ̄ψ ,

(50)
respectively. Through the decomposition three
variants of the modified generalized contravari-
ant velocityθψ arise inẼ∗5ψ:

θ̃(1)
ψ = Jψxũ+Jψyṽ, θ̄ψ = Jψxū+Jψyv̄

θ̃(2)
ψ = J̃ψ

∗
x ū+ J̃ψ

∗
y v̄+ J̃ψ

∗
t .

(51)

On one hand̃θ(1)
ψ contains only combinations of

the perturbed velocities with the mean metrics,

while on the other̃θ(2)
ψ is composited by mean

velocities and the perturbed metrics, i.e. compli-

mentary toθ̃(1)
ψ . θ̄ψ being the mean state of Eq.

(5). Likewise, the fifth component of the gener-
alized viscous flux̃E∗vψ separates into

Ẽ∗v5ψ = Jψxτ̃∗µ̆x+Jψyτ̃∗µ̆y+ J̃ψ
∗
x τ̄µ̆x+ J̃ψ

∗
y τ̄µ̆y, (52)

with τ̃∗µ̆x andτ̃∗µ̆y representing the perturbed parts
of the viscous shear stress equivalent terms, e.g.

τ̃∗µ̆x =
µ̄+ ¯̆µ

σ
∂
∂x

(˜̆µ∗
ρ̄
− µ̆

ρ̃∗

ρ̄2

)
+

µ̃+ ˜̆µ∗
µ̄+ µ̆

τ̄µ̆x. (53)

τ̃∗µ̆y is obtained directly by substituting the par-
tial derivative∂/∂x in Eq. (53) with ∂/∂y and
τ̄µ̆x with τ̄µ̆y. Continuing in similar manner, the
perturbation of the turbulent source term is ex-
pressed through

T̃∗5 = J̄(P̃∗µ̆ + D̃∗
µ̆+ F̃∗µ̆ )+ J̃∗ (P̄µ̆+ D̄µ̆+ F̄µ̆) , (54)

with production being governed by the following
set of equations:

P̃∗µ̆ = P̄µ̆ ·

˜̆µ∗

µ̆
+

˜̆|ω|
∗

˘|ω|


 , ∆|ω|= ˘|ω|− |ω| , (55)

˜̆|ω|
∗
= |̃ω|∗+∆|ω|

(
f̃ ∗v2

f̄v2
+

˜̆µ∗
µ̆
− ρ̃

ρ̄
−2

d̃

d̄

)
. (56)

Eq. (56) utilizes linearized formulations of the
magnitude of vorticity and the near wall dampen-
ing function, derived as

|̃ω|∗ = |ω| −1
(

∂v̄
∂x
− ∂ū

∂y

)(
∂ṽ
∂x
− ∂ũ

∂y

)
(57)

and f̃ ∗v2 =
f̃ ∗v1 χ̄2− χ̃∗

(1+ f̄v1χ̄)2
, (58)

respectively. Furthermore, perturbed tubulent de-
struction obeys

D̃∗
µ̆ = D̄µ̆ ·

(
f̃ ∗w
f̄w

+2
˜̆µ∗
µ̆
− ρ̃

ρ̄
−2

d̃

d̄

)
(59)

and f̃ ∗w =
f̄w
ḡ

(
c6

w3

ḡ6 +c6
w3

)
g̃∗ , (60)
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with the auxiliary expressions

g̃∗ =
[
1+cw2(6 r̄5−1)

]
r̃∗ (61)

and r̃∗ = r̄


˜̆µ∗

µ̆
− ρ̃

ρ̄
−

˜̆|ω|
∗

˘|ω|
−2

d̃

d̄


 . (62)

Finally, the linearized formulation of the first or-
der diffusion term yields

F̃∗µ̆ =
2ρ̄cb2

σ
~∇

(
µ̆
ρ̄

)[
~∇

(˜̆µ∗
ρ̄

)
−~∇

(
µ̆ρ̃
ρ̄2

)]
+

ρ̃
ρ̄

F̄µ̆ .

(63)

2.4 The Small Disturbance Navier-Stokes
Equations

Having provided closure in 2.3 and subsequently
incorporating the turbulence model into Eq. (32),
the linearized perturbed flow equation is subject
to slight rearrangement in preparation of a fre-
quency domain formulation.

As has become evident, for example in Eq.
(51), decomposition and linearization yielded
two basic sets of terms throughout the equation
system: The first group, to be denoted by(1),
exclusively contains the unknown perturbed flow
quantities appearing in linear combination with
mean flow quantities or metrics, i.e. they are
homogenous in the perturbed solution vectorq̃∗.
The complementary second group, hence distin-
guished by (2), solely consists of the perturbed
metrics in linear combination with the mean flow
quantities. All terms collected in group(2) are
designated as known, because of the following
considerations: The deformation of the computa-
tional grid is prescribed through the body’s pe-
riodic motion, consequently supplying the per-
turbed metrics. Similar, the mean flow quan-
tities can be provided in advance by a steady
state Reynolds-averaged Navier-Stokes solution
for the body’s mean, i.e. reference, position.
Hence, reformulation of the linearized perturbed
flow equations as detailed in [20] isolates the(2)

denoted vector components on the right hand side

of the equation system:

∂Q̃(1)

∂τ
+

∂(F̃(1)− F̃(1)
v )

∂ξ
)+

∂(G̃(1)− G̃(1)
v )

∂η
=

−
[

∂Q̃(2)

∂τ
+

∂(F̃(2)− F̃(2)
v )

∂ξ
+

∂(G̃(2)− G̃(2)
v )

∂η

]

+T̃(1) + T̃(2) .
(64)

It is obvious from Eq. (64), that the(2) com-
ponents are exclusively reponsible for initiating
the development of the perturbed solution and
therefore are considered as the equation system’s
source terms.

Restriction of the body’s motion to a har-
monic oscillation allows the perturbed coordi-
nates of the grid deformation to be expressed as

x̃(ξ,η,τ) = x̂(ξ,η) ·eikτ , ỹ(ξ,η,τ) = ŷ(ξ,η) ·eikτ ,
(65)

having been decomposed into a time invariant
amplitude distinguished bŷ and the respective
complex time laweikτ. In this context,i repre-
sents the imaginary unit andk the known non-
dimensional frequency of the prescribed motion.
As a consequence, the linearized perturbed cell
volume and metrics result in

J̃∗ = Ĵ∗ ·eikτ , J̃ψ
∗
x,y,t = Ĵψ

∗
x,y,t ·eikτ , (66)

respectively. In order to avoid double notation,
from this point on ∗ will be dropped in connec-
tion with ˆ as the indicator of linearity. Modelling
of the flow response occurs in similar manner:
The perturbation of an arbitrary field quantity is
defined as

Φ̃(ξ,η,τ) = Φ̂(ξ,η) ·eikτ , (67)

with Φ̂ representing the quantity’s complex am-
plitude. Expressing each individual primitive
perturbation variable appearing in Eq. (64) ac-
cording to Eq. (67), results in a correspond-
ing separation for the homogenous vector com-
ponents:

Q̃(1) = Q̂(1) ·eikτ , T̃(1) = T̂(1) ·eikτ ,

Ẽ(1)
ψ = Ê(1)

ψ ·eikτ , Ẽ(1)
vψ = Ê(1)

vψ ·eikτ .
(68)

Likewise,J̃∗ andJ̃ψ
∗
x,y,t contained in the(2) vec-

tor components of Eq. (64) are replaced with Eq.
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(66). As the time laweikτ now appears linearily in
all components of the equation system, it can be
eliminated completely. Thus, a formulation for
the time invariant amplitude quantities of the flow
perturbation is obtained. Recasting the governing
equations for the complex amplitude of the state
vector, i.e.

Q̂(1) = J̄ q̂ = J̄
(

ρ̂, ρ̂u, ρ̂v, ρ̂e, ̂̆µ
)T

, (69)

ultimately yields the small disturbance Navier-
Stokes equations:

∂Q̂(1)

∂τ
+

∂(F̂(1)− F̂(1)
v )

∂ξ
+

∂(Ĝ(1)− Ĝ(1)
v )

∂η
=

Ŝ(1) + Ŝ(2)

(70)

The newly introduced source componentsŜ(1)

andŜ(2) substitute for

Ŝ(1) =−ikQ̂(1) + T̂(1) , (71)

Ŝ(2) =−
[

ikQ̂(2) +

∂(F̂(2)− F̂(2)
v )

∂ξ
+

∂(Ĝ(2)− Ĝ(2)
v )

∂η

]
+ T̂(2) .

(72)

Furthermore, the homogenous convective flux
vectors are obtained directly through the general-
ized mean jacobian matrix̄Kψ multiplied by the
Cartesian amplitude state vectorq̂:

Ê(1)
ψ =

∂Eψ

∂q

∣∣∣∣
q̄
· q̂ = K̄ψ · q̂ , (73)

K̄ψ =




0 Jψx Jψy 0 0

Jψxφ̄− ūθ̄ψ θ̄ψ +(2− γ)Jψxū Jψyū− (γ−1)Jψxv̄ (γ−1)Jψx 0

Jψyφ̄− v̄θ̄ψ Jψxv̄− (γ−1)Jψyū θ̄ψ +(2− γ)Jψyv̄ (γ−1)Jψy 0

(2φ̄− γē) θ̄ψ (γē− φ̄)Jψx− (γ−1)θ̄ψū (γē− φ̄)Jψy− (γ−1) θ̄ψv̄ γ θ̄ψ 0

−µ̆/ρ̄ θ̄ψ µ̆/ρ̄Jψx µ̆/ρ̄Jψy 0 θ̄ψ




(74)

with

θ̄ψ = Jψxū+Jψyv̄, φ̄ = [(γ−1)/2](ū2 + v̄2) . (75)

The homogenous viscous flux and the turbulent
source term vectors result in

Ê(1)
vψ =




0
Jψxτ̂xx+Jψyτ̂yx

Jψxτ̂xy+Jψyτ̂yy

JψxΠ̂x +JψyΠ̂y

Jψxτ̂µ̆x+Jψyτ̂µ̆y




, (76)

T̂(1) = J̄
(
0, 0, 0, 0, P̂µ̆+ D̂µ̆+ F̂µ̆

)T
, (77)

respectively. Amplitude terms contained in Eq.
(76-77), e.g. τ̂xx, Π̂x, τ̂µ̆x or P̂µ̆, are expressed
through the respective perturbed formulations de-
rived in 2.2.2 and 2.3 by replacing the˜ identifier
with ˆ. Let it be noted, that for the sake of clarity
the index tot has been dropped from the viscous
shear stress and energy flux terms. Finally, the
vector components compositingŜ(2) yield

Q̂(2) = Ĵ q̄ = Ĵ
(
ρ̄, ρu, ρv, ρe, µ̆

)T
, (78)

Ê(2)
ψ =




ρ̄ θ̂(2)
ψ

ρuθ̂(2)
ψ + Ĵψxp̄

ρvθ̂(2)
ψ + Ĵψyp̄

H̄ θ̂(2)
ψ − Ĵψt p̄

µ̆θ̂(2)
ψ




(79)

with θ̂(2)
ψ = Ĵψxū+ Ĵψyv̄+ Ĵψt , (80)

Ê(2)
vψ =




0
Ĵψxτ̄xx+ Ĵψyτ̄yx

Ĵψxτ̄xy+ Ĵψyτ̄yy

ĴψxΠ̄x + ĴψyΠ̄y

Ĵψxτ̄µ̆x+ Ĵψyτ̄µ̆y




, (81)

and T̂(2) = Ĵ(0, 0, 0, 0, P̄µ̆+ F̄µ̆+ D̄µ̆)
T

. (82)
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With the derivation of the small distur-
bance Navier-Stokes equations the initial un-
steady problem has been reduced to a steady one
for the complex amplitude flow quantities. As

Q̂(1) is invariant to time, the derivative∂Q̂(1)

∂τ con-
sequently would vanish from Eq. (70). How-
ever, it is retained in the formulation in order
to construct a pseudo-time marching solution
scheme, thus artifically preserving the equation
system’s time hyberbolic mathematical nature.
Coupling between the inphase (real) and out of
phase (imaginary) parts of the complex equation
system is provided byikQ̂(1). For k = 0, i.e. the
quasi-steady case, this interaction is eliminated,
therefore restricting the solution to the real part.
Letting Re∞ → ∞, while disregarding the turbu-
lence model incorporated into Eq. (70), yields
the small disturbance Euler equations as given in
[12]. Thus, implementing the small disturbance
Navier-Stokes method FLM-SD.NS on basis of
the existing small disturbance Euler solver FLM-
SDEu becomes reasonable. The definitions for
the linearized amplitude volumêJ and metrics
Ĵψx,y,t appearing throughout Eq. (78-82) is also
taken from [12].

3 Numerical Method

3.1 Properties

The numerical algorithm for solving Eq. (70)
is constructed by incorporating the derived vis-
cous and turbulence modelling components into
the FLM-SDEu code. In this way the TVD prop-
erty and Roe’s convective flux difference split-
ting of the inviscid finite volume approach, as de-
tailed in [12], are retained. Furthermore, with
the introduction of the viscous fluxes and tur-
bulence source term, Cartesian gradients of the
primitive mean and amplitude quantities now
have to be treated as well. For evaluation of
these first-derivatives Chakravarthy’s application
of Gauss’s integral theorem in high resolution
schemes is employed [5]. The mean gradients
are calculated through the basic method, while
the assessment of the amplitude gradients occurs
with a corresponding small disturbance formu-

lation as detailed in [10]. Replacing the orig-
inal explicit Runga-Kutta time-stepping scheme
with an implict lower-upper symmetric succes-
sive overrelaxation (LU-SSOR) approach em-
bedded in a multi-grid algorithm enhances the
performance of the solution process. Efficient
coupling of the LU-SSOR scheme with a multi-
grid technique has been initially proposed and
investigated by Blazek [4] for the steady state
Navier-Stokes equations. Retaining the proper-
ities of LU-SSOR, which is characterized by a
diagonally dominant factorization, a correspond-
ing small disturbance formulation for solving Eq.
(70) has been developed and implemented [19].
Consistent treatment of the adiabatic wall and no-
slip boundary condition [10] and their discrete re-
alization completes the extension of FLM-SDEu
to FLM-SD.NS.

In developing FLM-SD.NS special care has
been taken in order to maintain numerical equiv-
alency with the time-accurate Reynolds-averaged
Navier-Stokes solver FLM-NS [7], which has re-
cently been updated with the Spalart-Allmaras
turbulence model and the multi-grid technique.
As FLM-NS features the original non-linearized
formulations of the discretization and integration
schemes implemented in FLM-SD.NS, compara-
bility between the time-accurate, i.e. non-linear,
and small disturbance method exists.

3.2 Simulation Process

In a first step two computational grids are sup-
plied: one for the reference position of the body
and the other for the deflected extremum posi-
tion, generated through deformation. A turbu-
lent steady state solution then is produced with
FLM-NS in the reference grid. It serves as input
to FLM-SD.NS, providing the prerequisite mean
flow values as contained in the source termŜ(2)

and the convective flux jacobian̄Kψ, Eq. (72) and
Eq. (74) respectively. Furthermore, subtraction
of the reference from the extremum grid by FLM-
SD.NS during procedure initialization yields the
amplitudes of the vertecies’ coordinates, conse-
quently supplying the required amplitude volume
Ĵ and metricŝJψx,y,t . The componentŝS(2) and
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K̄ψ are calculated only once at the beginning of
the procedure and kept in storage, as they remain
invariant throughout the psuedo-time integration
process. With FLM-SD.NS the first harmonic
of the unsteady flow solution is obtained directly
in form of the amplitude state vector’s real- and
imaginary part.

In contrast FLM-NS only uses the steady
state solution for initialization of the non-
linear unsteady computation, which is performed
through conventional dual time-stepping. The re-
quired mesh movement is realized by interpo-
lating intermediary grids between the extremum
and reference position according to the time law,
i.e. Eq. (11) with Eq. (65). Consequently, the
complete unsteady solution evolves in the time
domain, requiring a Fourier analysis in post pro-
cessing for the extraction of the first harmonics.

4 Computational Results

4.1 Validation Case

The validity of FLM-SD.NS (single grid ver-
sion) in regard to subsonic laminar flow has al-
ready been shown successfully for a harmoni-
cally pitching NACA0012 airfoil [20], with fur-
ther investigations having been performed for the
transonic flow regime in [11]. Due to the lack of
turbulence modelling and the consequential re-
striction to low Reynolds number flow, no un-
steady shock boundary layer interaction could be
observed in the past simulations. With the im-
plementation of the turbulent small disturbance
Navier-Stokes code, such test cases have now be-
come accessible.

For the initial validation of FLM-SD.NS
(multi-grid version) at flight realistic Reynolds
numbers the transonic experimental test case
CT8 from AGARD-R-702 [8] is considered: A
NACA 64A010 airfoil performs a harmonic inci-
dence motion as governed by

α(τs) = α0 +∆α ·sin(kred · τs) , (83)

with the reference angle of attackα0 and the
amplitude∆α (pitch axis at25% chord length
cr ). Tab. 1. summarizes the case parameters.

Ma∞ Re∞ α0 ∆α kred

0.8 12.5·106 0.0◦ 0.5◦ 0.2

Table 1 NACA 64A010 CT8 parameters

The reduced frequency is defined throughkred =
k/
√γ Ma∞ = 2πcr f/u∞, with the correspond-

ing characteristic time beingτs =
√γMa∞τ. In

this context, the dimensional frequencyf [s−1],
chord lengthcr [m] and the freestream velocity
u∞ [ms−1] are supplied through the experimental
setup.

Discretization of the computational domain
takes place with an elliptically smoothed struc-
tured mesh in C-topology consisting of384cells
in circumferential and96 cells in surface normal
direction. The symmetrical airfoil contour is dig-
itized with 128 cells per side. An off-body dis-
tance of1·10−5cr for the first grid line ensures a
y+ < 6 as required by the Spalart-Allmaras tur-
bulence model for viscous sublayer resolution.
Additionally, cell density is increased in proxim-
ity to the airfoil contur, where shock appearance
is anticipated. Both reference and deformed ex-
tremum grid are equivalent in their properties.

Applying FLM-SD.NS to the unsteady flow
problem, a four level V-symmetric multi-grid cy-
cle is selected for the solution process. Per multi-
grid cycle dual iterations on the finest and coars-
est grid levels in combination with a single iter-
ation on each of the two intermediary levels al-
low for optimal convergence. The frequency do-
main calculation is terminated after both theL2-
normalized density and Spalart-Allmaras work-
ing variable residuals have dropped below1 ·
10−5. For the comparative time-accurate simu-
lation of the CT8 test case with FLM-NS three
oscillations are computed in order to eliminate
transient phenomena, each discretized with 100
physical time intervalls. Multi-grid settings and
abort criteria are equivalent to the FLM-SD.NS
solution procedure. Both numerical methods are
employed on a Linux operatingIntel R© Pentium
IV personal computer clocked at 2.66 GHz.
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4.2 Evaluation and Discussion

In order to assess the capability of FLM-SD.NS
to accurately predict unsteady air loads, pressure
and skin friction distributions on the airfoil’s con-
tour are investigated at first. As the experimental
data provided in AGARD-R-702 [8] is limited to
zeroth and first harmonic pressure coefficients,c0

p

andc1
p respectively, skin friction values (c0

f , c1
f )

are supplemented through FLOWer calculations
[13]. The algebraic turbulence model accord-
ing to Baldwin-Lomax [3] is employed. Devel-
oped at DLR, FLOWer is a validated time accu-
rate Reynolds-averaged Navier-Stokes solver in
widespread German use. Results of FLM-SD.NS
in comparison to FLM-NS, FLOWer solutions
and experimental data are composited in Fig. 1.
Furthermore, an inviscid small disturbance solu-
tion computed with FLM-SDEu [12] is supplied
for the purpose of evaluating the impact of vis-
cous effects.

Resulting from Fourier analysis of the time-
accurate FLM-NS and FLOWer solutions, a com-
parison ofc0

p andc0
f to the FLM-SD.NS counter-

parts reveals only slight deviations. This serves
as an indication that the first and higher har-
monics of the unsteady flow response have lit-
tle influence on the zeroth harmonic. Therefore,
the mean flow shows good conformity with the
steady state solution, which acts as input for the
linearized method. Consequently, if the negligi-
bility of higher harmonics holds, CT8 becomes
a valid test case for FLM-SD.NS, as flow de-
composition into a mean and linear perturbation
part is possible. Disparity between the invis-
cid steady state solution used as input for FLM-
SDEu and the viscous solutions is evident for the
shock region. Initiation of the shock is located
farther downstream with a stronger gradient and
less post shock dampening, due to the absence of
boundary layer interaction.

Real and imaginary parts of the first harmonic
pressurec1

p and skin friction distributionsc1
f

computed with FLM-SD.NS exhibit good agree-
ment with their Fourier analyzed FLM-NS and
FLOWer equivalents. However, larger differ-
ences between the viscous numerical methods

occur at the shock location, with FLM-SD.NS
predicting a much higher peak value than the two
non-linear methods. Good correspondence to the
c1

p measured values is also observed outside of
the shock region. In vicinity of the shock it be-
comes difficult to assess local solution accuracy,
as only one experimental data point lies within its
extent. As to be expected, thec1

p distribution cal-
culated with FLM-SDEu retains the shock char-
acteristic peak farther downstream than the other
data, as the disagreeing inviscid steady state so-
lution has served as its input. The significantly
stronger and narrower peak at the shock location
is also prominent, again being attributed to the
absence of a boundary layer.

In and out of phase components of the lift
(Rec1l , Imc1

l ) and pitching moment (Rec1m, Imc1
m)

coefficients are computed from the preceding dis-
tributions for both FLM-SD.NS and FLM-NS.
The reference axis for the pitching moment co-
incides with the rotational axis of the incidence
motion located at25%cr , with a positive mo-
ment defined as being tail-heavy. Summarized
in Tab. 2, deviation of the small disturbancec1

l
values from the corresponding non-linear ones
is marginal, establishing good agreement. How-
ever, unfavoarable discrepancies in the range of
15%to 19%are identified forc1

m, as the influence
of shock overprediction through FLM-SD.NS be-
comes noticeable.

method FLM-SD.NS FLM-NS

Rec1l /∆α 6.630 6.619

Imc1
l /∆α −3.072 −3.021

Rec1m/∆α −0.426 −0.358

Imc1
m/∆α −0.149 −0.176

Table 2 NACA 64A010 CT8: Comparison of the
computed global coefficients

Recompositing the global coefficients’ first
harmonic values for the time domain in conjunc-
tion with their respective mean counterparts,c0

l
and c0

m, yields thecl and cm progression over
the incidence motion (Fig. 2). In order to il-
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Fig. 1 Comparison of the pressure coefficient (c0
p, c1

p) and skin friction coefficient (c0
f , c1

f ) distributions

for NACA 64A010 CT8 (Ma∞ = 0.8, Re∞ = 12.5·106, α0 = 0.0◦, ∆α = 0.5◦, kred = 0.2 )

lustrate the transient process characteristic for a
non-linear FLM-NS solution, the coefficient de-
velopment over all three cycles is plotted. Hav-
ing achieved periodicity in the last oscillation, it
is selected for comparative purposes. For both

coefficient evolutions FLM-SD.NS exhibits satis-
factory conformity with the time dependent hys-
tereses computed through FLM-NS and FLOWer,
the small disturbancecl composite being almost
identical to the respective FLM-NS calculated
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progression. In contrast the small disturbance
solution forcm agrees better with the respective
FLOWer hysteresis than with the one calculated
by FLM-NS.
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c l
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Fig. 2 NACA 64A010 CT8 lift and moment co-
efficient evolution over the incidence motion

Regarding the CT8 case, FLM-SD.NS sur-
passes FLM-NS by a factor off11.7 in simulation
speed (Tab. 3), with absolute CPU time being
at 1.05 hours for the small disturbance method.
The trade off for the enhanced efficiency lies in
higher storage requirements, with FLM-SD.NS
allocating more than triple the amount of working
memory (RAM) as FLM-NS. Performing single-
grid computations of the CT8 with FLM-SD.NS
and FLM-NS yields a reduced CPU time ratio of
5.2 between the two methods. It becomes evi-
dent that the acceleration due to the multi-grid
technique does not transfer one-to-one between
the small disturbance and non-linear implementa-
tions, the scheme being more powerful in combi-
nation with the psuedo-steady state solution pro-

cess of FLM-SD.NS.

method FLM-SD.NS FLM-NS

CPU time [h] 1.1 (3.7)SG 12.3 (19.3)SG

RAM [GByte] 0.78 0.22

( )SG: single-grid computation

Table 3 NACA 64A010 CT8: Comparison of the
computational effort

On basis of the CT8 case a variation of the
reduced frequencykred is performed for further
investigation of FLM-SD.NS performance. Ten
distinct frequencies betweenkred ≈ 0 andkred =
2.0 have been calculated with both FLM-SD.NS
and FLM-NS. First harmonics of the unsteady lift
and moment coefficient are plotted over the re-
duced frequency in Fig. 3. Real and imaginary
parts ofc1

l exhibit good conformity between the
linearized and non-linear method over the com-
plete frequency spectrum. Larger deviations are
apparent forc1

m, with the real part being affected
in the lower frequency range especially, as the
discrepancy in shock prediction widens.
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1 Re Im

Fig. 3 Influence of the reduced frequencykred on
lift and moment coefficient prediction

As can be seen in Fig. 4, with decreasing
kred the CPU time ratioζ between FLM-NS and
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FLM-SD.NS increases significantly. This is pri-
marily attributed to the non-linear solver’s re-
duced performance at low frequencies, conver-
gence behavior of FLM-SD.NS exhibiting far
less variation over the frequency spectrum.

kred

ζ

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0
4
8

12
16
20
24
28
32

CPU time ratio: FLM-NS / FLM-SD.NS

: AGARD-R-702 CT8

Fig. 4 Relative computational effort at distinct
reduced frequencieskred

5 Conclusions

With FLM-SD.NS an efficient method for cal-
culating unsteady airloads on the basis of the
small disturbance Navier-Stokes equations has
been presented. Incorporation of a linearized for-
mulation of the Spalart-Allmaras one-equation
turbulence model allows the simulation of high
Reynolds number flows, as was demonstrated for
a harmonically pitching airfoil characterized by
unsteady shock boundary layer interaction. Over-
all good to satisfactory agreement in the results
between the small disturbance and the compar-
ative time-accurate methods, as well as the ex-
perimental data, was observed. Reductions in
computational time up to an order of magnitude
document the efficiency and validity of the small
disturbance approach. The developed implicit
pseudo-time stepping scheme in conjunction with
a multi-grid technique contributes significantly to
the enhancement of performance. In the near
term an extension of code validation to the two-
dimensional turbulent sub- and supersonic flow
regime will have to be realized. Ultimately, ap-
plication of the small disturbance Navier-Stokes
method to wings of various aspect ratio is envi-
sioned.
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