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Abstract  
In this paper, non-reflecting boundary 
conditions based on characteristic boundary 
conditions for the three dimensional 
compressible Navier-Stokes equations (here 
after referred as NSCBC), especially outflow 
boundary conditions, are examined and 
numerical tests for a curved duct flow are made. 
Using the subsonic non-reflecting outflow 
boundary conditions, curvature effects in the 
curved duct for the compressible flow in a 
transonic range are investigated. Extensive 
numerical tests of the stability of the numerical 
solution and the efficiency of the subsonic non-
reflecting outflow boundary conditions extended 
to three-dimensional problems show that the 
NSCBC method provides accurate results for 
very low Reynolds number flows with 
isothermal no-slip walls. The unsteady Navier-
Stokes equations in terms of cylindrical 
coordinates were numerically solved using 
high-order compact schemes. For the high 
curved ducts flows with Re=400.0 and Mc=0.4, 
using different wall boundary conditions of 
with/without heat transfer, preliminary results 
were presented. For the density profiles at the 
cross section, the density gradient in the z-
direction is flatter than that in the radial 
direction in both cases due to the curved duct 
effects. Finally, using the same boundary 
conditions and the high-order compact schemes, 
three cases of Dean numbers up to 442 with 
Re=700 and Mach=0.7 were investigated to 
understand the curvature effects for the 
compressible viscous flows. To understand the 
essential stream-wise structure, helicity 
structures are presented in this paper. Due to 

the induced velocity by the strong interaction 
between a pair of stream-wise vortices in the 
curved duct, the helical structure of the helicity 
is observed around the 60-degrees section 
where the secondary flow develops into a 4-cell 
state. The generalized inflection points appear 
for the steady flow largely due to the stream-
wise velocity distribution. Near the top/bottom 
and concave walls, the gradient of stream-wise 
velocity at the inflection point is steep with a 
maximum shear, which will lead to substantial 
transition to turbulence in the curved duct flows. 

1  Introduction  
In recent years, the technology of turbo 
machinery in small size, such as micro gas 
turbines for distributed power generation, are 
paid much attention. It is a time when 
developments within micro turbine technology 
are moving fast as lightening. Technical insight 
will bring us an invaluable analysis of technical 
work ongoing at micro turbine developments. 
Since the micro turbine rotates at high speed; 
for example, at the maximum rotation speed 
96,000 rpm, the gas flow inside the turbine 
reaches a sonic range. Therefore, to develop 
more reliable and high efficiency micro turbines, 
it is too indispensable to solve flows through a 
narrow inlet at a high speed. This means that an 
analysis requires viscous and compressible 
flows. Long curved duct flows with a small gap 
are important to analyze the viscous flow 
between turbine blades. For such the small size 
turbine, Reynolds number of the flow tends to 
be lower as much as we can treat in DNS 
(Direct Numerical Simulation). 
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For DNS, the NSCBC [1] strategy by Poinsot 
and Lele supplies useful boundary conditions to 
solve simple flows such as plane flows with low 
Reynolds and low Mach numbers between 
parallel walls: the Poiseuille flow. They 
investigated only 2D problems. For 3D 
problems, flows are more complex than that in 
2D because of various influences, i.e. curvature 
effect, which are significant for fluid problems 
where flow reaches near sonic range by using 
the NSCBC because of the theoretical 
difficulties. For practical problems, flows have 
high Reynolds and Mach numbers. Among 
significant problems in curved systems, 
essential features such as roles of secondary 
flows affected by compressibility, heat 
convection and so on haven’t been analyzed yet. 
Therefore, flows with heat transfer from the 
curved duct walls were simulated to study 
curvature effects, including viscous, 
compressible and heat transfer effects in flows. 

2  Numerical methods 

2.1 Governing equations  
The compressible governing equations are revi-
ewed below. Note that in the set of the Navier-
Stokes equations (here after referred as N-S equ-
ations), all distances are normalized by the half 
duct width a/2 and all velocities by sonic speed 
at the wall. 
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Eqs.(1), (2) and (3)-(5) represent for mass, total-
energy and momentum conservation laws, 
respectively. Dissipation term for total energy; 
Eq.(2) involves heat flux as shown in Eq.(6). 
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For closure problem, the following equations 
are introduced; the perfect gas state equation 
and a power law for dynamic viscosity. 

ρ
γ pT =  ,     (8) 

3/2T=µ ,     (9) 
whereγ (=1.4) is the specific heat and Pr 
(=0.72) is the Prandtle number of typical 
compressible gas condition for air. 

2.2 Numerical schemes 
To obtain spatially accurate numerical solutions 
to the governing equations, high-order (sixth-
order) compact schemes [2] are employed. The 
compact approximations for the first and second 
derivatives are expressed in the following linear 
combinations: 
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Here, we consider a uniform spaced mesh where 
the nodes are indexed by i. The third-order 
derivatives at the boundary i=0 are given by 
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The derivatives and their expressions at the 
boundaries are written in the following matrix 
formulations: 
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where B and C are N×N sparse matrices, and 
f̂ , 'f̂  and ''f̂  are N vectors representing the 

values of the function and its derivative at the 
nodes, respectively. An explicit Euler method 
with second order accuracy is employed for 
time advancement. The time step is 0.001 for a 
81×81×41 ( r ×θ ×z ) computational grid. 

2.3 NSCBC; boundary conditions 
An available method for the viscous compress-
ible flows, NSCBC [1], is employed in this 
study. Note that handling of outflow boundary 
has serious problems yet in this method when 
the flow is near transonic state. This problem 
has been corrected by numerical experiments 
for a flow of very low Reynolds and very low 
Mach numbers. An estimation of the wave 
amplitude L1 coming from the outer regions of 
the simulation domain is given mathematically 
as 
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Instead of using the characteristic relation of 
Eq.(10), following empirical forms are 
employed for outflow boundary conditions. 

( )∞−= ppKL1 ,    (11) 

( )
L
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where σ is constant value evaluating by 
numerical experiments, M is the maximum 
Mach number in the computational domain, L is 
the characteristic length of the computational 
domain such as channel length and the subscript 
of derivatives, i, is the flow direction. In the 
NSCBC report [1], numerical experimental 
value of σ=0.25 gives good agreements with an 
exact solution for plane Poisuille flow that 
satisfies following conditions; 

121 <<− MRe
l
L , 

where Re =15.0, Mach =0.1 and L / l =10.0.  
 
 

3 Numerical results and discussions 

3.1 Preliminary tests for developed code 
 

 
Skecth.1. Cylindrical coordinate for curved duct. 

 

 
Table.1. Parameters of the curved duct for bench mark 
test: R; central radius curvature of duct, a; duct width 
and Rc (= R/a ); aspect ratio. 
 
First, we briefly describe preliminary results 
done with different duct wall conditions: 
adiabatic or isothermal with no-slip walls. 
Skecth.1 shows the cylindrical coordinate 
system with symbols used in this study. Flow is 
chosen for Dn =200 defined as Eq.(13) with Re 
=400.0 and Mach=0.4. 

21 /
cn R/ReD ≡ ,   (13) 

The duct parameters using in this test are shown 
in Table.1. In this simulation, L / l =10.0 is 
employed for the outlet boundary conditions at 
θ =72.0 degrees. For the inflow conditions, the 
inlet stream-wise velocity uθ is a parabolic 
profile for the r’-z plane, which is given a 
straight duct by incompressible experiments [6]. 
The inlet velocity and temperature is treated as 
steady state. These conditions are shown as 
follows. 
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There is no secondary flow at the inlet. This is 
an adequate approximation for very low Re. 
At t = 200 steps when flows are fully developed, 
the pressure distributions along downstream 
wise distances at z=0.0 are shown in Fig.1, 
where red, black and blue lines indicate the 
pressure at the outside wall, the central position 
of the duct width at r=R and the inside wall, 
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respectively. As seen in incompressible case [3], 
a pressure peak at the outside wall appears for 
the each case. In the section at the pressure peak, 
distributions of the stream-wise velocity uθ and 
the pressure are similar to each case. See 
Fig.2(a) for adiabatic case. Because of the very 
low Re and Mach numbers flow, there is no 
appreciable difference appears in the 
distributions of the stream-wise velocity uθ and 
the pressure with different wall conditions. 
Profiles of the stream-wise velocity uθ and the 
pressure in the outlet section at θ =72.0 degrees 
are similar to each other, as seen in Fig.2(b) for 
adiabatic case. Here, Fig.3(b) indicates the 
secondary flow obtained by the NSCBC method 
in the outlet section at θ =72.0 degrees. The 
secondary flow at the outlet is called as a 2-cell 
state [6] that occurs in flows with very low Re. 
Note that the bottom figures in Fig.3 indicate 
the distributions of helicity, H, defined as the 
following form: 

H ≡U •ωωωω . 
Obviously, from this definition, this quantity 
indicates the essential stream-wise structure 
involving three-dimensional vortices effect. 
Note that helicity depends on the coordinate 
systems because of the pseudo-scalar. It dose 
not appear for the systems where there is no 
inner product of velocity and vorticity such as 
time-averaged field of the Poisuille flow. 
Discussions about helicity are mentioned later. 
In both cases, the amplitude of secondary flow 
in Fig.3(a) reaches near 20% of the maximum 
typical stream-wise velocity at θ=29-degrees 
section where the magnitude of the secondary 
flow is the highest. Near the outlet section, the 
strength of the secondary flow around the 
top/bottom wall is higher than the other regions. 
For incompressible cases, this kind of structure 
is also observed in the reports [3,4,6,7]. In this 
case, the secondary flow at further downstream 
sections may be a 2-cell state due to very low 
Dn flow. 
Fig.4 shows the distributions of density and 
temperature for each case. For the adiabatic case, 
Fig.4(a) shows that high temperature flows 
caused by fluid friction on the walls gather 
around the inside wall due to the secondary flow.  

 
Fig.1. Pressure distribution along downstream-wise 
distance at z=0.0, red line: r’=1.0, black line: r’=0.0 
and blue line: r’=-1.0 (solid: adiabatic, dotted: iso-
thermal) 

 
Fig.2 Contour lines of stream-wise velocity (left) and 
pressure (right) in the half-top section for adiabatic 
case at (a) θ =29-degrees and (b) outlet sections. 

 

 
Fig.3 Top; distributions of secondary flow (arrow) with 
ωθ (red; negative and violet; positive) and bottom; 
contours of helicity. 

 
Fig.4 Contours of temperature (left) and density (right) 
at the θ =29-degrees sections for (a) adiabatic and (b) 
isothermal case. 
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On the contrary, for the isothermal case, 
Fig.4(b) shows that temperature T is kept about 
constant of T=1.0 in the section. By absorbing 
frictional heats on the walls, T is found to be 
about constant over the duct section. A 
comparison of the density distributions for both 
cases shows a remarkable difference around the 
top/bottom walls. Because the distribution of the 
pressure is the same in Fig.2(a), the change of 
density in the z-direction is found to be not due 
to the pressure gradients. This may be a 
significant phenomena associated with the 
appearance of inflection points as mentioned 
later. 

3.2 Curvature effects for flows with isotherm-
al walls 
In order to study the curvature effect on 
evolution of the flow structure, DNSs for higher 
Dn with Re=700 and Mach=0.7 were performed. 
Note that the duct wall condition was chosen to 
be isothermal walls. The inflow conditions are 
the same as stated in the preliminary tests. 
Table.2 indicates the parameters of the curved 
ducts using this study and these shapes are 
shown in Fig.5. As seen in Fig.5, the outlet is at 
the θ =120-degrees for all cases. Note that the 
outflow boundary conditions for case.Ⅲ have a 
numerical problem to be overcome as the 3-
dimentional outflow boundary condition 
because the characteristic length of the inside 
wall is lower than L=10.0 as shown in Table.3. 
Then, we examined the use of L=10.0 with 
σ =0.25 for the outflow boundary conditions. 
At t = 200, flows are fully developed and steady 
states are obtained. Fig.6 shows the 
development of secondary flow along the duct 
length for each case. As seen in Fig.6(c), a 4-
cell state [6,7] appears around at the θ = 90-
degrees section for each case. Here, Fig.6(d) in 
case.Ⅰ  shows a quasi 6-cell state [7] in the 
vorticity field at the outlet section. Fig.7 
indicates the distribution of radial velocity ur 
along with the duct length of θ at r’ =0.8 and z 
=0.0, which is different from the incompressible 
case [7]. The magnitude of the secondary flow 
in case.Ⅲ  reaches about 14% of the inlet 
maximum velocity at the θ =90-degrees section,  

 
Table.2. Parameters of the curved ducts. 

 

 
Table.3. Comparison of duct length for each case. 

 

 
Fig.5.Comparison of  r-θ shape for each case. 

 

 
Fig.6. Distribution of stream-wise vorticity ωθ (red; 
negative and violet; positive) with secondary flow 
(arrow) for each duct case at θ = (a) 30, (b) 60, (c) 90 
and (d) 120-degrees sections. 
 

 
Fig.7. Distribution of radial velocity ur based on sonic 
speed at the wall along azimuthal direction θ for case.
Ⅰ at r’=0.8 and z=0.0; solid line: DNS data in this 
study and dotted line: incompressible case with a 6-cell 
state [7]. 
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where a 4-cell state appears. Increasing the Dn 
number to 442.7 increases the magnitude of the 
secondary flow, as shown in case. Ⅲ , the 
magnitude in case.Ⅲ is 1.5 times larger than that 
in case. Ⅰ at the θ =90-degrees section. 
As seen in Figs.6(b)-(d), a pair of vortices is 
moving to the origin of r’-z plane. Increasing 
the Dn number leads to the stronger induced 
velocity and the shorter distance between a pair 
of vortices, as illustrated in Skecth.2(a). At the 
outlet section, these vortices reaches around at 
the region of r’ = -0.25 and z = 0.25, while the 
secondary flow develops different to each other. 
Fig.8 shows the development of helicity along 
the duct length of θ for case.Ⅱ. Fig.9 shows the 
3-dimentional structure of helicity in the half-
bottom part of the duct for case.Ⅱ. Skecth.2(b) 
indicates illustration of the 3-dimentional 
structure of helicity. It is interesting to note that 
as shown in Fig.9 the helix of helicity itself 
appears around at the θ = 45-degrees section 
where a 2-cell state evolves into a 4-cell state. 
Here after, this structure is referred to as H2-
structure. Appearance of the H2-structure is 
explained as follows. The distance between a 
pair of vortices is so short that the stronger 
induced velocity is generated at the z=0.0 plane 
for high Dn flows. Figs.6(b)-(d) indicates the 
generation of the induced velocity because the 
secondary flow at the z=0.0 plane between a 
pair of vortices is higher than that in other r’ 
locations. During the process of vortices moving 
by the induced velocity, a pair of separated 
helicity structures meets at the central part of the 
section. Further more, because of the elliptical 
shape of the separated vortex shown in 
Figs.8(c)-(f), H2-structure forms in the curved 
duct flow.  
In this study, the helicity separated from a mass 
of helicity creeping along the top/bottom wall, 
which is weaken by the viscous effect in low Re 
flow. Therefore, if Re is much higher as 
practical case, this separated helicity structure 
should be maintained with its magnitude further 
downstream. On the contrary, very low Re flow 
doesn’t have a structure of the separated helicity 
as shown in Fig.10 that is show in the 
preliminary case mentioned above. 

(a)  (b)  

Skecth.2. (a) Induced velocity caused by a pair of 
vortices in the duct section; Biot-Savart law, (b) 
Helicity structure similar to electronic coil systems. 
Cylinder form; iso-surface of helicity corresponds to 
coil cylinder and red line; stream-line corresponds to 
coil helix. 

 
Fig.8. Helicity variation along azimuthal direction θ for 
case.Ⅱ at θ = (a) 30, (b) 45, (c) 60, (d) 75, (e) 90 and 
(f) 120-degrees half-top sections. 
 

 
Fig.9 Iso-surface of positive helicity; +0.1 in half-
bottom area of case.Ⅱ. Views from (a) the inlet and (b) 
the outlet. 
 

 
Fig.10 Iso-surface of positive helicity; +0.05 with 
stream-wise vorticity ωθ (contours) at θ =29-degrees 
section in half-bottom area for preliminarily tests; (a) 
inlet view for front section and (b) elevation view from 
bottom wall and outlet section. 
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3.3 Inflection point and compressible effect 
for a curved duct flow of case.ⅡⅡⅡⅡ  
Fig.11 shows the distributions of stream-wise 
velocity and temperature at the different 
downstream sections for case.Ⅱ . Fig.11(d) at 
the outlet section shows that the high 
temperature region as well as the stream-wise 
velocity close to the concave wall is affected by 
the vortices generating on the outside-wall 
shown in Fig.6(d). Here, the distribution of the 
stream-wise velocity uθ in Fig.11(d) is similar to 
the incompressible case [7] with Dn = 453.0 that 
the flow has a 6-cell state.  Therefore, the 
outflow boundary conditions with σ = 0.25 is 
found to give an appropriate solution for this 
flow. The temperature inside the vortex is 
slightly low. In Fig.11(c) when a 4-cell state 
develops, higher temperature regions around at 
r’=0.3 and z=0.6 are transported into the inside 
part of the duct section by the stronger counter-
rotating vortices generating around the location 
of r’=-0.4 and z=0.4 as shown in Fig.6(c). But, 
at the outlet section, this phenomenon is 
damped and more stable a 2-cell state develops 
rather than a 4-cell state. 
The flow is unstable when the mean velocity 
has an inflection point. Fig.12 and Fig.14 
indicate the contours of the second derivatives  
 

 
Fig.11. Contours of stream-wise velocity uθ (left) and 
temperature (right) for case.Ⅱ at  (a) 30, (b) 60, (c) 90 
and (d) 120-degrees sections. 

of the stream-wise velocity uθ in each direction 
at the 30-degrees and the 90-degrees sections, 
respectively. Note that the intervals of the 
contour and the threshold value for each 
direction are the same in the section 
distributions. Near the top/bottom and the 
concave walls, the gradients of uθ in the r-
direction are steeper than that in z-direction at 
the 30-degrees section. On the contrary, further 
downstream, the gradients of uθ in the z-
direction are steeper than that in the r-direction 
at the 90-degrees section. 
Fig.13 indicates the section distributions of uθ in 
the r-direction at the 30-degrees section. In 
Fig.13(a), the section distributions of uθ at the 
same stations correspond to the locations 
expressed dotted lines with the same colors in 
Fig.12. Fig.13(b) shows the section distributions 
of the inflection points at the same stations in 
Fig.13(a). Although the inflection points near 
the concave wall don’t appear clearly excepted 
at the section of z=0.88 in Fig.13(a), they are 
obtained by the calculation shown in Fig.13(b). 
Similar to Fig.13, Fig.15 indicates the section 
distributions of uθ in the z-direction at the 90-
degrees section. In Fig.15(a), the section 
distributions of uθ at the same stations 
correspond to the locations expressed dotted 
lines with the same colors in Fig.14. Fig.15(b) 
shows the section distributions of the inflection 
points at the same stations in Fig.15(a). 
Although the inflection points near the top wall 
don’t appear clearly in Fig.15(a), they are also 
obtained by the calculation shown in Fig.15(b). 
Obviously in Fig.14, the inflection points of the 
r-direction along with concave wall disappear at 
the 90-degrees section while the inflection 
points of the z-direction appear near the top wall. 
Compressible effects are investigated. Vorticity 
equations for compressible flows, sometimes 
called as Friedman equation, are 
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Fig.16 shows that the gradients of pressure and 
density are not necessarily parallel, for example,  
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Fig.12. Distributions of the inflection points at the 30- 
degrees section in case.Ⅱ . Black lines: contours of 
d2uθ /dr2 (left) and d2uθ /dz2 (right) from –57.3 to 37.3 
at intervals of 10.0 (continuous: positive and dotted: 
negative) and red lines: 0-gradient contours.  
 

 

 
Fig.13. (a) Distributions of stream-wise velocity uθ 
normalized by sonic speed on the wall at the 30-
degrees section in case.Ⅱ. Black line: z =0.27, blue 
line: z =0.6 and red line: z =0.88. (b) Section 
distributions of the second derivative in r-direction of 
uθ at the several z-stations in Fig.12. 
 

 
Skecth.3. Distributions of vorticities ωθ  around the 
corner (see fig.6). 

 
Fig.14. Distributions of the inflection points at the 90- 
degrees section in case.Ⅱ . Black lines: contours of 
d2uθ /dr2 (left) and d2uθ /dz2 (right) from –53 to 17 at 
intervals of 8 (continuous: positive and dotted: 
negative) and red lines: 0-gradient contours.  
 

 

 
Fig.15. (a) Distributions of stream-wise velocity uθ 
normalized by sonic speed on the wall at the 90-
degrees section in case.Ⅱ. Black line: r’ =0.68, blue 
line: r’=0.5 and red line: r’=0.28. (b) Section 
distributions of the second derivative in z-direction of 
uθ at the several r’-stations in Fig.14. 
 

 
fig.16. Contours of density and pressure at (a) the 30 
and (b) the 90-degrees sections for case.Ⅱ: black and 
red lines indicate density and pressure, respectively. 
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see the results at (a) the 30-degrees and (b) the 
90-degrees sections. Therefore, Fig.17 indicates 
the source of the vorticity ωθ the stream-wise 
component of Eq.(14), which appears on the 
bottom wall. It is, however, very small. Then, 
by supplying ωθ on the walls, the helicity by 
these voticities, as illustrated in sketch.3, may 
be maintained with its strength downstream 
slightly longer than the incompressible cases. 
The generalized inflection points of the i-
direction are defined as 

0=��
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u

x
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Decomposing Eq.(15) into 
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the first term of Eq.(16) shows compressible 
flow effects  due to density distribution. Fig.18 
shows the contours of density gradients for each 
direction. The intervals of the contour and the 
threshold value for each direction are the same. 
In addition, red and black lines indicate the 
generalized inflection points and ordinary 
inflection points, respectively. Steep gradient of 
density for each direction appears around the 
same place of the inflection points. Fig.19 
shows the generalized inflection points 
compared with ordinary inflection points for 
each direction at the sections of the 30-degrees 
(a) and the 90-degrees (b), respectively. The 
compressible effects, appear in Fig.18, on 
appearence of the generalized inflection point 
are small in this flow. 

4 Conclusions  
DNS code with NSCBC giving good agreements 
with an analytical solution for very low Re 
flows is employed for higher Dn flow 
calculations. For duct flows with very low 
curvature ratios, stream-wise velocity and 
secondary flow are resulted in much similar to 
incompressible cases. In this study, temperature 
profile transported by Dean vortices is observed 
when a 4-cell state appears. To understand the 
essential stream-wise structure, helicity 
structures involving three-dimensional vortices 
effect are researched. Due to the induced veloci- 

 
Fig.17. Source distribution of ωθ (red region) on the 
bottom wall with contours of ωθ at the 30-degrees 
section for case.Ⅱ. Front; inlet view. 
 

 
Fig.18. Contours of density gradients at  (a) θ =30 and 
(b) 90-degrees sections in case. Ⅱ . Black lines: 
contours from (a) -0.1 to 1.2 at intervals of 0.2 and (b) 
-0.2 to 0.8 at intervals of 0.15 (solid: positive and 
dotted: negative) and red lines indicate 0-gradient 
contours. 
 

 
Fig.19 Comparison of contours for the inflection points. 
Black; the inflection points of d2uθ /dr2 (left) and d2uθ 
/dz2 (right) shown in Fig.12 and Fig.14 and red; the 
generalized inflection points of d/dr (ρ duθ/dr) (left) 
and d/dz (ρ duθ/dz) (left) at (a) θ =30 and (b) 90-
degrees sections. 
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ty by the strong interaction between a pair of 
vortices, H2-structures are observed around 
about the 60-degrees section where the 
secondary flow develops into a 4-cell state from 
a 2-cell state. The section distributions of 
helicity indicate several vorticity structures with 
small/large amplitudes. Although the inflow 
conditions researched in this study is very 
simple, complex structures such as H2-structures 
are observed. This may be much important for 
problems such as a gap flow between gas 
turbine blades. Actually, it is well known for 
such a flow that corner vortices correspond to 
H2-structures interact strongly with horseshoe 
vortices in steady state. From this study, the 
inflection points near the walls may appear on 
the concave wall around the 30-degrees section. 
At further downstream, the inflection points 
may appear on the top/bottom walls. Although 
compressible effects are observed in the 
generation of vorticity, these influences for the 
location of the generalized inflection points are 
small. Due to the generations of vorticity on the 
walls, appearance of the inflection points with a 
maximum shear close to the walls will lead to 
transition to turbulence in the curved duct flows 
at high Dn numbers. 
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